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Abstract— Tinnitus is attributed by the perception of a
sound without any physical source causing the symptom.
Symptom profiles of tinnitus patients are characterized by a
large heterogeneity, which is a major obstacle in developing
general treatments for this chronic disorder. As tinnitus patients
often report severe constraints in their daily life, the lack of
general treatments constitutes such a challenge that patients
crave for any kind of promising method to cope with their
tinnitus, even if it is not based on evidence. Another drawback
constitutes the lack of objective measurements to determine
the individual symptoms of patients. Many data sources are
therefore investigated to learn more about the heterogeneity of
tinnitus patients in order to develop methods to measure the
individual situation of patients more objectively. As research
assumes that tinnitus is caused by processes in the brain,
electroencephalography (EEG) data are heavily investigated by
researchers. Following this, we address the question whether
EEG data can be used to classify tinnitus using a deep neural
network. For this purpose, we analyzed 16,780 raw EEG
samples from 42 subjects (divided into tinnitus patients and
control group), with a duration of one second per sample.
Four different procedures (with or without noise reduction and
down-sampling or up-sampling) for automated preprocessing
were used and compared. Subsequently, a neural network was
trained to classify whether a sample refers to a tinnitus patient
or the control group. We obtain a maximum accuracy in the
test set of 75.6% using noise reduction and down-sampling. Our
findings highlight the potential of deep learning approaches to
detect EEG patterns for tinnitus patients as they are difficult
to be recognized by humans.

I. INTRODUCTION

Many individuals experience a constant noise in their
ears, which is widely known as tinnitus, further described
as a whistling or ringing sound in the ears [1]. In terms
of prevalence, about 10 - 15% of the worldwide population
report this kind of symptoms [2], [3]. Although many people
perceiving tinnitus do not experience a considerable burden,
about 2.4% of the worldwide population severely suffers
from tinnitus on a daily basis [4]. In most of these cases,
tinnitus is a subjective perception that can only be perceived
by the affected person. The physiological mechanisms of
tinnitus are still being subject to research. At present, it
is known that tinnitus is a heterogeneous phenomenon with
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many possible causes and subtypes [5], [6]. These subtypes
are not necessarily disjoint and can therefore be combined.
However, one issue unites all tinnitus subtypes: The percep-
tion of a phantom sound. Our general hypothesis is that this
perception must be encoded in brain activities. In general,
recent research shows that tinnitus is highly relevant in the
context of clinical neuroscience [7], [8].

Brain activity, in turn, can be measured using electroen-
cephalography (EEG) devices, but the recognition of patterns
within the collected signal data is very complex, even for
experts. Experts, in turn, constitute a rare resource and have
only limited time. We therefore want to investigate whether
a deep learning based end-to-end approach can distinguish
the patterns of tinnitus patients from non-tinnitus patients
using a small sample of 42 individuals. End-to-end means
that the system itself can learn the necessary features to
solve the task. This contrasts with feature engineering in
classical machine learning approaches. In the first step,
automated pre-analyses on resting-state data could be suc-
cessfully accomplished, which can also accelerate processes
in the daily clinical routine. It was effectively revealed that
deep learning offers a methodology with high potential for
predictive accuracy, efficiency, robustness, automation, and
generalizability for the question at hand. In particular, our
results unveil the following:

• In order to gain insights relevant for tinnitus researchers in
their daily practice, the task to learn more about EEG-Data
in the context of tinnitus using machine learning constitutes
a highly interdisciplinary venture.

• It is still a debate to which extent and level preprocessing
should be accomplished.

• Our results indicate that based on machine learning and EEG
data, tinnitus can be classified to a level which justifies further
investigations.

• We have decided to use an end-to-end approach for the in-
vestigations, accepting the potential limitations [9]. However,
extant research in the context of EEG data has shown that end-
to-end learning approaches can provide meaningful results
[10].

The remainder of this paper is structured as follows.
Section II discusses related work, while Section III presents
the applied methods and used materials. In Section IV, the
results are presented, whereas Section V discusses them. The
paper concludes with a summary and outlook in Section VI.

II. RELATED WORK

Various studies have investigated tinnitus in the context
of EEG resting state data [11]. In [12], the EEG signals
of people with various disorders (depression, tinnitus, or
Parkinson’s disease) were compared with healthy subjects.
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Thereby, an increased low-frequency rhythmicity was found.
The authors of [13], in turn, used one second of raw
EEG data and trained a convolutional neural network to
automatically differentiate sub-anesthetic states and depths of
anesthesia. Deep learning models have been used to decode
or visualize EEG data [14]. Furthermore, EEG data were
used to distinguish sleeping from non-sleeping individuals
[15]. In the context of tinnitus, it was shown that prediction-
specific neural information of auditory encoding seems to
strongly differ between tinnitus patients and a control group
[16]. Furthermore, support vector machines have been used
to classify tinnitus patients on preprocessed data [17]–[19].
It has also been shown that tinnitus individuals can be
distinguished from non-tinnitus individuals by means of EEG
in the gamma and alpha wave ranges [20]–[22]. In the field
of end-to-end learning, extant research has shown that the
application of end-to-end deep learning approaches to EEG
data can reveal tangible insights [10], [23], and is therefore
used also in the work at hand. Furthermore, to the best of
our knowledge, no deep learning end-to-end approach has
been applied to classify tinnitus patients using EEG data.

III. MATERIALS AND METHODS

The following chapter is divided into three parts. In the
first part, patient data are presented, while in the second
part, data preprocessing is discussed. Finally, details about
the deep learning approach are presented, in particular, the
architecture of the neural network as well as its output
generating process.

A. Data Set

The data set consists of a total of 29 tinnitus patients and
13 individuals in the control group. The data were collected
using hardware from Brainproducts GmbH, Gilching, Ger-
many. The recordings with a sampling frequency of 500 Hz
were recorded in the resting state. The data were stored in a
BrainVision data format [24]: One electroencephalography
(.eeg) file, containing binary data from 62 EEG and 2
ECG channels (i.e., the voltage values), a text header file
(.vhdr), containing meta data, and a text marker file (.vmrk),
containing information about the events in the data. Note that
project is carried out within the scope of the UNITI project,
which aims to unify treatment and interventions for tinnitus
patients in a pan-European setting [25].

B. Preprocessing

The used neural network only accepts matrices containing
numbers as an input. Therefore, the signals from the binary
.eeg files must be converted into matrices. We solved this
problem using libraries from Python, namely MNE [26],
NumPy, and Pandas. MNE reads .vhdr files in a raw object,
which have n channels as height and n measurements as
width. We chose one second as the sample length. Since
the data are recorded at 500 Hz, one sample is sized at 62
rows x 500 columns. Following this, we had about 320,000
measurements per individual, which resulted in about 642
samples per individual for the feeding procedure of the neural

network. Further note that the 642 samples are all labeled
with tinnitus (=1) or no-tinnitus (=0), respectively.
To reduce noise in the data, we used the Autoreject library
[27], which is a library for automatically deleting bad trials
and repairing bad sensors in EEG data. We used Autoreject
due to the following reasons: It is completely automated,
could potentially be developed in real time and is there-
fore workable in any clinical setting. Data coming from
one individual can finally be summarized to the follow-
ing shape: (n samples, n channels, n measurements) =
(642, 62, 501). The corresponding label vector is denoted
with (n samples, 1). The neural network was then given one
second of a non-overlapping 62-channel EEG signal. Similar
approaches can be found in [11], [28], [29]. After converting
the raw data into slices of NumPy arrays, we split the data
into two sets: 70% are stored for training and hyperparameter
tuning (validation), and 30% are preserved in a test set. As
another information, we used a hierarchic data file structure
format (.hdf5).
To get a better performance when training the neural net-
work, we further normalized the used data. More specifically,
we subtracted the mean for each channel and divided it by its
standard deviation. We further created a balanced dataset. As
we have 29 individuals with tinnitus, but only 13 controls,
a naive classifier would get roughly 69% accuracy in both
training and testing if always classifying tinnitus. To prevent
this, we randomly drew samples from the tinnitus group until
we had a balanced data set, which we call the down-sampling
approach. In the up-sampling approach, we randomly drew
samples with replacement from the control group until the
dataset was balanced again. Finally, we pseudo-shuffled the
data using Python’s random seed = 0, and saved it as a
new .hdf5 dataset. All computations were done with Python3,
Keras, and TensorFlow, on a Core i7 9th gen. CPU. GPU
computing would have been faster, but could bias the overall
reproducibility [30].

C. Deep Learning Architecture

We used Keras for the neural network architecture and
the actual machine learning process. 20% of the training
data were used to validate the current architectural approach,
the remaining 80% were used for the training. We set
random seeds for NumPy, TensorFlow and the OS envi-
ronment to ensure the model is deterministic and changes
in architecture do not randomly improve the model. The
training process then was configured as follows: We defined
a callback class to force the model stopping earlier when
the accuracy gets above a certain threshold. This approach
saved time in training, helped us to speed up the iterations
in the development process, and prevented overfitting. The
architecture of the model is described in Fig. 1. The model
has a total of 76,208,129 trainable parameters, 5 dense
layers, one dropout layer, and one flatten layer. As this is
a binary classification task, a sigmoid layer is used at the
end. The batch size was set to 32 and the neural network
was trained for one epoch at a time. A larger batch size
led to memory issues, but with a smaller batch size, it is
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TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE DATA SET. UNPAIRED,

TWO-SIDED T-TESTS AND TWO-TAILED CHI-SQUARE TESTS WERE USED

TO PROBE THE GROUPS FOR DIFFERENCES. P(STAT): P-VALUE OF

STATISTICAL TEST. SD: STANDARD DEVIATION.

Tinnitus Controls
Variable Mean SD Mean SD p(stat)

Age 53.11 9.26 56.46 13.75 0.36
Hearing loss 29.35 10.78 35.24 18.45 0.2

Sex (f/m) 4 25 2 11 0.89

difficult to ensure that the target remains balanced within
one iteration of gradient descent. The model was compiled
using a binary crossentropy and RMSprop with a
learning rate of 0.001 as an optimizer [31]. For validation,
the accuracy score has been used. Every change in the
architecture was finally evaluated in the hold-out test set.
If the model improved by more than 1 percent point, it was
saved in the history folder.

Input
(64, 501, 1)

Flatten
(32064,)

Dense
(2048,)

Relu Relu

25% 
Dropout

Sigmoid Target
1

4 times

Fig. 1. Architecture of the fully connected neural network. Each sample
gets rolled out in a flatten layer with shape 32,064. This layer is passed to
a total of 4 fully connected layers, which then process the input to features.

IV. RESULTS

In this section, we present four variants of our machine
learning approach. Using Autoreject, noise reduction can be
(1) true or (2) false and the data can be (3) up- or (4) down-
sampled, as described in the preparation subsection.

TABLE II
ACCURACY SCORES FOR THE FOUR DIFFERENT MACHINE LEARNING

APPROACHES. ALL HYPER-PARAMETERS OF THE NEURAL NETWORK

WERE FIXED. THE NUMBER IN (BRACKETS) DENOTES THE TEST SIZE.

Noise reduction true Noise reduction false
Down-sampled 0.76 (5,140) 0.66 (5,140)

Up-sampled 0.72 (11,576) 0.70 (11,576)

We achieved the best accuracy score with noise reduction
using Autoreject and the down-sampling approach. The
final test data set contained 5,140 samples, each with one
second of EEG recordings. The use of Autoreject improved
the accuracy score in the down-sampling approach by 10
percentage points and in the up-sampling approach by 2
percentage points. Due to the increased amount of data in

the up-sampling approach, the neural network might have
learned to distinguish the noise from the tinnitus pattern.
This assumption is supported by the larger difference of
Autoreject true or false between the two approaches down-
or up-sampling.

Ti
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s

0.46 0.04

0.2 0.3
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noise reduction true
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0.09 0.41
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noise reduction true
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0.34 0.16

0.14 0.36
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noise reduction false

Predicted
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tu
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Fig. 2. Confusion matrices for all four approaches. Tin. = Tinnitus. For
each of the four confusion matrices, the values sum up to 100%. Within
each matrix, 0.5 for top left and bottom right would be the optimum.

The confusion matrix in Fig. 2 shows that the down-
sampled approach with noise reduction true has a better
score for the control group (top left matrix with 0.46).
Setting noise reduction on false, the score in the down-
sampled approach is higher for tinnitus individuals (top right
matrix with 0.41). In the up-sampled approach, the neural
network identifies samples from the control group several
times. From Fig. 2, we can see that up-sampling does not
necessarily lead to an improvement of the values, although all
available data from the tinnitus group were used for training
and testing.

V. DISCUSSION

It is questionable why the neural network is not better
in the up-sampling approach than in the down-sampling
approach. According to the general understanding, more
data from the same distribution should lead to an improved
model, given the fact that the test data also come from
this distribution. By adding more data, however, we would
expect the performance gap between Autoreject true or false
to shrink further, meaning the model would better learn to
distinguish artifacts from tinnitus patterns. When it comes
to classification, a balanced data set is rarely available. A
class in the target is usually (strongly) underrepresented.
We made our dataset sufficiently balanced to work without
the need of additional balancing. However, one could have
also trained the data in a 29 to 13 ratio (29 tinnitus and 13
controls), and then set the baseline accuracy to 69%. A naive
classifier would then always have classified tinnitus. Or, one
could have set a high penalty term for false positives in the
loss function. We decided against both variants, because the
accuracy score is better comparable and interpretable than
other scores, especially beyond this paper. The approach
presented in this work also poses several limitations. First,
the amount of used EGG data might be not enough in order
to be representative. In addition, it is not clear whether the
included participants are representative for a broad tinnitus
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patient audience. Furthermore, a more fine-grained approach
compared to an end-to-end approach might produce better
results. Finally, preprocessing is always a subject to debate.
However, we used an off-the-shelf mechanism in this context,
which should limit potential drawbacks to a minimum.

VI. SUMMARY AND OUTLOOK

In this paper, we used raw EEG data from 42 individuals
(29 tinnitus, 13 controls) in an end-to-end approach to
distinguish subjects with tinnitus from those without tinnitus.
The neural network was given one second (500 observations
at 500 Hertz) of 62 EEG channels as input and learned a
feature space in a fully connected 5-layer neural network
with over 76 million parameters. We therefore varied four
approaches: Up- and down-sampling and with or without
Autoreject. The best result in the test set was 75.6% accuracy
for noise reduced data (Autoreject true) and with a down-
sampling approach. To further improve the accuracy score,
the feature space could be increased. So, one could attach
more sensors like ECG data, put them into a separate neural
network, and classify them with an ensemble method by
majority vote similar to a random forest approach. Note that
other works have already shown the feasibility of ensemble
methods in the given context [32], [33]. However, an increase
of the feature space also entails an increase of the data
volume to avoid overfitting. By adding more data from
different distributions, we expect better model performance.
With a better classification rate, the model also has the
potential to be deployed as a real-time classifier. To conclude,
our end-to-end deep neural network approach on EEG data
justifies further investigations for tinnitus in particular and
other medical questions in general.
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