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Abstract— This paper addresses the problem of traffic pre-
diction and control of autonomous vehicles on highways. A
modified Interacting Multiple Model Kalman filter algorithm
is applied to predict the motion behavior of the traffic partici-
pants by considering their interactions. A scenario generation
component is used to produce plausible scenarios of the vehicles
based on the predicted information. A novel integrated decision-
making and control system is proposed by applying a Scenario-
based Model Predictive Control approach. The designed con-
troller considers safety, driving comfort, and traffic rules. The
recursive feasibility of the controller is guaranteed under the
inclusion of the ‘worst case’ as an additional scenario to obtain
safe inputs. Finally, the proposed scheme is evaluated using
the HighD dataset. Simulation results indicate that the vehicle
performs safe maneuvers in different traffic situations under
the designed control framework.

I. INTRODUCTION

A. Motivation

Designing control systems for autonomous vehicles on
highways has been extensively studied in recent decades.
These systems primarily aim to safely control the ego vehicle
(EV) by predicting the motion states of the surrounding target
vehicles (TVs) [1]. The predicted states are usually uncertain,
so generating safe, comfortable, energy-efficient, and real-
time capable control strategies is challenging.

B. Literature Review

Interaction-aware motion prediction is widely investigated
since it can represent realistic traffic scenarios, and control-
ling the EV under interaction-aware scenarios makes the
EV safer [2]. Model Predictive Control (MPC) has been
extensively applied to control the EV based on the predicted
motions of TVs [3]. The predictions can be used to formulate
explicit constraints within the MPC to compute collision-free
EV actions. As a variant of Stochastic MPC, Scenario-based
MPC (SCMPC) has been successfully implemented in vari-
ous highway traffic conditions, as it is easily compatible with
the traffic prediction component and can handle uncertainty
using limited scenarios [4]. To model the interaction between
vehicles over the MPC prediction horizon, the EV’s motion
is modeled as a stochastic process, and the mode transition is
modeled as a Markov chain in [5] [6]. The transition model
is either learned or estimated using the previous EV and
TVs measurements. A stochastic safety guarantee for the
EV is introduced in [7] based on the TVs’ motion behavior,
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where a set of possible TV trajectories is obtained by training
the predictive model in a given scenario. A Branch MPC is
proposed in [8], where a scenario tree and a trajectory tree
are applied to represent the possible motion behavior of the
EV and TVs. The branch probability of two trees influences
each other based on their interactions. In another approach,
a trajectory prediction method is represented by learning the
fused EV and TVs model considering their inner influence
inside MPC [9].

Safety is one of the most critical aspects of controlling the
EV. This feature becomes more challenging in emergency
scenarios, e.g., unexpected deceleration of the leading vehi-
cle (LV) or a sudden cut-in of a TV. These circumstances
are identified as a safety-critical-event (SCE), where the EV
immediately brakes against the crash, which may lead to a
deceleration until a standstill [10]. Adaptive Cruise Control
(ACC) is a helpful tool for solving SCEs, where the EV
reacts based on information about the LV. However, a large
time headway in this algorithm may lead to over-conservative
actions [11]. A safety controller is proposed based on ACC
in [12], where the EV uses a predefined deceleration profile.
Another representative solution to SCEs is the rigorous
formalizing mathematical model of Responsibility-Sensitive-
Safety. In this model, a safety distance is defined by assuming
a ‘worst case’ scenario, and the EV responds to an SCE by
decelerating at a predefined rate without full braking. This
approach might be sensitive to the parameter design, and the
subtle change of the parameter set might lead to a different
decision strategy [13].

C. Contribution

Considering vehicles’ interaction and generating traffic
scenarios within MPC make the problem complicated and
computationally costly. To solve this challenge, we apply
a computation-efficient Interacting Multiple Model Kalman
filter (IMM-KF) to produce possible interaction-aware sce-
narios [14]. Then, the scenarios obtained are considered
in SCMPC to compute collision-free actions for the EV.
Moreover, two control modes, i.e., ‘lane-keeping’ and ‘lane-
change’, are proposed to decrease the complexity of the
problem by excluding the decision-making process of the
EV. The safety of the EV is guaranteed by theoretically
proving the recursive feasibility of the SCMPC under the
‘worst case’ scenario. To the best of the authors’ knowledge,
no work has handled all the mentioned problems with an
integrated SCMPC structure while proving the feasibility of
the algorithm. The proposed method is evaluated for different
HighD dataset scenarios, showing that EV performs safe and
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desirable maneuvers under the designed control architecture.

II. CONTROL ARCHITECTURE
The proposed control structure in Fig. 1 works as follows.

First, considering the vehicles’ interaction, the TV’s mode
states are predicted using IMM-KF, and then are used to
produce all possible traffic scenarios. The high-probability
scenarios are filtered and included in formulating the safety
constraints of two SCMPCs along with the ‘worst case’
scenario. Then, a control system consisting of ‘lane-keeping’
and ‘lane-change’ modes is established. The control input
with minimal cost is chosen in the decision-making module
and applied to the EV.

Fig. 1: Schematic diagram of the proposed control structure

III. SCENARIO GENERATION
A. Intention-based Policy Mode

In the longitudinal direction, the ‘velocity tracking’ (VT)
and ‘distance keeping’ (DK) modes [14] are used. The
vehicle tracks a reference velocity in VT while keeping a
safe distance from its LV in DK. In the lateral direction,
three modes corresponding to ‘lane 1’, ‘lane 2’, and ‘lane
3’ represent the target lanes of the vehicles. Thus, the total
number of modes M is 6.

The common state vector xk in all modes at time k is

xk ≜

[
plon,k vlon,k alon,k︸ ︷︷ ︸

xlon,k

plat,k vlat,k alat,k︸ ︷︷ ︸
xlat,k

]⊤

, (1)

where p∗,k, v∗,k, a∗,k are respectively the position, veloc-
ity, and acceleration in the corresponding direction, ∗ ∈
{lon, lat}. The unknown reference variable rref,k, i.e., ref-
erence velocity vref,k or the reference time gap tgap,k, is also
included in the longitudinal policy mode to be estimated.
Therefore, the full state vector zk in each policy mode at
time k is

zk ≜

[
xlon,k rref,k︸ ︷︷ ︸

zlon,k

xlat,k︸︷︷︸
zlat,k

]⊤

. (2)

Note that we use x
(⊛)
k or z(⊛)

k to clarify the common or full
state of a specific vehicle, where ⊛ ∈ {EV, TV, LV}. To
make the policies closer to the driver’s real intention, two
linear quadratic regulator (LQR)-based feedback controllers
are included in longitudinal and lateral policy modes. The
associated control gains are defined as follows:

K
(⋄)
lon =

[
K

(⋄)
lon,1 K

(⋄)
lon,2 K

(⋄)
lon,3

]⊤
, (3a)

Klat =
[
Klat,1 Klat,2 Klat,3

]⊤
. (3b)

where ⋄ ∈ {VT,DK}. Denoting the sampling time as T , the
discrete form of each policy mode at time k is[

zlon,k+1

zlat,k+1

]
︸ ︷︷ ︸

zk+1

=

[
F

(⋄)
lon,k 04×3

03×4 F
(λ)
lat,k

]
︸ ︷︷ ︸

Fk

[
zlon,k
zlat,k

]
︸ ︷︷ ︸

zk

+

[
E

(⋄)
lon,k

E
(λ)
lat,k

]
︸ ︷︷ ︸

Ek

+ωk,

(4a)
yk = I7×7zk + νk, (4b)

where yk ∈ R7 and I7×7 are the measurement vector and
observation matrix. ωk and νk are assumed to be normally
distributed process noise and measurement noise, with the
covariances Q and R. The longitudinal system matrices are

F (VT)
lon,k =


1 T T 2

2 0

0 1− K(VT)
lon,2T

2

2 T − K(VT)
lon,3T

2

2

K(VT)
lon,2T

2

2

0 −K (VT)
lon,2T 1−K (VT)

lon,3T K (VT)
lon,2T

0 0 0 1

 ,

F (DK)
lon,k =
1− K(DK)

lon,1T
3

6 −K(DK)
lon,1T

2

2 −K (DK)
lon,1T 0

T − K(DK)
lon,2T

3

6 1− K(DK)
lon,2T

2

2 −K (DK)
lon,2T 0

T 2

2 − K(DK)
lon,3T

3

6 T − K(DK)
lon,3T

2

2 1−K (DK)
lon,3T 0

−K(DK)
lon,1vlead,kT

3

6 −K(DK)
lon,1vlead,kT

2

2 −K (DK)
lon,2vlead,kT 1



⊤

,

and the LQR-related input matrices are

E(VT)
lon,k = 04×1,

E(DK)
lon,k =
K(DK)

lon,1T
3

6 − 1
K(DK)

lon,2T
3

6 − T
K(DK)

lon,3T
3

6 − T 2

2 0
K(DK)

lon,1T
2

2

K(DK)
lon,2T

2

2 − 1
K(DK)

lon,3T
2

2 − T 0

K (DK)
lon,1T K (DK)

lon,2T K (DK)
lon,3T − 1 0

0 0 0 0



p
(LV)
lon,k

v
(LV)
lon,k

a
(LV)
lon,k
0

.
Consider the position p(λ) of the center line of the target lane
λ, λ = 1, 2, 3. The lateral system and input matrices are

F
(λ)
lat,k =

−Klat,1T
3

6 −Klat,2T
3

6 −Klat,3T
3

6

−Klat,1T
2

2 −Klat,2T
2

2 −Klat,3T
2

2
−Klat,1T −Klat,2T −Klat,3T − 1

 , (5a)

E
(λ)
lat,k =

Klat,1T
3

6 p(λ)

Klat,1T
2

2 p(λ)

Klat,1Tp
(λ)

 . (5b)

B. Interaction-aware Estimation and Prediction

Each vehicle’s state estimation and prediction are cal-
culated in descending priority order based on vehicles’
interactions. The priority criteria are (i) if two vehicles are
in the same lane, the preceding one has higher priority (ii) if
two vehicles are in different lanes, the one with the higher
longitudinal progress over a specific horizon has higher
priority [14].

For the sake of clarity, a policy mode corresponds to
one model of the IMM-KF in this work. In the IMM-KF,
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we consider the Markov jump linear system (4), where the
transition probability from mode i to mode j is denoted
as π(i|j), and π(i|j) ∈ [0, 1], i, j ∈ {1, 2, ..., 6}. Since the
reference parameters of the VT and DK modes are different,
we mix individual common estimates and initialize each
mode in the first step as:

c(i) =

M∑
j=1

π(j|i)µ
(j)
k−1, (6a)

µ
(j|i)−
k−1 =

π(j|i)µ
(j)
k−1

c(i)
, (6b)

x̄
(i)−
k−1 =

M∑
j=1

µ
(j|i)−
k−1 x̂

(j)−
k−1 , (6c)

P̄
(i)−
k−1 =

M∑
j=1

µ
(j|i)−
k−1

[
P

(j)−
k−1

+
(
x̄
(i)−
k−1 − x̂

(j)−
k−1

)(
x̄
(i)−
k−1 − x̂

(j)−
k−1

)⊤
]
,

(6d)

where µ
(j|i)−
k−1 is the mixing conditional mode probability,

x̂
(j)−
k−1 , P (j)−

k−1 are the common state estimation and covari-
ance, which are part of the full state estimation ẑ

(j)−
k−1 , and

covariance P(j)−
k−1 . The fused common state estimation and

covariance are x̄(i)−
k−1 and P̄

(i)−
k−1 . z̄(i)−k−1 and P̄(i)−

k−1 are fused full
state estimation and covariance. Then, each mode is predicted
and updated as

ẑ
(i)+
k−1 = F

(i)
k−1z̄

(i)−
k−1 + E

(i)
k−1, (7a)

P(i)+
k−1 = F

(i)
k−1P̄

(i)−
k−1F

(i)⊤
k−1 +Q

(i)
k−1, (7b)

ỹ
(i)
k = y

(i)
k − I7×7ẑ

(i)+
k−1 , (7c)

r
(i)
k = I7×7P(i)+

k−1I
⊤
7×7 +R

(i)
k , (7d)

L
(i)
k = P(i)+

k−1I
⊤
7×7r

(i)
k

−1
, (7e)

ẑ
(i)−
k = ẑ

(i)+
k−1 + L

(i)
k ỹ

(i)
k , (7f)

P(i)−
k = (I7×7 − L

(i)
k I7×7)P(i)+

k−1 , (7g)

with the prior state estimate ẑ
(i)+
k−1 and covariance P(i)+

k−1 ,
the innovation residual ỹ(i)k and its covariance r

(i)
k , Kalman

gain L
(i)
k , and posterior predicted state estimate ẑ

(i)−
k and

covariance P(i)−
k . The state prediction of each mode is

ẑt|k = ϕ(t, 1)ẑ−k +

t∑
δ=k+1

ϕ(t, δ)Eδ−1, (8a)

ϕ(t, δ) =

{
(Πt−1

η=δF
⊤
η )⊤ if t > δ

I7×7, if t = δ
, (8b)

where t = k+1, ..., k+1+N , N is the prediction horizon.
To obtain a no-collision prediction, a mixed integer quadratic
programming (MIQP) problem is formulated to modify the
state estimation ẑ

(proj)−
k , where the safety constraints between

the studied vehicle and other vehicles which have higher
priority are considered. Note that the state estimation of
each policy mode is still ẑ−k , and only the state prediction

is modified in terms of ẑ(proj)−
k and (8). The state estimation

error between ẑ−k and ẑ
(proj)−
k , and its covariance are used

to augment the innovation residual ȳ
(i)
k and its covariance

rk
(i) as y̆

(i)
k and r̃

(i)
k . Then, the policy mode probability is

updated based on the augmented matrices

L̃
(i)
k =

exp(− 1
2 y̆

(i)⊤
k r̃

(i)−1
k y̆

(i)
k )∣∣∣2πr̃(i)k

∣∣∣1/2 , (9a)

µ̃
(i)
k =

c(i)L̃
(i)
k∑M

j=1 c
(j)L̃

(j)
k

. (9b)

The final step is to mix state estimation and its covariance
according to the updated probability of the individual mode

x̂−
k =

M∑
i=1

µ̃
(i)
k x̂

(i)−
k , (10a)

P−
k =

M∑
i=1

µ̃
(i)
k [P

(i)−
k + (x̂−

k − x̂
(i)−
k )(x̂−

k − x̂
(i)−
k )⊤].

(10b)

The updated state estimation is also modified in terms of an
MIQP problem to guarantee safety over the whole prediction
horizon. The readers are referred to [14] for more details.

C. Scenario Generation of TVs

A scenario is defined as a tuple of motion maneuvers for
all TVs. Assuming that the number of investigated TVs is
V , then a total of MV possible scenarios can be generated.
µ
(n)
i is the probability of TV n with the policy mode i,

i ∈ {1, 2, ..., 6}. Assuming statistical independence of each
vehicle’s no-collision prediction over the prediction horizon,
then the probability of the scenario s is calculated by

Pr(s) =
V∏

n=1

µ
(n)
i , s = 1, ...,MV , (11)

where
∑MV

s=1 Pr(s) = 1. To have high-probability scenarios,
scenarios with a probability less than a predefined threshold
P are not considered. The probability of the remaining
scenarios is normalized by

Pr(s) =
Pr(s)

1−
∑θ

ζ=1 Pr(ζ)
, s = 1, ...,MV − θ, (12)

where θ is the total number of scenarios with probability less
than P .

IV. SCENARIO-BASED MODEL PREDICTIVE
CONTROL

Based on the predicted scenarios of the TVs, a feasible
trajectory for the EV is calculated by solving a constrained
finite-time optimal control problem (CFTOCP) in a moving
horizon fashion. The objective of the optimization problem
is to follow the planned reference trajectory with minimum
effort and with the consideration of safety constraints, traffic
rules, and driving comfort. The first computed control input
of the CFTOCP is fed to the system at each time step.
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A. Vehicle Model

The Jerk Model is used as the EV’s motion model in both
longitudinal and lateral direction:p

(EV)
∗,k+1

v(EV)
∗,k+1

a(EV)
∗,k+1


︸ ︷︷ ︸

x(EV)
∗,k+1

=

1 Tp
1
2Tp

2

0 1 Tp
0 0 1


︸ ︷︷ ︸

A

p
(EV)
∗,k

v(EV)
∗,k
a(EV)
∗,k


︸ ︷︷ ︸

x(EV)
∗,k

+

 1
6Tp

3

1
2Tp

2

Tp


︸ ︷︷ ︸

B

j(EV)
∗,k︸︷︷︸
u(EV)
∗,k

,

(13)
with the prediction time step Tp, which differs from the
sampling time step T of the IMM-KF in this paper. (13)
can be rewritten as

x(EV)
k+1 =

[
A 03×3

03×3 A

]
︸ ︷︷ ︸

Ā

x(EV)
k +

[
B
B

]
︸︷︷︸
B̄

u(EV)
k . (14)

B. Scenario-based Model Predictive Controller

The proposed SCMPC scheme has two control modes: (i)
the EV stays in the current lane and keeps its velocity (ii)
the EV switches to the target lane and keeps its velocity. For
each control mode, a CFTOCP is solved for a correspond-
ing reference trajectory. The decision-making module then
selects the control mode with the lower cost.

In addition to the generated scenarios, a so-called ‘worst
case’ scenario is introduced to ensure the recursive feasibility
of CFTOCP. In this scenario, the LV is assumed to decelerate
with its minimum acceleration over the prediction horizon.
We introduce two sequences of control inputs u(EV)

0 , ..., u(EV)
N−1

and ŭ(EV)
0 , ..., ŭ(EV)

N−1. The first input sequence is calculated to
avoid collision between the EV and the LV/TVs under the
generated scenarios, and used to evaluate the cost function
with associated states x(EV)

k . The second sequence is obtained
by considering the safety constraints under the ‘worst case’
scenario, with associated states x̆(EV)

k , and the terminal set
of the states X̆(EV)

f , detailed in the proof of recursive fea-
sibility. The first computed inputs u(EV)

0 and ŭ(EV)
0 must be

equal to guarantee the recursive feasibility. The CFTOCP is
formulated as

J = min
u(EV)
k ,x(EV)

k+1

N−1∑
k=0

∥∥∥x(EV)
k+1 − x(EV)

ref,k+1

∥∥∥
Q̄
+
∥∥∥u(EV)

k

∥∥∥
R̄
, (15a)

s.t. x(EV)
k+1 = f(x(EV)

k , u(EV)
k ), k = 0, 1, ..., N − 1, (15b)

x̆(EV)
k+1 = f(x̆(EV)

k , ŭ(EV)
k ), k = 0, 1, ..., N − 1, (15c)

x(EV)
k ∈ X(EV), x̆(EV)

k ∈ X̆(EV), k = 0, 1, ..., N − 1, (15d)
u(EV)
k ∈ U(EV), ŭ(EV)

k ∈ Ŭ(EV), k = 0, 1, ..., N − 1, (15e)
u(EV)
0 = ŭ(EV)

0 , (15f)
x̆(EV)
N ∈ X̆(EV)

f , (15g)

x(EV)
0 = x̆(EV)

0 = x(EV)(0). (15h)

Here x(EV)
ref,k+1 is the reference state based on the relevant

control mode. In the lane-change mode, we consider the EV
only changes one lane according to the real traffic situation,
so the number of related reference trajectories depends on
the current lane of the EV. Q̄ ∈ R6×6 and R̄ ∈ R2×2 are

tune-able positive definite weighting matrices. The feasible
state sets X(EV) and X̆(EV), and input set U(EV) and Ŭ(EV) are
limited by appropriate constraints, as detailed below.

Remark 1. If there is no LV in reality, it is assumed that
there is an LV far away from the EV.

Remark 2. During the lane change of the EV, we call the
lane-keeping control mode deactivated when keeping the
current lane is infeasible.

C. Constraints

1) State and input constraints: The EV’s motion state and
action are limited by traffic rules and driving comfort. The
lateral position is constrained by the lane bounds [lub, llb]

0 < v(EV)
lon,k, llb ≤ p(EV)

lat,k ≤ lub, (16a)

a(EV)
lon ≤ a(EV)

lon,k ≤ a(EV)
lon , a(EV)

lat ≤ a(EV)
lat,k ≤ a(EV)

lat , (16b)

j(EV)
lon

≤ j(EV)
lon,k ≤ j

(EV)
lon , j(EV)

lat
≤ j(EV)

lat,k ≤ j
(EV)
lat , (16c)

where • and • denote the minimum and maximum values of
the associated variables.

2) Safety constraints: A safe distance between the EV
and the preceding vehicles in the same lane is required:

dk ≥ d, (17)

and the safety distance d is computed by

d = τv(EV)
lon,k +△d, (18)

with the design parameters τ and △d. If the reference point
of all vehicles is in their respective center, for example,
choose △d ≥ l(EV)+l(LV)

2 , where l(EV) and l(LV) are the length
of EV and LV. During the lane-change period, in addition
to keeping a safe distance from the LVs in both the current
and target lane, the EV should also maintain a safe distance
with the TV behind it in the target lane. The required safety
distance also satisfies (18). The safety constraint under the
generated scenario is based on (18), while the safety distance
for considering the ‘worst case’ scenario collapses to △d.

D. Recursive Feasibility of the SCMPC

Definition 1. (Recursive Feasibility) The SCMPC is recur-
sively feasible if (17) always holds. Namely, in lane-keeping
mode, a collision between the EV and the LV is always
avoidable. In lane-change mode, no accident occurs between
the EV and the other vehicles during the lane-change process,
and then the EV remains safe in the target lane.

If the safety constraints are met in the ‘worst case’ sce-
nario, it means that the EV can manage any traffic situation
under the SCMPC. This capability is denoted by a parameter
called the minimal stopping horizon N , defined as follows.

Definition 2. (Minimal Stopping Horizon) Given the initial
velocity v(EV)

lon,0 and the minimal acceleration a(EV)
lon of the EV,

the minimal stopping horizon N ∈ N satisfies

N =

⌈
v(EV)

lon,0

|a(EV)
lon |Tp

⌉
, (19)
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where ⌈•⌉ is defined as the smallest integer that is not smaller
than a real number •.

If we choose the prediction horizon N ≥ N , the terminal
set X̆f at the time t is

X̆(EV)
f ≜ {x̆(EV)

N |t |x̆
(EV)
N |t =

[
p
(EV)
lon,N |t 0 0 p(λ) 0 0

]⊤
},

(20)
where the stopping longitudinal position p

(EV)
lon,N |0 of EV is

determined by its initial position p(EV)
lon,0, initial velocity v(EV)

lon,0

and minimal acceleration a(EV)
lon . The terminal lateral position

of the EV is the position of the center line of the target
lane p(λ) under the specific control mode. Based on the
general traffic situation and rules, we make the following
assumptions.
Assumption 1. All vehicles only drive forward, and the EV
is only responsible for the front collisions.

Assumption 2. u(EV)
k =

[
0 0

]⊤
is one element of the

feasible set Ŭ(EV).
The recursive feasibility of the SCMPC is then proved.

Theorem 1. If SCMPC is initially feasible, and the prediction
horizon N ≥ N , then the controller is recursively feasible
based on Assumptions 1, 2.

Proof. Let two initial control inputs of the
generated normal scenarios and the ‘worst case’
scenario be {u(EV)

0|0 , u
(EV)
1|0 , ..., u

(EV)
N |0 , ..., u

(EV)
N |0 } and

{ŭ(EV)
0|0 , ŭ

(EV)
1|0 , ..., ŭ

(EV)
N |0 , ..., ŭ

(EV)
N |0 }. Choose the second

control sequence as initially feasible solution
{ŭ(EV)⋆

0|0 , ŭ
(EV)⋆
1|0 , ..., ŭ

(EV)⋆
N |0 , ..., ŭ

(EV)⋆
N |0 }, and its related

state sequence is {x̆(EV)⋆
0|0 , x̆

(EV)⋆
1|0 , ..., x̆

(EV)⋆
N |0 , ..., x̆

(EV)⋆
N |0 }. The

terminal state x̆
(EV)⋆
N |0 is determined according to (20). We

apply ŭ
(EV)⋆
0|0 to the system (14), and obtain

x
(EV)
1 = Āx

(EV)
0 + B̄ŭ

(EV)⋆
0|0 = x̆

(EV)⋆
1|0 . (21)

Then the following is a feasible solution for the MPC
problem initialized at x(EV)

1 :

{u(EV)
1|1 , u(EV)

2|1 , ..., u(EV)
N |1 , ..., u

(EV)
N−1|1, u

(EV)
N |1} =

{ŭ(EV)⋆
1|0 , ŭ

(EV)⋆
2|0 , ..., ŭ

(EV)⋆
N |0 , ..., ŭ

(EV)⋆
N−1|0,

[
0 0

]⊤}, (22)

where
[
0 0

]⊤ ∈ Ŭ(EV). The related state sequence is

{x(EV)
2|1 , x

(EV)
3|1 , ..., x

(EV)
N+1|1, ..., x

(EV)
N |1 , x

(EV)
N+1|1} =

{x̆(EV)⋆
2|0 , x̆

(EV)⋆
3|0 , ..., x̆

(EV)⋆
N |0 , ..., x̆

(EV)⋆
N |0 , Āx̆

(EV)⋆
N |0 + B̄ ·

[
0 0

]⊤}, (23)

where Āx̆
(EV)⋆
N |0 + B̄ ·

[
0 0

]⊤
= x̆

(EV)⋆
N |0 . Both sequences

are feasible for the MPC problem because they satisfy the
dynamics and the constraints.

V. SIMULATION AND DISCUSSION

The presented method is assessed with one documentation
(ID:01) of the HighD dataset [15], which records the motion
states of 1047 vehicles in 900s with a sampling time of
0.04s. We take two specific traffic situations as case studies,
including the EV’s initial motion states and the TVs’ motion

states during the simulation time. The designed control
system directs the EV’s movement in subsequent time steps.

A. Simulation Setup

Fig. 2 gives the initial scenes of case studies. Table I
shows the parameters used in both cases, including the whole
simulation time Ts. Table II shows the initial mode states of
vehicles with the proper units, and the length l and width w
of vehicles in two cases. Note that we only consider the EV
changes to lane 1 in the lane-change mode of the simulation.

Fig. 2: The initial scenes for Case 1 (left) and Case 2 (right)

TABLE I: Design parameters used in the simulation study

Parameter Ts(s) T (s) Tp(s)
Value 10.00 0.04 0.40

Parameter N a
(EV)
lon (m/s2) a

(EV)
lon (m/s2)

Value 15 −4.00 4.00

Parameter a
(EV)
lat (m/s2) a

(EV)
lat (m/s2) j

(EV)
lon (m/s2)

Value −4.00 4.00 −5.00

Parameter j
(EV)
lon (m/s2) j

(EV)
lat (m/s2) j

(EV)
lat (m/s2)

Value 5.00 −4.00 4.00

Parameter τ(s) lub(m) llb(m)
Value 0.40 33.80 21.00

Parameter p
(1),(2),(3)
c (m) Klat a

(LV)
lon (m/s2)

Value {22.98, 26.88, 31.3} [1.15, 3.39, 3.58]⊤ −3.00

TABLE II: States initial values and vehicle parameters

Case 1
Parameter {plon,0, vlon,0, alon,0, plat,0, vlat,0, alat,0} {l, w}

EV {2.84, 34.8, 0.27, 25.65,−0.09,−0.01} {4.85, 2.02}
TV1 {127.87, 32.74, 0.13, 21.52,−0.21, 0.2} {5.96, 2.32}
TV2 {141.19, 23.04, 0.05, 25.42, 0.1,−0.03} {14.35, 2.5}

Case 2
Parameter {plon,0, vlon,0, alon,0, plat,0, vlat,0, alat,0} {l, w}

EV {181.5, 25.07,−0.29, 25.49, 0.09,−0.01} {4.14, 1.92}
TV1 {151.54, 32.59, 0.28, 22.21,−0.27, 0.01} {4.75, 2.02}
TV2 {201.31, 23.21, 0.17, 25.62, 0.17,−0.02} {9.2, 2.5}

B. Simulation Results

Figs. 3 and 8 show the open-loop trajectories of the EV
over time, the closed-loop trajectory of the EV, and the TVs’
trajectory in two cases.

1) Case 1: The velocity profile of all vehicles over the
entire sampling time is shown in Fig. 4. Fig. 5 displays
the cost function value of two controllers. The cost of the
SCMPC is set as an arbitrary big value when it is deactivated,
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like 5000. As Fig. 5 shows, between 0s and 7.6s, lane-
keeping is the desirable maneuver. Between 0s and 4s, the
EV keeps its velocity and then decelerates until around 7.6s
to have a safe distance from TV2. After that, at 7.6s, the
cost of changing lanes becomes lower, prompting the EV
to initiate a lane-change maneuver. After about 1.5s, the
lane-change maneuver succeeds. Then, the EV maintains a
constant velocity in its new lane for the remaining time steps,
while the lane change becomes too costly and impossible at
around 11.8s. In particular, the increasing values between
9.2s and 11.8s lead to a visual discontinuity in the lane-
change cost-function curve, the largest of which reaches a
value of 56000.

Fig. 3: The motion trajectory of vehicles in Case 1

Fig. 4: The velocity profile in Case 1

Fig. 5: The cost function value of controllers in Case 1

Fig. 6 and 7 illustrate traffic prediction results for Case
1 at 5s and 9s. At 5s, three scenarios are generated: TV1
performs a VT maneuver in lane 1 (black edge), or lane 2
(blue edge), and TV2 performs VT maneuvers in lane 1 (red
edge), or lane 2 (blue edge). The associated probabilities
are {µ(1)

1 µ
(2)
2 , µ

(1)
2 µ

(2)
1 , µ

(1)
2 µ

(2)
2 } = {0.241, 0.186, 0.573}.

At 9s, TV1 may perform a VT maneuver in lane 2 (black
edge), or lane 3 (magenta edge), and TV2 may perform a VT
maneuver in lane 2 (black edge). The associated probabilities
are {µ(1)

2 µ
(2)
2 , µ

(1)
3 µ

(2)
2 } = {0.913, 0.087}.

Fig. 6: Traffic prediction at 5s in Case 1

Fig. 7: Traffic prediction at 9s in Case 1

2) Case 2: The vehicles’ motion trajectories, velocity
profile, and the cost function value of two SCMPCs are
displayed in Figs. 8, 9 and 10. From 0s to 2s, the EV main-
tains its speed under the control strategy, but the cost rises
continuously. This is because it is impossible to maintain a
safe distance from TV2, while consistently keeping a higher
velocity throughout the prediction horizon. Since then, the
EV starts to reduce its speed to the speed of TV2 until 4s,
which accordingly leads to a decrease in the value of the cost
function. Note that the lane-change becomes available after
about 5s, before which we set its associated cost function
value as 5000. After that, its cost remains higher than lane-
keeping. Therefore, the EV stays in the current lane in the
following time steps.

Fig. 8: The motion trajectory of vehicles in Case 2

The traffic prediction results for Case 2 at 3s and 6s are
shown in Figs. 11 and 12. At 3s, two scenarios are generated:
TV1 performs a VT maneuver in lane 1 (black edge), or
lane 2 (white edge), and TV2 performs a VT maneuver
in lane 2 (black edge). The associated probabilities are
{µ(1)

1 µ
(2)
2 , µ

(1)
2 µ

(2)
2 } = {0.860, 0.140}. At 6s, three scenarios

are generated: TV1 performs a VT maneuver in lane 1
(black edge), and TV2 performs a VT maneuver in lane
1 (black edge), lane 2 (white edge), or lane 3 (blue edge).
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Fig. 9: The velocity profile in Case 2

Fig. 10: The cost function value of controllers in Case 2

The related probabilities are {µ(1)
1 µ

(2)
1 , µ

(1)
1 µ

(2)
2 , µ

(1)
1 µ

(2)
3 } =

{0.130, 0.727, 0.143}.

Fig. 11: Traffic prediction at 3s in Case 2

Fig. 12: Traffic prediction at 6s in Case 2

Simulation results of Cases 1 and 2 indicate that the EV
executes safe maneuvers under the designed control structure
while considering the interaction with other vehicles.

VI. SUMMARY AND FUTURE WORK

The paper investigates the interaction-aware state esti-
mation of the vehicles using IMM-KF and represents the
uncertain environment through related state prediction with
probability. The generated scenarios, along with the ‘worst
case’ scenario, are used to formulate the safety constraints

of the SCMPC. The control input with lower cost among the
lane-keeping and lane-change modes is applied to the system.
Moreover, the system’s recursive feasibility is ensured by
preventing collision between the EV and the LV in a ‘worst
case’ scenario. The proposed algorithm is validated for two
highway scenes from the HighD dataset. Simulation results
demonstrate the capability of the proposed control method to
perform safe maneuvers. Validating the proposed structure in
a high-fidelity environment to include the reactions of TVs
to the EV in time is the subject of future work.
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