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Abstract— This paper proposes a simple and physically
intuitive approach to the angular velocity estimation problem
of rigid-body spacecraft. By taking the advantage of the
underlying nature of attitude dynamics, the original state
observation problem is equivalently transformed into an easily
solvable parameter estimation problem, and global exponential
convergence of the observation errors is obtained without
using high-gain injection. The main design is extremely concise
in overall mathematical formulations and allows great flex-
ibility for implementation, its effectiveness and performance
improvements under measurement noises are verified through
numerical simulations.

I. INTRODUCTION
The problem of estimating angular velocity of rigid-body

spacecraft has received lots of attentions during the past
several decades due to its critical application in many realistic
scenarios. Angular velocity is mostly obtained from IMU (in-
ertial measurement unit), while comparing with other com-
monly used attitude sensors, gyroscopes therein generally
have considerably shorter lifespan and are prone to failure
[1], and the actual angular rate may also exceed IMU’s
measurement range during undesired maneuvers. Therefore,
accurate estimates of angular velocity can be integrated into
alternative or back-up solutions for guidance and control
systems, and it can also be used as redundant information
for bias calibration and sensor fusion. Moreover, the technics
involved also pave the way for designing cost-effective,
“gyro-less” devices such as small satellites.

Despite the relative simple formulation of rigid-body atti-
tude dynamics, providing a perfect solution to the aforemen-
tioned problem is never an easy task. In the two prevailing
classes of methods for angular velocity reconstruction, the
numerical differentiation based “derivative approach” [2]
typically leads to significantly amplified negative effects of
measurement noises and deteriorated estimation accuracy,
while angular velocity observers are usually more difficult
to be designed. The major obstacle is that the Coriolis term
in attitude dynamics is nonlinear in angular velocity, thus
making it problematic to dominate resulting error terms
globally with static feedback. As a result, the relative fragile
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asymptotic convergence is usually witnessed when pursuing
global stability results [3], [4], [5], where the verification of
robustness to uncertainties and separation property for output
feedback usually becomes non-trivial. On the other hand,
globally exponentially stable (GES) observers do not suffer
from these drawbacks, while its design procedure is much
more technically involved (interested readers could also refer
to [6] for more detailed mathematical explanations). To the
best of our knowledge, most of the existing GES results
[7], [8], [9], [10] are based on the Immersion & Invariance
(I&I) method proposed in [11], but unfortunately, all these
methods have to rely on dynamic scaling [12] to overcome
the inherent realization issue for higher-order systems in the
I&I framework through high-gain injection, and it is well-
known that employing high-gain in feedback is particularly
undesired when measurement noises are taken into consider-
ation. Several recent interesting advancements on contraction
analysis based observer could obviate some of the above
problems, while high-gain filtering is still inevitable in these
methods to obtain GES [13], [14]. The only exception
seems to be the result in [6], where a Kazantzis-Kravaris-
Luenberger observer (KKLO) [15] inspired low-gain GES
observer is established through using special coordinate
transformation and kinematic properties of rigid rotation.
However, the design in [6] suffers from limited “bandwidth”
when the demand on convergence speed is stringent.

In view of the aforementioned defects in existing designs,
we revisited the angular velocity estimation problem in
this paper from a completely new perspective. Part of our
motivations come from recent efforts on designing parameter
estimation based observer (PEBO) for general nonlinear
systems [16], where parameter estimation approaches are
enabled to solve the state observation problem via the
establishment of certain coordinate transformation through
solving the associated partial differential equation (PDE).
Like KKLO designs, PEBO is born to be high-gain free
and has already been applied in several representative cases
with promising advantages [17], [18], [19], however, the PDE
solvability and existence of the parameter estimator are still
the main difficulties for its further generalization to other
nonlinear systems. Nevertheless, by taking advantages of
the underlying physical nature of attitude dynamics, we are
able to find natural coordinate transformation which avoids
solving the PDE in original PEBO design, and the resulting
parameter estimation problem ultimately becomes a linear
regression problem where the regression matrix is always
persistently exciting (PE). On this basis, a novel GES angular
velocity observer is proposed, where the following major
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contributions and improvements are witnessed:
1) The main design is physically intuitive and free from

using any kind of high-gain injection, which is a note-
worthy departure from prevailing methods to obtain
GES;

2) The proposed observer is developed in an extremely
simple and straightforward manner: it is only governed
by two key equations, and even all associated analysis
is free of using Lyapunov functions;

3) The formulation of the observer is independent of spe-
cific attitude representations or parameter estimators,
which allows considerable flexibility for extension and
implementation.

The remainder of this paper is organized as follows. The
model and objective are introduced in Section II. Section
III gives the main result of the proposed PEBO design, and
simulation results are presented in Section IV to demonstrate
the effectiveness of the proposed method. Finally, concluding
remarks are summarized in Section V.

II. MODEL AND PROBLEM DESCRIPTION

The attitude dynamics of the rigid-body spacecraft is given
by

Jω̇ + ω×Jω = τ, (1)

where J ∈ R3×3 is the constant and positive definite inertia
matrix. ω ∈ R3 is the unknown angular velocity to be
observed, which is defined in the body-fixed frame FB with
respect to the inertial reference frame FI , and τ ∈ R3

represents the control input. The skew-symmetric matrix
operator (·)× : R3 → R3×3 is defined such that x×y = x×y
holds for all x, y ∈ R3. Without loss of generality (this will
be discussed later), the unit quaternion will be considered
as available attitude information, where we denote q ≜
{q0, qv} ∈ R × R3 as the attitude orientation of FB with
respect to FI , subjecting to the constraint q20 + qTv qv = 1.
The kinematic equation of the quaternion representation is
given by

q̇ = T (q)ω, T (q) =
1

2

[
−qTv

q×v + q0I3

]
. (2)

And correspondingly, we have

4T⊤T = I3, (3)

where I3 is the 3-dimensional identity matrix. The rotation
matrix R that brings FI to FB is thus determined as

R(q) = I3 − 2q0q
×
v + 2q×v q

×
v . (4)

The main objective of this paper is to find a specific smooth
mapping ω̂ ∈ R3 that will guarantee global exponen-
tial convergence of the observation error ω̂ − ω (namely
limt→∞ eat(ω̂ − ω) = 0 for some a ∈ R+ and for all
possible initial conditions) given the accurate information of
J and τ . Such problem will be studied under the realistic and
commonly used assumption that τ is such that the unknown
state ω is bounded by unknown constants, and we define such

control input belongs to class U (denoted by τ ∈ U). The
main focus will be given to the development of new strategies
that will lead to simple and physically intuitive GES observer
design which avoids using high-gain injection.

III. MAIN RESULTS
A. Motivations

The main motivation of the angular velocity observer
design in this paper comes from an interesting observation:
the direct estimation problem of ω could be solved in an
alternative way if we shift our focus to the estimation
of an indirect variable ψ(ω, y) that contains the necessary
information of ω, where y denotes available outputs. And to
further recover ω from the estimate of ψ(ω, y), we need to
make sure that ψ is appropriately selected to guarantee the
existence of a related mapping ψL such that

ψL(ψ(ω, y), y) = ω. (5)

In such case, the direct estimation problem of ω can be equiv-
alently transformed into the estimation problem of ψ(ω, y),
which may significantly ease the difficulties in observer
design. This idea first appeared in the cornerstone work of
Luenberger observer for linear systems [20]. It should be
noted that the key of Luenberger’s original observer formu-
lation is certainly the above coordinate transformation rather
than the well-known pole placement technic, because when
considering their extensions to general nonlinear systems,
the latter gives rise to the classic high-gain observer designs
which rely on increasing observation gain to force the
convergence of observation error, while the former ultimately
inspires KKLO designs that are aiming at obtaining stable
linear error dynamics in new coordinates and thus completely
obviates the need of high-gain domination [15].

Inspired by KKLO designs, we have proposed the first
“low-gain” GES result on quaternion based angular velocity
observer design in [6], where high-gain injection is suc-
cessfully avoided by estimating a Tω related term rather
than directly estimating ω. However, as mentioned in the
introduction, the method in [6] has only limited “bandwidth”,
i.e., the convergence speed of observation error cannot be
arbitrarily increased. We seek to find a new solution to this
problem in this paper, and in the meantime, we wish to
inherit its advantages on avoiding high-gain injection.

To obtain the desired properties, the indirect estimation of
ω will still be taking into consideration, and this time we will
estimate the angular momentum of the rigid-body spacecraft
in inertial frame FI . Such consideration is mainly based on
the following facts:

1) The difficulties in dominating the problematic Coriolis
term in FB can be avoided if we shift our interests in
the inertial frame FI , and according to the conservation
law of angular momentum, we have the simple enough
relationship that

ḣI = R⊤τ, (6)

where hI = R⊤Jω is the angular momentum repre-
sented in FI . It is clear that the nonlinear-in-ω Coriolis
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term vanishes in the new estimation problem of hI ,
and through using the relationship ω = (R⊤J)−1hI =
J−1RhI , we could generate estimates of ω with ω̂ =
J−1RĥI , where ĥI is any accurate estimate of hI ;

2) The original observation problem will actually become
a parameter estimation alike problem if we consider a
“copy” of Eq. (6), namely

χ̇ = R⊤τ. (7)

As a result, the mismatch between χ and hI becomes
a constant parameter, and if we could formulate an
appropriate regression equation for this constant, then
the original observation problem can be solved with
commonly used parameter estimation approaches.

Based on these considerations, we will facilitate the pa-
rameter estimation based observer design in the following
subsection.

B. Observer formulation

The main PEBO design is now given in the following
theorem.

Theorem 1. Consider the rigid-body spacecraft in Eqs. (1)
and (2) verifying the assumption that τ ∈ U . The parameter
estimation based angular velocity observer is given by

ω̂ = J−1R(χ+ θ̂), (8)

χ̇ = R⊤τ, (9)

where θ̂ ∈ R3 is any realizable parameter estimation law for
the unknown constant θ ∈ R3 that is defined by the linear
regression equation

φθ = q̇ − φχ, φ = TJ−1R. (10)

As a result, the proposed observer in Eqs. (8) to (9) guaran-
tees global exponential convergence of ω̂−ω for all possible
initial conditions if the parameter estimation error θ̂−θ does
so.

Remark 1. Before proceeding with the proof, we would like
to clear some possible misunderstandings.

1) The first misunderstanding may come from the de-
scription of “realizable parameter estimation law”, as
the right-hand side of regression equation in Eq. (10)
contains unknown signal q̇. Nevertheless, such problem
has already been recognized as a well-solved one in
the adaptive control/parameter identification literature,
where the most popular technic is to use stable lin-
ear low-pass filters to generate a new “realizable”
regression equation from Eq. (10) such that all signals
involved are directly available. We will also briefly
discuss on realizations in the next subsection;

2) One may also have suspicions on the existence of a
parameter estimator which guarantees global exponen-
tial convergence of θ̂ − θ. However, Eq. (3) and φ =
TJ−1R imply that 4φ⊤φ = R⊤(J−1)2R, thus with
the positive-definiteness of J and the orthogonality of
R, we know that the regression matrix φ is always

PE. It then becomes quite easy to design a realizable
parameter estimator θ̂ to ensure global exponential
convergence of the estimation error: classic methods
like gradient descent and least-squares will work as ex-
pected with the aforementioned “realizable” regression
equation, and many other interesting solutions could
also accomplish such task [11], [21], [22];

3) The final attention will be given to the assumption
τ ∈ U , which is slightly stronger than the forward
completeness assumption in many observer designs
for general nonlinear systems [23]. However, such
assumption does not seem to be overly strong for
realistic applications because we do not need to use
exact bounds of the unknown state in the main design
at all. Furthermore, it is demonstrated in [6] that this
assumption may not affect the establishment of the
certainty-equivalence/separation property alike results
in output feedback.

Proof. Consider the estimation problem of hI = R⊤Jω,
from the previous discussion from Eq. (6) to (7) as well as
the formulation of Eq. (9), we know that

hI = χ+ p, (11)

where p ∈ R3 is the unknown constant parameter to be
estimated. Noticing that the kinematics in Eq. (2) yields

q̇ = Tω

= TJ−1R(R⊤Jω)

= φhI = φ(χ+ p). (12)

It is clear from Eq. (12) that by defining p = θ, we will
arrive at the regression equation in Eq. (10) with

hI = χ+ θ. (13)

The observation error ω̂ − ω thus becomes

ω̂ − ω = J−1R(θ̂ − θ). (14)

Therefore, if the parameter estimation error θ̂− θ converges
globally exponentially to zero for all possible initial condi-
tions, the claim of the theorem will then follow from the
boundedness of J−1 and R.

C. Discussions

1) Choices on attitude representations: One of the benefi-
cial features about the main result in this paper is the modular
alike behavior in terms of the specific attitude representations
used in observer design, as different kinematic equations will
only make differences on the resulting regression equation,
while the rest of the structure of the observer will remain
unchanged. For example, if Rodrigues parameter g = qv/q0
is used to represent the attitude orientation of FB with
respect to FI , then the corresponding kinematic equation in
Eq. (2) will be replaced by

ġ = B(g)ω, B(g) =
1

2
(I3 + g× + gg⊤). (15)
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If we set aside its singularity problem on 180◦ rotation, then
it is not difficult to verify that the new regression matrix B
is PE, thus the resulting new parameter estimation problem
could therefore be easily solved, and similar conclusions can
be extended to the usage of Euler angle, modified Rodrigues
parameter, and rotation matrix. In summary, it does not
matter which attitude representation will be used as long
as the selected one guarantees solvability of the resulting
parameter estimation problem. Furthermore, in view of the
reformulation of kinematics equations in [6], it also seems
promising to employ direct vector measurements as available
outputs (and thus completely avoids attitude determination)
of the proposed observer.

2) Realizations of the parameter estimator: How to use
Eq. (10) for parameter estimation will be briefly discussed
here. As we have already mentioned, a well-known method
to generate “realizable” regression equation is to construct
stable linear low-pass filters for the regression matrix and
right-hand side of Eq. (10), namely

φ̇f = −αφf + βφ, (16)
żf = −αzf + β(q̇ − φχ), (17)

where α, β ∈ R+ are any positive constants. It should be
noted that zf is obtainable because we could rewrite Eq.
(17) as

zf (t) = zf (0) + β
[
q(t)− q(0)

]
+

∫ t

0

−αzf − βφχ dτ.

(18)

Therefore, with these definitions, the new “realizable” re-
gression equation can be obtained as

φfθ = zf + ϵ, (19)

where ϵ = exp−αt
[
zf (0) − φf (0)θ

]
is an exponentially

decaying term. Consequently, if the parameter estimation
error is defined as

θ̃ = θ̂ − θ, (20)

then the classic gradient descent estimator will yield

˙̂
θ = Γφ⊤

f (zf − φf θ̂), (21)
˙̃
θ = −Γφ⊤

f φf θ̃ − Γφ⊤
f ϵ, (22)

where Γ ∈ R3×3 is any constant positive definite matrix.
Since φ is bounded and always of full rank, from classic
results in [24], [25] we know that φf will also be bounded
and full rank at almost every time instant given the stable
linear low-pass filter defined in Eq. (16). Consequently,
the global exponential convergence of parameter estimation
errors directly follows from such special PE property of φf

as well as the exponentially decaying property of ϵ, and
the overall convergence speed can be made arbitrarily fast
by increasing γ. To further improve the consistency of the
convergence speed of each parameter estimation errors, the
estimation gain in Eq. (21) can be modified as

Γ = γ(φ⊤
f φf + δI3)

−1, (23)

where γ ∈ R+ and δ ∈ R+ are any positive constants.
In general, δ should be kept to be relative small in order
to achieve approximation of Moore-Penrose alike inverse
of φ⊤

f φf with (δI3 + φ⊤
f φf )

−1, while a larger δ could
provide more robust results under measurement noises when
the amplitude of φ⊤

f φf is relative small.
3) Application in output feedback PD control: The pro-

posed observer is obtained under the assumption τ ∈ U , thus
to establish certainty-equivalence/separation property alike
results with commonly used PD controller like in [5], [6],
[7], [8], [9], we may rely on the finite escape time analysis
of the closed-loop system to avoid circular reasoning.

Theorem 2. The output feedback controller

τ = −kpqv − kdω̂ (24)

guarantees the boundedness of all closed-loop signals with
limt→∞ qv = 0 and limt→∞ ω = 0 for any positive
constants kp ∈ R+ and kd ∈ R+.

Proof. Suppose that there exist a finite escape time for the
closed-loop system at t = t∗ > 0, then ω, χ, and θ̂ will
remain bounded on t ∈ [0, t∗), and at least one of them will
escape to infinity at that time. If this is true for θ̂, then

sup
t∈[0,t∗)

θ̃ = sup
t∈[0,t∗)

θ̂ = ∞. (25)

However, this contradicts with the stability result of θ̃ in Eq.
(22), thus θ̂ and θ̃ will not escape to infinity at t = t∗. Next,
the dynamics of χ can be written as

χ̇ = R⊤(−kpqv − kdω̂)

= −kdR⊤JRχ− kpR
⊤qv − kdR

⊤JRθ̂. (26)

Since R⊤JR is positive-definite, it is obvious that χ will
also not escape to infinity at t = t∗ as θ̂ does not. Finally,
the relationship

ω = J−1RhI = J−1R(χ+ θ) (27)

consists of the final contradiction given the conclusion on χ.
Therefore, all closed-loop signals will remain bounded at any
finite time. Now consider t∗ = ∞ and following the same
analysis procedure, it is clear that all the above conclusions
also hold on t ∈ [0,∞). The claim of the theorem then
trivially follows because ω̂−ω is exponentially decaying, and
the full-state feedback form of Eq. (24) is (almost) globally
asymptotically stabilizing.

IV. SIMULATIONS

Numerical simulations will be presented in this section to
demonstrate the effectiveness of the proposed observer and
to verify some arguments in previous discussions. For all
subsequent scenarios, we will use the inertia matrix

J =

20 1.2 0.9
1.2 17 1.4
0.9 1.4 15


1272



and the initial setting

q(0) = col(
√
1− 3× 0.18262, 0.1826, 0.1826, 0.1826),

ω(0) = col(0.28,−0.36, 0.15) rad/s.

The proposed observer consists of Eqs. (9), (16), (18), (21),
and (23), and the gains are set to be

α = 1, β = 5, γ = 5, kqf = 2.5, δ = 0.05. (28)

Without loss of generality, the control input is set to be
τ ≡ col(0, 0, 0) Nm, and corresponding initial values will be
adjusted such that all initial estimates of the angular velocity
equals to zero, namely ω̂(0) = col(0, 0, 0) rad/s.

A. Comparisons under measurement noises

One of the main advantages of the proposed PEBO is that
GES is established without any kind of high-gain injection,
which indicates that improved performance can be expected
when measurement noises are taken into consideration. To
support this argument, we will compare the proposed PEBO
with a representative high-gain injection based GES angular
velocity observer design [7]. In order to achieve relative fair
comparisons, free parameters in the high-gain injection based
observer (we denote it by HGIO) are fine-tuned to obtain
similar ideal case performance of proposed observer with
the gain settings in Eq. (28). The corrupted measurement of
q is given by

qm =
(q + e)

|q + e|
,

where the noise e ∈ R4 is set to be uniformly distributed
among [−0.025, 0.025]. Based on these settings, performance
comparisons between the two observer designs are given in
Figs. 1 and 2.
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Fig. 1. Performance under measurement noises: proposed observer.

As seen from these simulation results, the proposed PEBO
behaves significantly better during both the initial transient
and steady-state, where the dependency on high-gain injec-
tion (Euclidean norms of J and other auxiliary variables
are directly used in feedback in [7]) is the main culprit
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Fig. 2. Performance under measurement noises: reference [7].

for the accuracy deterioration of HGIO. Instead, the simple,
physically intuitive, and high-gain free nature of the proposed
observer results in notable performance improvements un-
der measurement noises, and the leading advantage of our
method will be further enlarged for systems with higher
amplitude of angular momentum.

B. Comparisons on accelerating the convergence speed

Another aforementioned major contribution of this paper
is that the convergence speed of the proposed PEBO can be
made arbitrarily fast by increasing the observation gain, thus
does not suffer from the limited “bandwidth” problem in [6].
To support this argument, performance comparisons between
the proposed PEBO and the observer design in [6] with
different observation gains (in increasing order) are presented
in Figs. 3 and 4.
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Fig. 3. Performance with different observation gains: proposed observer.

The results in Figs. 3 and 4 clearly verify that increasing
the value of γ will lead to significant acceleration on the
convergence speed of the proposed PEBO, while similar
actions have limited effect on the observer design in [6] when
the observation gain reaches a certain threshold.
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V. CONCLUSIONS

A high-gain free, globally exponentially convergent pa-
rameter estimation based angular velocity observer is de-
veloped in this paper, which provides a radically new
solution to the angular velocity estimation problem and
also brings useful insights for obviating the obstacles in
original PEBO framework. By integrating physical intuition
into the observer design, we are able to make the overall
mathematical formulation and associated analysis extremely
simple and straightforward. Results in this paper established
an alternative “low-gain” GES approach on angular velocity
observation to our previous contribution in [6], while the
limitation on “bandwidth” therein can be easily removed by
selecting appropriate parameter estimator. Direct applications
in similar state observation problems and generalization of
the proposed method to the velocity estimation of Euler-
Lagrange mechanical systems are currently pursued.
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