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Abstract— Network controllability in structured networks,
characterized by edge weights as either zero or non-zero,
is an emerging research area. This field has grappled with
determining the dimension of the controllable subspace. From
a graph-theoretical perspective, our study offers an intuitive
analysis of the controllability matrix for structured networks.
We categorize our analysis based on networks with single and
multiple leaders and propose graph-theoretical conditions to
determine the tight lower bounds of the controllable subspace.
Our results provide a solid foundation for analyzing and
designing complex networked systems.

I. INTRODUCTION

Network controllability of a structured network is a re-
search topic that has recently attracted attention. Here, a net-
work that divides edge weights into zero or non-zero is called
a structured network. The problem of network controllability
of a structured network has been studied under the name
structural controllability, which was first introduced by Lin
[1]. A structured network is called structurally controllable
if the network is controllable for almost all choices of
edge weights. It follows that the structurally controllable
network may become uncontrollable for a particular choice
of network parameters, i.e., non-zero edge weights [2]. This
is called generic property [3] of structural controllability,
which can lead to a situation where the entire network
becomes uncontrollable from an attack that manipulates the
edge weights [4]. For this reason, the network controllability
that considers all choices of edge weights is being studied
under the name of strong structural controllability [5], [6].

When a structured network is uncontrollable, the network
can be analyzed based on the dimension of the control-
lable subspace. The dimensions of the controllable sub-
space within a structured network can vary within a defined
boundary depending on the network parameters, implying
that the dimension of the controllable subspace for such a
network is not uniquely determined. The upper bound of
this dimension is recognized as the dimension of structurally
controllable subspace (SCS) or the generic dimension of
controllable subspace, as highlighted in [7], [8]. Conversely,
efforts to determine the lower bound of the dimension of
controllable subspace have been studied under the name
of dimension of strongly structurally controllable subspace
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(SSCS) with various approaches, such as the derived set
[9], [10], pseudo monotonically increasing (PMI) sequences
[11], [12], dedicated nodes [13], [14], and maximum disjoint
stems [15], have been utilized. However, while the dimension
of SCS boasts a clearly defined upper bound, the exact
dimension for SSCS remains an open problem. Most existing
research focuses on providing a tight lower bound, which
provides values that are nearly accurate but smaller than
the true lower bound, Nevertheless, determining this tight
lower bound is crucial for understanding the controllability
of structured networks.

The analysis of the controllability matrix, which is con-
structed from network parameters is necessary for determin-
ing the dimension of the controllable subspace in struc-
tured networks. The pioneering work by the authors in
[16] approached the elements of the controllability matrix
from a graph-theoretical perspective, focusing specifically
on networks with a single leader (a node to which input
is connected). However, their analysis was limited to spe-
cific cases and did not encompass networks with multiple
leaders or explore the determination of the dimension of
the controllable subspace. Building upon this foundational
work, our study aims to rigorously analyze the structure
of the controllability matrix for structured networks. We
partition our analysis into the cases of single and multiple
leaders, providing insights from a graph-theoretical stand-
point. Leveraging these insights, we present graph-theoretical
conditions that determine the tight lower bounds of the
dimension of SSCS for both single and multiple leader cases.
Our contributions not only offer a deep understanding of the
controllability matrix in structured networks but also pave the
way for designing and analyzing complex networked systems
with precise control objectives.

II. PRELIMINARIES

Let us consider a network of states xi with inputs ui:

ẋi =
∑
j∈Ni

aijxj + ui, (1)

where Ni is a set of indices of the state xj such that aij ̸= 0,
and aij represents the weight of the directed connection from
states xj to xi. If no such connection exists, then aij =
0. If ui is non-zero, it indicates that an external input is
injected into the state xi. The networks given by (1) can be
represented by an adjacency matrix A ∈ Rn×n, where the
(i, j)-th element of A is [A]i,j = aij . This paper assumes
that there are no diagonal elements in A, i.e., aii = 0 for
i ∈ {1, ..., n}. This implies that no state has a direct influence
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on itself through its own connection weight. Let us define
a family set Q(A) that includes all matrices that have the
same non-zero/zero pattern as A:

Q(A) = {A′ ∈ Rn×n : [A′]i,j ̸= 0 ⇔ [A]i,j ̸= 0}, (2)

for all i, j ∈ {1, ..., n}. Then, the network (1) can be
represented by the following structured network:

ẋ = AΛx+Bu, (3)

where x ∈ Rn, u ∈ Rm, and AΛ ∈ Q(A). The input matrix
B ∈ Rn×m is constructed as B = [bi1 , bi2 , ..., bim ], where
each bik ∈ Rn is a vector that has only one non-zero entry
at its ik-th element. It implies the unique input-connection
between n-states and m-inputs. This structure ensures that an
input can only be connected to one state, i.e., a one-to-one
correspondence. Now, we denote the controllability matrix
of the pair (AΛ, B) of (3) as follows:

C = [B,AΛB,A2
ΛB, ..., An−1

Λ B] ∈ Rn×nm. (4)

The pair (AΛ, B) is controllable if the rank of C is n. To
facilitate further analysis, we define the sub-controllability
matrices CLi = [bLi , AΛbLi , ..., A

n−1
Λ bLi ] ∈ Rn×n corre-

sponding to each input ui, i ∈ {1, ...,m}. With these defi-
nitions, the controllability matrix in (4) can be represented
through an appropriate column permutation as:

C̄ = [CL1
, CL2

, ..., CLm
] ∈ Rn×nm. (5)

This matrix has important properties, such as its rank and
column space, that are preserved under column permutation.
These properties will be utilized in our subsequent analysis.

A structured network, as represented by (3), is strongly
structurally controllable if the controllability matrix of the
pair (A′, B) has a full rank for all A′ ∈ Q(A). In contrast,
the structured network is structurally controllable if the
controllability matrix of the pair (A′, B) has a full rank
for “almost all” A′ ∈ Q(A). In this context, the term
“almost all” is associated with the generic property [3]
of structural controllability. This indicates that within the
algebraic variety of network parameters for a structurally
controllable network, the network parameters for a full rank
controllability matrix are generic (major), whereas those that
do not result in a full rank are comparatively specific (minor)
[17]. However, this allows for the possibility of a struc-
turally controllable network becoming uncontrollable under
certain network parameters. Therefore, from the perspective
of network robustness, determining a strongly structurally
controllable network is also of critical importance. In control
theory, the structural and strong structural controllability of
a structured network can be determined by the rank of the
controllability matrix, which is commonly referred to as
the dimension of the controllable subspace. The controllable
subspace is essentially the column space of the controllability
matrix and represents the set of states reachable by the
system. Given a structured network as in (3), the dimension
of controllable subspace can vary depending on the non-zero
elements in AΛ, which is referred to as network parameters.

Accordingly, the dimension of the controllable subspace for
(3) has the following boundary condition depending on the
network parameters [18]:

α ≤ rank(C̄) ≤ β ≤ n, (6)

where the lower bound α is the dimensions of strongly
structurally controllable subspace (SSCS), whereas the
upper bound β is the dimensions of the structurally
controllable subspace (SCS). Therefore, the conditions for
strong structural controllability and structural controllability
of the structured network presented by (3) are α = n and
β = n, respectively. The following example should further
clarify this concept.

Example 1: Let us consider AΛ and B as:

AΛ =

 0 a12 a13
a21 0 a23
a31 a32 0

 , B =

10
0

 . (7)

From (4), the controllability matrix of (7) is given by:

C̄ =

1 0 a12a21 + a13a31
0 a21 a23a31
0 a31 a21a32

 . (8)

The rank of C̄ is either 2 (when a23a
2
31 = a221a32)

or 3 (when a23a
2
31 ̸= a221a32), which is dependent on

the conditions of the network parameters. According to
(8), the dimensions of the SSCS and SCS, represented
by α and β in (6), are 2 and 3, respectively. Therefore,
the given structured network is structurally controllable but
not strongly structurally controllable. This implies that a
structurally controllable network may become uncontrollable
under specific network parameter conditions.

We will approach the aforementioned concepts from a
graph-theoretical perspective. The structured network in (3)
can be represented as a digraph, denoted as G, composed of
a set of nodes V and a set of directed edges E as:

G(V, E), (9)

where V is the set of nodes satisfying |V| = n and E is the
set of edges. A subset, VL ⊂ V , is designated as the set of
leaders. Each leader Li ∈ VL is associated with an external
input u through an edge (u,Li) ∈ E . Furthermore, the set
of edges E is used to describe the directed connections
between the nodes in V . For a digraph G(V, E), let Ni be
denoted as the set of out-neighbors of node i. Since we
have assumed that all diagonal elements in AΛ are zero,
there is no self-loop, i.e., i /∈ Ni for all i ∈ {1, ..., n}.
If there exists an edge (j, i) ∈ E , then the corresponding
element aij in the adjacency matrix AΛ would be non-zero.
For a digraph G(V, E), a directed path is a sequence of
edges (i1, i2), (i2, i3), . . . , (iq−1, iq) such that ik ∈ V and
(ik, ik+1) ∈ E for k ∈ {1, . . . , q−1}, and all ik are distinct.
This directed path can also be denoted as (i1 → . . . → iq).
A directed path is called a directed cycle if i1 = iq . Building
upon this, if the directed path starts from a leader, it is
termed a directed stem. Moreover, a shortest path from i
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to j is a directed path with the minimum number of edges.
Similarly, a shortest stem from i to j is the shortest path
from a leader node i ∈ VL to node j with the minimum
number of edges. A digraph is considered input-connected
if every node can be reached as the end node of a stem,
an assumption that is maintained throughout this paper.
From [7, Theorem 1], the following theorem provides the
condition for the dimension of SCS.

Proposition 1: [7] For a digraph G(V, E), the dimension
of SCS is the maximum number of nodes that can be
included in the disjoint set of directed stems and cycles.

However, unlike the dimension of SCS, the exact dimen-
sion of SSCS has not been well-established in the literature.
Existing studies primarily focus on defining lower bounds
for this dimension, employing concepts such as zero forcing
sets [19] and graph distance [12], a detailed comparison of
these methods can be found in [10]. In the following sections,
we delve into this subject further, exploring the dimension
of SSCS through an analysis of the controllability matrix in
structured networks.

III. CONTROLLABILITY MATRIX OF STRUCTURED
NETWORKS

In the previous section, we introduced the dimension of
the controllable subspace in structured networks. In this
section, we delve further into this topic by interpreting the
controllability matrix of structured networks from a graph-
theoretical perspective. To facilitate this analysis, we define
several terminologies. Firstly, let us consider a directed path
from w to l that consists of k-edges, referred to as k-steps,
and we will denote this as Pw,l

k,p , where p is the number
of distinct directed paths. Let us denote the weight of i-th
edge in the sequence of Pw,l

k,j as eji where i ∈ {1, ..., k} and
j ∈ {1, ..., p}. Then, the weight product of Pw,l

k,j is:

g(Pw,l
k,j ) =

k∏
i=1

eji , for j ∈ {1, ..., p}, (10)

which reflects the cumulative product of the edge weights
along the j-th directed path. Furthermore, we define the sum
of weight products of Pw,l

k,p as:

Ww,l
k =

p∑
i=1

g(Pw,l
k,i ), (11)

where k ∈ {1, ..., n − 1}. For example, let us consider the
digraph G(V, E) depicted in Fig. 1(a). From this graph, we
identify two distinct directed paths from node 1 to 5 with
2-steps, i.e., (1 → 4 → 5) and (1 → 2 → 5). It follows
that the weight product of each directed path is a54a41 and
a52a21, respectively. Thus, the sum of weight products is
obtained as W1,4

|2| = a54a41 + a52a21. With the notion of
weight product, we can now interpret the elements of the k-
th power of the adjacency matrix Ak

Λ. Specifically, the (w, l)-
th element of Ak

Λ, denoted as [Ak
Λ]w,l, represents the sum of

1 2

34 5

(a)

1

2

3

4

5

6

(b)

1

2

3

4

5

6

(c)

Fig. 1. Examples

weight products for all directed paths from node w to node l
consisting of k edges. In other words, [Ak

Λ]w,l equals Ww,l
k .

However, when we focus on the sub-controllability matrices,
especially CLw

, our interest narrows down to those directed
paths that specifically originate from leaders. In the context
of our previous definitions, such directed paths are termed
as directed stems. Now, let us consider a digraph G(V, E)
with m-leaders. From (5), we have m-sub-controllability
matrices CLw

corresponding to each leader Lw ∈ VL for
w ∈ {1, ...,m}. The k-th column of each CLw

consists of
the Lw-th column of Ak

Λ for all k ∈ {1, ..., n−1}. Note that
when k = 0, the first column of CLw always has the Lw-th
element as a non-zero entry in the standard column basis.
Hence, the (l, k + 1)-th entry of CLw

implies the sum of
weight products for p-distinct directed stems from a leader
Lw ∈ VL to l with k-steps as:

[CLw ]l,k+1 = WLw,l
k =

p∑
i=1

g(PLw,l
k,i ), (12)

where Lw ∈ VL and w ∈ {1, ...,m} and k ∈ {1, ..., n − 1}
and l ∈ V . This relationship provides a bridge connecting
our graph-theoretic constructs to the adjacency matrix rep-
resentation of structured networks.

Example 2: Let us consider the controllability matrix
corresponding to the graph shown in Fig. 1(a) with two
leaders 1, 3 ∈ VL. Then, the controllability matrix C̄ is
composed of two sub-controllability matrices, CL1

and CL2
,

as given in (13). In CL1
, the non-zero entry in the first column

represents leader 1 ∈ VL. The nodes that can be reached from
leader 1 within 1-step are 2 and 4, and the corresponding sum
of weight products for the directed stems are a21 and a41,
respectively, which are represented in the second column.
Similarly, the nodes that can be reached from leader 1 within
2-steps are 3 and 5. The sum of weight products for the
directed stems to these nodes are a32a21 and a52a21+a54a41,
respectively, and are represented in the third column. The
only node that can be reached from leader 1 within 3-steps is
5 and its corresponding sum of weight products, a53a32a21,
is represented in the fourth column. Since there are no nodes
that can be reached from leader 1 within 4-steps, the fourth
column is a zero vector. In CL2

, except for the first column
which corresponds to the leader node, the only directed stem
begins at the leader 3 ∈ VL and ends at node 5. This path
is represented by the second column with the sum of weight
products a53. Thus, all remaining columns are zero vectors.

Now, let us consider a digraph G(V, E) with m leaders.
From (12), we observe that an element [CLw

]l,k+1 ∈ Rn×n
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k-steps︷ ︸︸ ︷C̄ = [CL1
, CL2

],

where CL1 =


1 0 0 0 0
0 a21 0 0 0
0 0 a32a21 0 0
0 a41 0 0 0
0 0 a52a21 + a54a41 a53a32a21 0

 ,

k-steps︷ ︸︸ ︷
CL2 =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 a53 0 0 0

 (13)

in (5) is zero if and only if there is no directed stem from
a leader node Lw to node l ∈ V with k-steps, for any w ∈
{1, ...,m}. For structured networks, when determining the
dimension of the SSC from the controllability matrix, it is
not just the zero elements that are of interest; we must also
consider elements with a potential to be zero. To clarify this
notion further, we introduce the single-term and multi-terms.

Definition 1: For the controllability matrix in (5):
• An element is called a single-term if it is a product of

non-zero edge weights or a single non-zero edge weight.
• An element is called a multi-terms if it consists of the

sum or difference of two or more single-term.
The above definition underscores a fundamental observa-

tion: The elements with single-term in the controllability
matrix are always non-zero, whereas multi-term elements
have the potential to be zero. For example, consider the
element [CL1

]5,3 in (13). This element might be zero if the
condition a52a21 = −a54a41 is satisfied. From (10) and (12),
the subsequent proposition provides the graph-theoretical
conditions of single-term and multi-terms.

Proposition 2: For the digraph G(V, E) with m leaders,
an element [CLw

]l,k+1 ∈ Rn×n in (5) is:
• A single-term if there exists only one directed stem from

leader Lw to node l ∈ V with k-steps.
• A multi-terms if there are multiple directed stems from

leader Lw to node l ∈ V with k-steps.
This proposition clearly differentiates between single-term
and multi-terms. One of the key determinants of the rank
in the controllability matrix for structured networks is the
pivot element, which is the first non-zero entry in each row.
For a digraph G(V, E), let us consider the sub-controllability
matrix CLw

corresponding to a leader Lw ∈ VL. The i-th
pivot element in CLw

represents the sum of weight products
for the shortest stem from the leader Lw to node i for i ∈
{1, ..., n}. This implies that for an i-th pivot element to be
classified as a single-term, its corresponding shortest stem
must be unique. For example, let us consider the digraph
depicted in Fig. 1(a) with a leader 1 ∈ VL. Then, there
exist two distinct shortest stems from the leader 1 to node
5, both spanning two steps: the directed stems (1 → 2 → 5)
and (1 → 4 → 5). In this case, the 5-th pivot element of
CL1

would be characterized as multi-terms, represented by
a52a21 + a54a41. However, given that multi-terms can be
zero, for the sake of simplification in our analysis, this paper
adopts the following assumption:

Assumption 1: For every node l ∈ V in G(V, E), there
exists either no directed stem or a unique directed stem from
a leader to node l with k-steps, where k ∈ {1, ..., n− 1}.

For a digraph G(V, E), the above assumption implies that
there exists only one directed stem from a leader Lw ∈ VL to
l with the same k-steps. While multiple directed stems from a
leader to a node can exist, they must have different lengths of
steps. From (12), Assumption 1 ensures that each element in
the sub-controllability matrix is either a single-term or zero.
Under the Assumption 1, this paper emphasizes the analysis
of the controllability matrix from a graph perspective.

Remark 1: In a digraph G(V, E), it follows from [20]
that a unique directed stem from a leader to each node
typically indicates a tree graph. However, Assumption 1
permits multiple directed stems from a leader to a node as
long as they have distinct step lengths, thus allowing for
diverse network structures, including cycles.

IV. THE DIMENSION OF STRONGLY STRUCTURALLY
CONTROLLABLE SUBSPACE

In the previous section, we explored the intuitive meaning
of the controllability matrix of a structured network from
a graph-theoretical perspective. Building upon that analysis,
in this section, we present a tight lower bound for the
dimension of SSCS, leveraging the concept of stems. Let us
first consider a digraph G(V, E) with a single leader. From the
insights on the controllability matrix of structured networks
presented in the previous section, we can obtain the following
theorem.

Theorem 1: For a digraph G(V, E) with a single leader,
the dimension of SSCS is lower bounded by the maximum
number of nodes that can be included in the shortest stem.

Proof: Let us consider a digraph G(V, E) with a single
leader i1 ∈ VL. Then, the controllability matrix is given by:

C̄ = [bi1 , AΛbi1 , A
2
Λbi1 , . . . , A

n−1
Λ bi1 ] ∈ Rn×n. (14)

Under the Assumption 1, it follows that the elements within
(14) are either a single-term or are zero. Now, consider the
shortest stem with the maximum number of nodes, described
by the sequence (i1, i2, . . . , iq). The standard bases corre-
sponding to this sequence can be denoted as ei1 , ei2 , . . . , eiq ,
where each ev represents the standard basis with only its v-th
element being non-zero. With these standard bases, we can
formulate a row-swapping permutation matrix as:

P = [ei1 , . . . , eiq |ej1 , . . . , ejn−q
] ∈ Rn×n, (15)

where j1, j2, ..., jn−q represent the indices of the remaining
nodes that are not included in the sequence (i1, i2, . . . , iq).
Using this permutation matrix, we can obtain the row-
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swapped controllability matrix C̄′ = PT C̄ as:

C̄′ =

[
C̄i1 ∗
∗ ∗

]
∈ Rn×n, (16)

where the symbol ∗ denotes arbitrary entries, which can
either be a single-term or zero. The submatrix C̄i1 typically
has dimensions q × q, corresponding to the sequence of the
directed stem. However, in special cases where q = n, C̄i1
can expand to an n×n matrix, simplifying to C̄′ = C̄i1 . The
comprehensive structure of C̄i1 is as follows:

C̄i1 =


• ∗ · · · ∗

0 •
. . .

...
...

. . . . . . ∗
0 · · · 0 •

 ∈ Rq×q, (17)

where the symbol • represents a non-zero single-term entry
and the first column in C̄i1 corresponds to bi1 . Furthermore,
for each i ∈ {1, ..., q}, the diagonal entries, denoted by
[C̄i1 ]i,i, signify the sum of weight products for the shortest
stem from i1 to each node in the sequence (i1, i2, . . . , iq).
Since we assumed that the directed stem from the leader
i1 to iq with sequence (i1, i2, . . . , iq) is the shortest stem,
we can deduce that every directed stem from the leader
i1 to ik for k ∈ {2, ..., q} is also the shortest stem, and
their sequences are always included within (i1, i2, . . . , iq).
With this observation, let us consider an element located in
the lower triangular part in (17), specifically [C̄i1 ]w,k where
w < k. For this element to be non-zero, there must exist
a directed stem from i1 to iw ∈ V having fewer steps than
the shortest stem with the sequence (i1, i2, . . . , iq). However,
this would contradict the definition of the shortest stem. As
a result, all elements in the lower triangular part of C̄i1 in
(17) are zero. That is, [C̄i1 ]w,k = 0 whenever w < k. This
observation confirms that C̄i1 forms a lower triangular matrix
with non-zero diagonal elements, Consequently, the rank of
C̄i1 is q, leading to the conclusion that the rank of C̄′ is at
least q. Given that the ranks of C̄′ and C̄ are the same, we
can conclude that the dimension of the SSCS of G(V, E) is
lower bounded by q.

The following example aims to clarify and facilitate the
understanding of the aforementioned proof.

Example 3: Consider the digraph G(V, E) illustrated in
Fig. 1(b) with the single leader 1 ∈ VL. The sequence
representing the shortest stem with the maximum number of
nodes in G(V, E) is given by (1, 4, 5, 6). Thus, the permu-
tation matrix can be expressed as P = [e1, e4, e5, e6|e2, e3].
Utilizing the row-swapped controllability matrix from (16),
the submatrix C̄1 associated with this shortest stem is:

C̄1 =


1 0 0 0
0 a41 0 0
0 0 a54 a41 0
0 0 0 a65 a54 a41

 (18)

In the above submatrix, each diagonal element represents
the sum of weight products for the shortest stems from the
leader 1 to each node in the sequence (1, 4, 5, 6). From

Theorem 1, it follows that the lower bound of the dimension
of the SSCS for the digraph shown in Fig. 1(b) is 4. Now,
suppose that the element [C̄1]3,2 in the lower triangular part
from (17) is non-zero. This indicates the presence of a
directed stem from leader 1 to node 5 in just one step.
To achieve this, suppose that there exists an edge (1, 5) is
required as shown in Fig. 1(c). In this case, the existing
sequence (1, 4, 5, 6) no longer represents the shortest stem.
Consequently, the shortest stem with the maximum number
of nodes in the digraph in Fig. 1(c) becomes (1, 5, 6), leading
to a new permutation matrix P = [e1, e5, e6|e2, e3, e4]. From
(17), the submatrix C̄1 associated with this shortest stem is:

C̄1 =

1 0 0
0 a51 a54a41
0 0 a65a51

 . (19)

In this case, since the maximum number of nodes in the
shortest stems is 3, the lower bound of the dimension of the
SSCS for the digraph shown in Fig. 1(c) is also 3.

Let us generalize Theorem 1 for the case of multiple
leaders. For a digraph G(V, E) with multiple leaders, define
M(G) as the set of nodes in m-disjoint shortest stems
containing the maximum possible number of nodes, and let
|M(G)| represent the number of nodes in M(G). The below
theorem provides a lower bound for the dimension of SSCS.

Theorem 2: For a digraph G(V, E) with m-leaders, the
dimension of SSCS is lower bounded by |M(G)|.

Proof: This proof extends the approach from the proof
of Theorem 1. For a digraph G(V, E) with m-leaders, the
controllability matrix is described in (5). Suppose that M(G)
is the set of m-disjoint shortest stems with the maximum
number of nodes. For each k ∈ {1, ...,m}, the sequence
of nodes in the k-th shortest stem is (i1k , i2k , . . . , iqk),
where qk signifies the number of nodes of the k-th shortest
stem, ensuring that the total nodes across all disjoint stems,
|M(G)| =

∑m
k=1 qk ≤ n, where n is a total number of

nodes. The standard bases associated with the sequence of
the k-th shortest stem are presented as e1k , e2k , . . . , eqk .
Given the disjoint nature of m-shortest stems, each ba-
sis e1k , e2k , . . . , eqk is distinct. From these bases, a row-
swapping permutation matrix is formulated as:

P = [E1, . . . , Em, ej1 , . . . , ejn−|M(G)| ] ∈ Rn×n, (20)

where Ek = [e1k , . . . , eqk ] corresponds to the k-th shortest
stem for k ∈ {1, ...,m}. The indices j1, j2, . . . , jn−|M(G)|
are those of nodes not included in any of the shortest
stems. Using this permutation matrix, we can obtain the row-
swapped controllability matrix C̄′ = PT C̄ as:

C̄′ =


C̄L1 ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ C̄L2 ∗ · · ·
...

...
∗ ∗ ∗ ∗ · · · ∗ ∗
...

...
...

... · · · C̄Lm
∗

∗ ∗ ∗ ∗ · · · ∗ ∗

 ∈ Rn×nm,

(21)
where the symbol ∗ denotes arbitrary entries, which can
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either be a single-term or zero. From (17), each C̄Lk
∈

Rqk×qk is a lower triangular matrix with non-zero diagonal
elements, representing the k-th shortest stem. Due to the
properties of a lower triangular matrix, each C̄Lk

has full
rank, specifically a rank of qk for k ∈ {1, ...,m}. Given that
each C̄Lk

does not share any rows or columns with each
other, they are linearly independent. As such, the rank of
(21) is at least the sum of their individual ranks, which is
no less than |M(G)|. Therefore, we can conclude that the
dimension of the SSCS of G(V, E) is at least |M(G)|.

Note that the above theorem is also applicable for the case
of a single leader with m = 1 and M(G) may not be unique.
We provide the following example to further illustrate the
implications of the aforementioned theorem.

Example 4: Consider the digraph G(V, E) illustrated in
Fig. 1(a) with leaders 2, 4 ∈ VL. The sequences representing
two disjoint shortest stems with the maximum number of
nodes in G(V, E) can be (2, 3) and (4, 5). From (20), the per-
mutation matrix can be expressed as P = [e2, e3, e4, e5|e1].
Utilizing the row-swapped controllability matrix from (21),
the submatrices C̄2 and C̄4 are given by:

C̄2 =

[
1 0
0 a23

]
, C̄4 =

[
1 0
0 a45

]
. (22)

From Theorem 2, it follows that the lower bound of the
dimension of the SSCS for the digraph in Fig. 1(b) is 4.

The theories introduced in this section provide insights
into the dimension of SSCS within structured networks.
These understandings arise from examining the roles each
component of the controllability matrix plays from a graph-
theoretical perspective. Compared to other methods for de-
termining the lower bounds of the dimension of SSCS,
such as zero forcing sets [19] and graph distance [12],
our approach, based on the shortest stem, provides a more
intuitive understanding of these lower bounds.

V. CONCLUSION

In this paper, we have investigated the tight lower bound
of the dimension of SSCS for structured networks. Our study
focused on analyzing the controllability matrix of structured
networks from a graph-theoretic perspective. From this foun-
dation, our work has highlighted the significance of the
controllability matrix of structured networks in understand-
ing control mechanisms. With the concept of the shortest
stem, our Theorem 1 and Theorem 2 intuitively elucidate
these lower bounds. The insights derived from our research
are anticipated to not only enhance the understanding of
controllability within structured networks but also serve as a
foundational step towards determining the exact dimension
of SSCS in future studies.
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