
Abstract—Application of Robust Control Toolbox for Time 

Delay Systems implemented in the Matlab system to the oscil-

lating plant with uncertain time delay and astatism using the  

D-K iteration and algebraic approach. The algebraic approach 

combines the structured singular value, algebraic theory and 

algorithm of global optimization solving remaining issues in 

structured singular value framework. The algorithm for global 

optimization can be alternated with direct search methods such 

as Nelder-Mead simplex method giving solutions for problems 

with one local extreme. As a global optimization method, 

Differential Migration is used proving to be reliable in solving 

this type of problems. The D-K iteration represents a standard 

method in the structured singular value theory. The results 

obtained from the D-K iteration are compared with the 

algebraic approach. 

I. INTRODUCTION

Time delay systems are a constant issue present in control 
theory. In this paper, the problem of uncertain time delay in 
the oscillating plant with astatism is solved using Robust 
Control Toolbox for Time Delay Systems implemented in the 
Matlab system. The essential tool is the structured singular 
value denoted μ (see [13]) giving a measure of robust 
performance and stability. The algebraic approach (see [3], 
[4] and [5]) and evolutionary algorithm Differential Migration 
(see [2]) are used treating the problem of multimodality of 
the cost function and impossibility of deriving controller for 
performance weights with poles on the imaginary axis. This 
implies that the final controller provides zero steady-state 
error being impossible in the scope of the standard tools 
using DGKF formulae for obtaining H∞ (sub)optimal control-
lers or other methods such as linear matrix inequality (LMI) 
approach leading to numerical problems in most of real world 
cases (see [9], [10] and [11]). The algebraic approach over-
comes some difficulties connected with the D-K iteration, 
namely the fact that it does not guarantee convergence  
to a global or even local minimum (see [15]). Controllers 
obtained via the algebraic approach can have simpler struc-
ture due to the fact that there is no need of scaling matrices 
absorbance into generalized plant, hence, there is no need of 
further simplification causing deterioration of the frequency 
properties of the resulting controller. Moreover, the controller 
structure can be chosen in advance being not possible in the 
scope of currently used methods. 

Optimization is performed via evolutionary algorithm. 
Evolutionary algorithms belong to the new branches of engi-
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neering (see [1], [12] and [14]) providing solution to the 
problems being not solvable using traditional optimization 
tools. In this paper, a new evolutionary algorithm – Diffe-
rential Migration is used having some favourable properties 
compared to the existing ones, namely the fact that lower 
computational time is needed for obtaining a suitable solution. 

In the proposed method, pole placement is performed via 
solving the Diophantine equation in the ring of Hurwitz-
stable and proper rational functions (RPS). The structured 
singular value assesses the robust stability and performance 
of the controller. 

For comparison reasons, the results obtained from the  
D-K iteration (see [8]) demonstrate the differences between 
the standard and proposed method. The overall performance 
is verified by simulations of step response for maximum 
values of time delays with simple feedback loop and two-
degree-of-freedom structure with factorization of simple 
feedback controller to feed-forward, feedback and compen-
sator part applicable to two-degree-of-freedom feedback inter-
connection (1DOF and 2DOF, see [6]). 

The following notation is used: || � ||� denotes H� norm, 

)(��  is maximum singular value, R and C
n�m

 are real 

numbers and complex matrices, respectively, In is the unit 
matrix of dimension n and RPS denotes the ring of Hurwitz-
stable and proper rational functions. 

II. PRELIMINARIES

Define ���� as a set of block diagonal matrices 
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where  S, T is the number of repeated scalar complex and 
 real blocks, 

F, K is the number of full complex and real blocks, 

r1,
, rS, r1,
, rT, 
im1
,
, i

Fm , in1
,
, i

Kn , for i = 1, 2 

are positive integers defining dimensions of scalar 
and full blocks. 

For consistency among all the dimensions, the following 
condition must be held 
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Definition 1: For M � C
n�m

 is μ����(M) defined as 
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If no such � � ���� exists making I – M� singular then μ����(M) = 
= 0. 
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Consider a complex matrix M partitioned as 
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and suppose there is a defined block structure �2 which is 

compatible in size with M22 (for any �2 � ����2, M22�2 is 

square). For �2 � ����2, consider the following loop equations 

 e = M11d + M12w

 z = M21d + M22w (5)

 w = �2z

If the inverse to I – M22�2 exists, then e and d must satisfy 

e = FL(M, �2)d, where 

 FL(M, �2) = M11 + M12�2(I – M22�2)
–1

M21 (6)

is a linear fractional transformation on M by �2, and in a 
feedback diagram appears as the loop in Fig. 1. 

The subscript L on FL pertains to the lower loop of M and 

is closed by �2. An analogous formula describes FU(M, �1), 
which is the resulting matrix obtained by closing the upper

loop of M with a matrix �1 � ����. 
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Figure 1. LFT interconnection 

Theorem 1: Let � > 0. For all �2 � ����2 with 
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loop shown in Fig. 1 is well-posed, internally stable, and 
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Proof: Proof is the same as in [7] and [13] except for the fact 
that perturbations are complex matrices, which simplifies the 
proof and complies with the definition of μ-function. 

III. ALGEBRAIC �-SYNTHESIS

The algebraic μ-synthesis can be applied to any control 
problem that can be transformed to the loop in Fig. 2, where 

G denotes the generalized plant, K is the controller, �del is the 
perturbation matrix, r is the reference and e is the output. 

For the purposes of the algebraic μ-synthesis, the MIMO 
system with l inputs and l outputs has to be decoupled into l
identical SISO plants. The nominal model is defined in terms 
of transfer functions: 
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Figure 2. Closed loop interconnection 

For decoupling the nominal plant Pnom (Pnom invertible) it 
is satisfactory to have the controller in the form 
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where Pxy is an element of adj[Pnom(s)] = det[Pnom(s)][Pnom(s)]
–1

with the highest degree of numerator {adj[Pnom(s)] denotes 
adjugate matrix of Pnom}. The choice of the decoupling 
matrix prevents the controller from cancelling any poles or 
zeros from the right half-plane so that internal stability of the 
nominal feedback loop is held. The MIMO problem is 
reduced to finding a controller K(s) which is tuned via setting 
the poles of the nominal feedback loop with the plant 
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Define 
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Transfer function Pdec can be approximated by a system *

decP

with lower order than Pdec
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which can be rewritten in terms of its coefficients and trans-
formed to the elements of RPS
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, A, B � RPS (13)

The controller K = NK/DK is obtained by solving the Dio-
phantine equation 

 ADK + BNK = 1 (14)

with A, B, DK, NK � RPS. Equation (14) is often called the 
Bezout identity. All feedback controllers NK/DK are given by 
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where PS00
, R�KK DN  are particular solutions of (14) and T

is an arbitrary element of RPS. 

3015



The controller K satisfying equation (14) guarantees the 
BIBO (bounded input bounded output) stability of the feed-
back loop in Fig. 3. This is a crucial point for the theorems 
regarding the structured singular value. If the BIBO stability 
is held, then the nominal model is internally stable and theo-
rems related to robust stability and performance can be used. 
The BIBO stability also guarantees stability of FL(G, K) 
making possible usage of performance weights with integra-
tion property implying non-existence of state space solutions 
using DGKF formulae (see [9]) due to zero eigenvalues of 
appropriate Hamiltonian matrices. Such procedure, however, 
results in zero steady-state error in the feedback loop with  
the controller obtained as a solution to equation (14). This 
technique is neither possible in the scope of the standard 
μ-synthesis using DGKF formulae, nor using LMI approach 
(see [10]) leading to numerical problems in most of real-
world applications. 

The aim of synthesis is to design a controller which satis-
fies the condition: 
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where ω is angular velocity in Fourier transform, n + n1 + 
+n2 is the order of the nominal feedback system, n1 is the  
order of particular solution K0, ti are arbitrary parameters in 
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 and µ���� denotes the structured 

singular value of LFT on generalized plant G and controller K. 
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Figure 3. Nominal feedback loop 

Tuning parameters are positive and constrained to the real 
axis since parameters of the transfer function have to be real 
and due to the fact that non-real poles cause oscillations of 
the nominal feedback loop. 

A crucial problem of the cost function in (16) is the fact 
that many local extremes are present. Hence, local 
optimization does not yield a suitable or even stabilizing 
solution. This can be overcome via evolutionary optimization 
solving the task very efficiently. 

IV. PROBLEM FORMULATION

The problem to solve is general 3
rd

 order system with 
uncertain time delay: 
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The control objective is to find a controller that guaran-
tees the robust stability and performance for every plant from 
the set P. The time delay is treated by multiplicative uncertainty 
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then for the weighting function W2 the following inequality 

must be held 
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The weight W2 is defined as an envelope curve of 1 �" je . 

V. PROBLEM SOLUTION

A. Structured Singular Value Framework 

The problem defined in previous section can be solved 

using interconnection in Fig. 4. Here, G denotes the genera-

lized plant partitioned to 
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where the block structure of G corresponds with the input 

and output variables in Fig. 4: 
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The design objective is to find a stabilizing controller K

such that 
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is minimal, where 
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 (25)

is the lower linear fractional transformation on generalized 

plant G and controller K (see Fig. 4). 
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Figure 4. Closed-loop interconnection for μ-synthesis 
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B. Algebraic Approach 

The controller 
K

K

D

N
K �  is obtained by solving the Dio-

phantine equation (14). 

By the analysis of the polynomial degrees of a and b, the 
transfer functions A, B, DK and NK were chosen so that the 
number of closed loop poles is minimal and the asymptotic 
tracking is achieved: 
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where n is the actual degree of polynomial a obtained by 
omitting zero parameters ai. 

The resulting controller has the general PID structure: 
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VI. EXAMPLE OF TIME DELAY SYSTEM CONTROL

The plant family is defined as 3
rd

 order oscillating system 
with uncertain time delay and first order astatism: 
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The control objective is to find a controller that will 
guarantee the robust stability and performance for every plant 
from the set P. The time delay is treated by multiplicative 
uncertainty 
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For the weighting function W2, the following inequality must 
be held 

)(1
)(

)(
2 �

�
�

jW
jP

jP
�

#
, ���$� , P�#$P  (32)

equivalent with 

)(1 2 ��" jWe j � , ���$� , ]5.00[�"  (33)

The weight W2 can be defined as envelope curve of 

10  �jT
e  for T0 = 0.5 (see Fig. 5): 
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The performance condition is of the form: 
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where S is the sensitivity function and weight W1 is designed 
so that the asymptotic tracking is achieved: 
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Figure 5. Bode plot of W2 (dashed) and 15.0  �je  (full) 

A. Algebraic Approach 

The controller 
K

K

D

N
K �  is obtained by solving the 

Diophantine equation (14). By the analysis of the polynomial 
degrees of a and b, the transfer functions A, B, DK and NK

were chosen so that the number of closed loop poles is 
minimal and the asymptotic tracking is achieved: 
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and degrees of polynomials dk, nk are: 

 ∂dk = 2, ∂nk = 3 (39)

The resulting controller has general PID structure: 
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By the optimization of the poles αi via the Differential 
Migration, resulting poles were obtained: 

α1 = 2.768, α2 = 0.997, α3 = 0.705, α4 = 0.608, α5 = 0.561, α5 = 0.485 (41)

yielding the controller 

sss

ss
sK A

12.726.126

0.32252.6673.8389.014s
)(

23

23

��

���
�  (42)

B. D-K Iteration 

In order to satisfy state-space formulae assumptions for 

H� suboptimal controller the performance weight W1 has to 
be modified so that it does not have integrating behaviour: 
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The controller obtained from the D-K iteration was appro-
ximated by 5

th
 order transfer function: 
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The μ-plot in Fig. 6 shows that both controllers have the 
supremum of μ below one and the robust stability and per-
formance condition is satisfied with maximum values: 
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Figure 6. μ-plot for the controllers obtained by the D-K iteration and 
algebraic approach 

C. Factorization for 2DOF feedback loop 

The controllers for 2DOF feedback loop (Fig. 7a, 7b - 
algebraic approach and D-K iteration, respectively) have the 
compensator (nk2, dk2, nkdk2, dkdk2) defined as fraction of the 
factors corresponding with most stable zero and least stable 
pole of KA and KD-K and feedback (nk1, dk1, nkdk1, dkdk1) and 
feed-forward part (nFW, dk1, nFWdk, dkdk1) defined by the 
fraction of the factors corresponding with remaining zeros 

and poles of KA and KD-K with 0,1kFW
nn �  and 0,1kdkFWdk

nn �

( 0,1kn , 0,1kdkn being the coefficients of nk1 and nkdk1 of zero 

exponent of s): 
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Figure 7. 2DOF feedback loop 

D. Comparison Study 

Simulations for the maximum time delay 2DOF and 
simple feedback loop in Fig. 8, 9, 10 and 11 show that both 
the algebraic approach and D-K iteration controllers yield 
stable response. The algebraic approach gives similar results 
with D-K iteration for simple feedback loop with 100% 
overshoot compared to 75% for the reference method but 

lower number of oscillations. The D-K iteration has no 
overshoot for 2DOF feedback loop but 1000 times longer 
time needed for reaching steady state with non-zero steady 
state tracking error compared to algebraic approach with 
zero steady state tracking error but 80% overshoot. 

Figure 8. Simulation for simple feedback loop – D-K iteration 
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Figure 9. Simulation for simple feedback loop algebraic approach 
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Figure 10. Simulation for 2DOF feedback loop – D-K iteration 
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Figure 11. Simulation for 2DOF feedback loop – algebraic approach 
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VII. DOWNLOAD

The Robust Control Toolbox for Time Delay Systems 
toolbox can be downloaded from [16]. 

VIII. CONCLUSION

The paper showed usage of the Robust Control Toolbox 
for Time Delay Systems for the Matlab system. An outline of 
the algebraic approach was given with application to time 
delay plant with oscillating poles and first order astatism in 
nominal model. The plots and simulations of control using 
the presented Matlab toolbox showed the benefits of the 
algebraic approach in comparison with the D-K iteration  
as the reference procedure for robust control design using 
structured singular value. 
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