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Abstract— Standard identification methods give biased pa-
rameter estimates when recorded signals are corrupted by noise
on both input and output sides. In previous papers it has been
shown that the bias is significant in case the system is almost
non-identifiable. This situation is investigated here for some
general model structures.
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I. INTRODUCTION

In an errors-in-variables situation as described by (2)-(4)
below, special action has to be applied due to the presence of
input noise ũ(t), see [2]. All standard identification methods,
see for example [1], [7] yield biased (rather, non-consistent)
estimates when the measured input signal contains additional
noise. The bias can be considerable in case the system is
almost not identifiable.

The focus in this paper is to examine the obtained bias
when the presence of the input noise is neglected. A pre-
liminary study of the size of the bias was given in [5],
where it was assumed that the model structure is an output
error model with white output noise, and the prediction error
method (PEM) is used for identification. Subsequently, in
[4], [6] the analysis of the bias was studied in the case an
instrumental variable method is used for the identification.

The parameter bias b can, as for many other estimation
problems, be written as a sum of two terms,

b = bs + br (1)

where bs is a systematic error and br is a random component.
The term bs will persist also when the number of data points,
N , grows without bound. In fact, it is natural to take bs as
limN→∞ b. The random error appear as soon as N is finite,
and describes the dependence on the specific realization of
the data. The study in [5] as well as here concerns the
systematic error bs. The random part of the bias is for large
N of magnitude O(1/

√
N).

Should the bias term be analyzed by numerical simula-
tions, with finite N , one then also have to deal with the
effects of the random bias term br. Moreover, the obtained
result will be specific for the chosen underlying system and
it would not be possible to draw any general conclusions that
are valid also for other systems.
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In [5] we studied the bias for dynamic models with white
output noise. Two specific features were highlighted. It was
shown that the influence of the noise on the input signal
is of order O(λ2

u), where λ2
u is the input noise variance.

Another studied aspect is the influence of almost pole-zero
cancellations. If the smallest pole-zero separation is δ, then
the bias was shown to be O(1/δ) for small δ.

This paper considers again the study of [5], and extends
the results in different ways. First, the case of an output
error model with colored output noise is considered. Second,
we consider the case of an ARMAX model structure in this
regard, and make comparisons to the output error model.
Further material about this second aspect can be found in
[3].

The paper is organized as follows. The next section
contains the general background, and Section III reviews the
analysis for the output error model structure from [5]. The
output error model structure with colored output noise is
treated in Section IV, while Section V contains a discussion
for the use of ARMAX model structures. In Section VI
the theoretical results are illustrated by some numerical
examples. Finally, some conclusions are provided in Section
VII.

II. PROBLEM FORMULATION

This section summarizes the general problem setup, con-
sidered here as well as in [5], [6].

Assume that the system under consideration is linear and
single input-single output. Measurements of both input and
output are assumed to be noisy:

y(t) = G0(q)u0(t) +H0(q)e(t) , (2)
u(t) = u0(t) + ũ(t) , (3)
u0(t) = F (q)v(t) . (4)

Here u0(t) denotes the noise-free input signal, while u(t)
is the noise-corrupted input and y(t) is the noise-corrupted
output. Note that as (2)-(4) refers to an errors-in-variables
situation, cf [2], the user cannot design nor influence u0(t).
Further, the transfer functions G0(q), H0(q) and F (q) are
all assumed to be rational functions of the shift operator q.
To simplify expressions in the following the argument q will
often be dropped.

The input noise ũ(t) is assumed to be white with variance
λ2
u. Further, e(t) is assumed to be white noise with variance

λ2
e, and v(t) is assumed to be white noise with variance

λ2
v . The output noise is therefore an ARMA process and

it is white only in the special case H0(q) = 1. Note that
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the output noise H0(q)e(t) consists of both process noise
affecting the system as well as measurement noise. The
equation (4) means that the noise-free input u0(t) is an
ARMA process. As F (and its order) is arbitrary, (4) is
a fairly general description of a stationary process. The
variances λ2

u, λ2
e and λ2

v are all assumed to be unknown.
It is also assumed that the signals e(t), v(t) and ũ(t)
are independent. This means in particular that open loop
operation is assumed. In case feedback would be present,
u0(t) would include (through the feedback) also a term that
depends on the output, and thus on e(t). See [2], [8] for
details.

Next the model description will be specified. Assume that
a model of the form

y(t) = G(q)u(t) +H(q)ε(t) (5)

is to be fitted to the recorded input-output data. Here G(q) =
G(q, θ) and H(q) = H(q, θ) are parameterized with a vector
θ. The dependence on θ is mostly not spelled out in what
follows.

Assume that the parameterization is such that there is a
unique value θ∗ that makes

G(q, θ∗) ≡ G0(q), H(q, θ∗) ≡ H0(q) . (6)

This is a form of identifiability assumption.
Let the estimate (in the asymptotic case when the number

of data points N → ∞) be denoted by θ̂. The bias of the
estimate is then

θ̃ = θ̂ − θ∗ . (7)

III. REVIEW OF BIAS DUE TO ALMOST
NON-IDENTIFIABILITY

The results in this section are taken from [5].
Assume that identification is made using the prediction

error method (PEM) applied to the data. In the case of
no input noise present it is well-known that PEM gives
consistent and statistically efficient parameter estimates, [1],
[7].

Use of the PEM means that the parameter estimate can be
written as

θ̂ = argmin
θ

V (θ) , (8)

V (θ) =
1

2
E
{
ε2(t, θ)

}
. (9)

The expectation in (9), and in what follows, is with respect to
all noise sources: e(t), ũ(t), v(t). In (9) the prediction error
ε(t, θ) can be found directly from (5), leading to

ε(t) = H(q)−1 [y(t)−G(q)u(t)] . (10)

An approximate way to express the bias θ̃ is as follows.
Let θ̂ denote the minimum point of V (θ), and assume that
the bias θ̃ is small. Then using a linearization

0 = V ′
θ (θ̂) ≈ V ′

θ (θ∗) + V ′′
θθ(θ∗)(θ̂ − θ∗) , (11)

leads to
θ̃ ≈ − [V ′′

θθ(θ∗)]
−1

V ′
θ (θ∗) . (12)

It was shown in [5] that (12) is indeed often a good
approximation of the bias θ̃. Further, θ̃ will be large when the
inverse [V ′′

θθ(θ∗)]
−1 is large, which occurs when the Hessian

V ′′
θθ(θ∗) is almost singular. This happens when the system is

(almost) not identifiable. Such a situation can happen in two
different ways:

• (Almost) overparameterization. This will show up in
that some polynomials of the model have (almost) a
common factor.

• The noise-free input u0 is (almost) not persistently
exciting of enough order.

For most model structures, the loss function (9) is not
convex, [7]. It is assumed here that the global minimum is
obtained, so the linearization in (11) is around the true value
θ∗.

In the following we will assume that the noise-free input
is persistently exciting and we will examine only the first
aspect. Next we recall from [5] some more explicit results for
the case of an output error model structure with white output
noise. This case is characterized by the following equations

y(t) = y0(t) + ỹ(t), E{ỹ2(t)} = λ2
y , (13)

u(t) = u0(t) + ũ(t), E{ũ2(t)} = λ2
u , (14)

Ay0(t) = Bu0(t) , (15)
A = 1 + a1q

−1 + . . .+ ana
q−na , (16)

B = b1q
−1 + . . .+ bnb

q−nb . (17)

The equation (15) refers to the model to be fitted. The true
data (’the system’) is assumed to also fulfill (15), but the
polynomials are then denoted A0, B0. Compared to (2) it
here holds that H0 = 1, i.e. the output noise is assumed to
be white.

At first, it is necessary to recall the following result.
Consider two generic polynomials

A = a0z
na + a1z

na−1 + . . .+ ana , (18)
B = b0z

nb + b1z
nb−1 + . . .+ bnb

. (19)

Then the associated Sylvester matrix is the square matrix of
dimension (na + nb)× (na + nb) given by

S(A,B) =



b0 b1 . . . bnb
0

0
. . . . . .

b0 b1 . . . bnb

a0 a1 . . . ana 0

0
. . . . . .

a0 a1 . . . ana


. (20)

The properties of Sylvester matrices have been investigated
in many sources. Some basic properties are, for example,
reviewed in [7].

Starting from (12), in [5] the following result was proved,
that gives an approximation of the expected bias:

β1 = −
(
V

′′

θθ(θ∗)
)−1

V ′
θ (θ∗) = S−T (−A0, B0)P

−1
φu

r0 .

(21)
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where

Pφu
= E

{
φu(t)φ

T
u (t)

}
(22)

φu(t) =
1

A2

 u(t− 1)
...

u(t− na − nb)

 (23)

r0 = E{B0

A0
ũ(t)φũ(t)} . (24)

We remark that the ’input filter’ F effects the bias through
the term Pφu

.
A somewhat cruder approximation of the bias, labeled β2

in this paper, is obtained by using only the noise-free part
of the input in (22). Specifically, then substitute Pφu in (21)
by Pφu0

, where φu0
(t) denotes the noise-free part of φu(t).

When the system has almost a pole-zero cancellation, the
matrix inverse S−T (−A0, B0) will have large elements. To
be specific, let the system have poles pi, i = 1, . . . , na and
zeros zj , j = 1, . . . , nb. Then set

δ = min
i,j

|pi − zj | , (25)

which is a measure of the pole-zero separation. It was shown
in [5] that for small values of δ the determinant of the
Sylvester matrix is proportional to δ. The inverse of the
Sylvester matrix will therefore generally have elements of
the order O(1/δ).

A related study appears in [6]. There the focus was to
investigate some strategies in order to reduce the large bias
in the system parameter estimates, in presence of small pole-
zero separation. In particular, two possible solutions were
proposed. The first one makes use of a reduced model struc-
ture, the second employs a full errors-in-variables model.

IV. A GENERAL LINEAR MODEL STRUCTURE

Consider in this section the general linear model structure
(5), where G and H are assumed to be rational functions
with independent parameters. One may thus regard this case
as an output error structure with colored noise.

Specifically, assume

G(q) =
B(q)

A(q)
=

b1q
−1 + . . .+ bnb

q−nb

1 + a1q−1 + . . .+ ana
q−na

, (26)

H(q) =
C(q)

D(q)
=

1 + c1q
−1 + . . .+ cnc

q−nc

1 + d1q−1 + . . .+ dnd
q−nd

. (27)

Then the prediction error becomes

ε(t, θ) =
D

C

[
y(t)− B

A
u(t)

]
(28)

=
D

C

[
B0

A0
u0(t) +

C0

D0
e(t)− B

A

(
u0(t) + ũ(t)

)]
.

(29)

Its gradient fulfills

∂ε

∂ai
(t) =

DBq−i

CA2
u(t) , (30)

∂ε

∂bi
(t) = −Dq−i

CA
u(t) , (31)

∂ε

∂ci
(t) = −Dq−i

C2

(
y(t)− B

A
u(t)

)
, (32)

∂ε

∂di
(t) =

q−i

C

(
y(t)− B

A
u(t)

)
. (33)

This leads to

ε′θ(t) =

 S(−A,B)φ1(t)

S(C,−D)φ2(t)

 , (34)

where

φ1(t) =
D

A2C

 q−1

...
q−na−nb

u(t) , (35)

φ2(t) =
1

C2

 q−1

...
q−nc−nd

(
y(t)− B

A
u(t)

)
.(36)

When evaluating V
′

θ (θ∗) and V
′′

θθ(θ∗) one then gets

V
′

θ (θ∗) =

(
S(−A0, B0)r1
S(C0,−D0)r2

)
, (37)

r1 = −E

B0

A0
ũ(t)

D0

A2
0C0

 ũ(t− 1)
...

ũ(t− na − nb)


 ,

(38)

r2 = E

C0

D0
e(t)

1

C0D0

 e(t− 1)
...

e(t− nc − nd)


 , (39)

V
′′

θθ(θ∗) =

(
V11 0
0 V22

)
, (40)

V11 = S(−A0, B0)Pφ1
ST (−A0, B0) , (41)

V22 = S(C0,−D0)Pφ2
ST (C0,−D0) . (42)

Similar to (21) the approximated bias β1 can now be written
as

β1 =

(
S−T (−A0, B0)P

−1
φ1

r1
S−T (C0,−D0)P

−1
φ2

r2

)
(43)

The somewhat cruder approximation β2 of the bias is
obtained by using only the noise-free part of the input when
forming Pφ1 and Pφ2 .

Some observations
• As V

′′

θθ(θ∗) is block diagonal, the estimates of A and
B are (asymptotically) uncorrelated with the estimates
of C and D.
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• If A0 and B0 have almost a pole-zero cancellation, then
the estimates of A and B are quite uncertain, just as in
the output error case treated in [5].

• Similarly, if C0 and D0 show almost a pole-zero
cancellation, then the estimates of C and D are quite
uncertain.

V. THE ARMAX MODEL STRUCTURE

Consider now an ARMAX model. This means that the
parameterization is such that G and H in (5) have the same
denominator.

This case is characterized by the following equations

y(t) = y0(t) + C/Ae(t), E{e2(t)} = λ2
e , (44)

u(t) = u0(t) + ũ(t), E{ũ2(t)} = λ2
u , (45)

y0(t) = B/Au0(t) , (46)
A = 1 + a1q

−1 + . . .+ ana
q−na , (47)

B = b1q
−1 + . . .+ bnb

q−nb , (48)
C = 1 + c1q

−1 + . . .+ cnc
q−nc . (49)

Assuming that the unperturbed input signal u0(t) is
persistently exciting, the model is non-identifiable precisely
when all the three polynomials A,B,C have a common
factor. This corresponds to the case of over-parameterization.

Example. Assume that the true data corresponds to the
transfer functions

G =
B1

A1
, H =

C1

D1
. (50)

This leads quickly to the following ARMAX model polyno-
mials

A = A1D1, B = B1D1, C = C1A1 . (51)

In case the two transfer functions G and H have some joint
poles, this means that the polynomials A1 and D1 are not
coprime. In fact, the characteristic polynomial formed from
these joint poles will be a joint factor of A,B,C.

The asymptotic error criterion can still be written as in
(9), but now the error (in fact, the one-step ahead prediction
error) should instead of (10) be written as

ε(t, θ) =
A

C
y(t)− B

C
u(t)

=
AB0 −A0B

A0C
u0(t) +

A

C

C0

A0
e(t)− B

C
ũ(t) .

(52)

Needless to say, (52) leads to various changes in the expres-
sion for the gradient of ε(t) with respect to the parameters.

In this case the parameter vector θ is given by

θ =
(
a1 . . . ana

b1 . . . bnb
c1 . . . cnc

)T
.

(53)

The derivatives of the polynomials with respect to θ can be
written as

A′
θ =

(
q−1 . . . q−na O1×(nb+nc)

)
, (54)

B′
θ =

(
O1×na q−1 . . . q−nb O1×nc

)
, (55)

C ′
θ =

(
O1×(na+nb) q−1 . . . q−nc

)
. (56)

When evaluating the gradient ε′θ(t, θ∗) one gets in an
intermediate step

GHθ −GθH =
B0

A0

(
−C0Aθ

A2
0

+
Cθ

A0

)
−C0

A0

(
−B0Aθ

A2
0

+
Bθ

A0

)
= −C0

A2
0

Bθ +
B0

A2
0

Cθ . (57)

Using this result in (10) leads to

ε(t, θ∗) = e(t)− A0

C0

B0

A0
ũ(t) = e(t)− B0

C0
ũ(t),(58)

ε′θ(t, θ∗) = −−B0Aθ +A0Bθ

A0C0
u0(t)

+
−C0Bθ +B0Cθ

C2
0

ũ(t)

−−C0Aθ +A0Cθ

A0C0
e(t) . (59)

The gradient of V in (12) becomes

V ′
θ (θ∗) = −E

{[
B0

C0
ũ(t)

] [
−C0Bθ +B0Cθ

C2
0

ũ(t)

]}
,

(60)
while the Hessian will be

V ′′
θθ(θ∗) = cov

[
−B0Aθ +A0Bθ

A0C0
u0(t)

]
+cov

[
−C0Bθ +B0Cθ

C2
0

ũ(t)

]
+cov

[
−C0Aθ +A0Cθ

A0C0
e(t)

]
. (61)

A further simplification is possible using Sylvester matri-
ces. For example, consider the expression

ϕ1(t) =
−C0Bθ +B0Cθ

C2
0

ũ(t) . (62)

It follows from (55) and (56) that ϕ1(t) is an 1× (na+nb+
nc) vector, with the first na elements being zero. The vector
composed of the elements na + 1, . . . , na + nb + nc can be
written as(

−C0q
−1 . . . B0q

−1 . . . B0q
−nc

) 1

C2
0

ũ(t)

=
1

C2
0

(
q−1ũ(t) . . . q−nb−nc ũ(t)

)
ST (−C0, B0) .

(63)

Recall that the approximate bias term β1 was defined as
the right hand side of (12). The Hessian V

′′

θθ(θ∗) consists of
various covariance elements of the filtered input u(t). The
cruder approximation β2 is obtained by substituting u(t) by
the noise-free part u0(t) in all these covariance elements.
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Fig. 1. Parameter biases versus δ, for the output error model. The true
biases (βt) are shown with solid, green lines. The approximate biases (β1),
see (21), are shown with dashed, red lines. The cruder approximate biases
(β2) are shown with dash-dotted, blue lines. The circles show the empirical
biases obtained by the Monte Carlo simulations from 100 realizations of
length 1000. The value of the input noise variance was λ2

u = 0.1.

VI. NUMERICAL EXAMPLES

As a background, and for comparison purposes, we first
repeat an example from [5].

A. Use of an output error model

To illustrate the above results in more detail consider a
simple numerical example with na = 1, nb = 2 and where
u0(t) is an AR(1) process,

u0(t) = Fv(t), F =
(
1− 0.9q−1

)−1
, E{v2(t)} = 1 .

(64)
The other parameters in the numerical example are

a1 = −0.8, λ2
y = 10, b1 = 2 . (65)

In the numerical study the input noise variance λ2
u was

varied. So was also the coefficient b2 = 2(−0.8 − δ). Note
that the value δ = 0 corresponds to A0 and B0 having a
common zero, and where identifiability is lost.

In the numerical study the approximate bias expressions β1

and β2 were computed. They are compared to the ’true’ bias
βt, which was computed by minimizing the loss function
(9). The results were also compared numerically to some
Monte Carlo simulations, where the output error identifica-
tion method was applied to a number of realizations. 100
input-output realizations, each of length 1000 were used.

In Figure 1 the parameter biases versus the parameter δ
are displayed.

B. Use of an ARMAX model

Consider the same example and data as examined for the
output error case in Section VI-A. Note that the output error
model corresponds to the ARMAX model with the constraint
C = A. Expressed differently, for the example studied here,
it holds for the true data A = 1 − 0.8q−1 = C, while

Fig. 2. Parameter biases versus δ, for the ARMAX model. The true biases
(βt) are shown with solid, green lines. The approximate biases (β1) are
shown with dashed, red lines. The cruder approximate biases (β2) are shown
with dash-dotted, blue lines. The circles show the empirical biases obtained
by the Monte Carlo simulations from 100 realizations of length 1000. The
value of the input noise variance was λ2

u = 0.1.

Fig. 3. Parameter biases versus λ2
u, for the ARMAX model. The true

biases (βt) are shown with solid, green lines. The approximate biases (β1)
are shown with dashed, red lines. The cruder approximate biases (β2) are
shown with dash-dotted, blue lines. The circles show the empirical biases
obtained by the Monte Carlo simulations from 100 realizations of length
1000. The value of the parameter δ is δ = 0.1.

B = 2(1− (0.8+ δ)q−1). We estimate though the dynamics
with an ARMAX model (thus not exploiting that A = C in
the estimation).

The numerical investigations are displayed in Figures 2
and 3.

Some observations
• The OE and ARMAX models have mostly similar

qualitative properties.
• The ARMAX models seem to be more robust than the

OE models, in the sense that no problems with false
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local minima were observed.
• The Monte Carlo simulations give mostly similar results

to those predicted by theory.

C. Further considerations for an ARMAX model

The parameter bias when using a PEM for an ARMAX
model was further considered in the technical report [3].
When a prediction error method is used with either an output
error model or a model with independent parameters for the
transfer functions G and H , then a small pole-zero separation
δ leads to a parameter bias of order O(1/δ). The examples
presented in [3] shows that this behavior does not extend to
the ARMAX case. These examples are summarized here.

Consider a first order system with na = 1, nb = 2, nc =
1. The bias for four different cases will be presented.

Case 1. Let B and C have a joint zero. The parameters
are chosen as

a = −0.8 + δ, b1 = 1, b2 = −0.8, c = −0.8 . (66)

Let the noise-free input be white noise of zero mean and
variance σ2. The variances are chosen as

σ2 = 1, λ2
u = 1, λ2

e = 1 . (67)

The obtained results are:
• The biases of a and c are zero.
• The bias of b1 is 0.5 and that of b2 is −0.4, independent

of the value of δ.
Case 2. Consider the same system and parameters as in

Case 1, with the modification that the noise-free input is no
longer white noise, but a first order regression

u0(t)+fu0(t−1) = v(t), E
{
v2(t)

}
= σ2 = 1, f = −0.9 .

(68)
The obtained results differ drastically from Case 1:
• The bias of a, b2 and c behave as O(1/δ).
• The bias of b1 varies very slowly with δ.
Case 3. Next modify the original example slightly in

another way. Force A and B to have a joint zero. The noise-
free input is still assumed to be white noise. The parameters
for this example are thus

a = −0.8, b1 = 1, b2 = −0.8, c = −0.8 + δ . (69)

Let the noise-free input be white of zero mean and variance
σ2 = 1.

The obtained results are:
• The biases of a and c behave as O(δ).
• The biases of b1 and b2 vary very slowly with δ.
Case 4. Modify the original example slightly in still

another way. Force A and C to have a joint zero. The noise-
free input is still assumed to be white noise. The parameters
for this example are thus

a = −0.8, b1 = 1, b2 = −0.8 + δ, c = −0.8 . (70)

Let the noise-free input be white of zero mean and variance
σ2 = 1.

The obtained results are:

• The bias terms |a| and |c| are both O(δ).
• The bias term |b1| does not vary with δ. It is equal to

0.5.
• The bias term |b2| varies very slowly with δ. For small

values of δ it is equal to −0.4.
A general conclusion from the four cases in this subsection

is that
For an ARMAX model the behavior of the bias
as a function of the pole-zero separation δ is
quite different in the 4 cases, despite the fact
that the examples themselves differ only by slightly
modifying the system parameters.

VII. CONCLUSIONS

When standard identification methods are applied to noise-
corrupted input-output data, biased parameter estimates occur
due to the presence of input noise. It has been assumed that a
standard prediction error method is applied. When the system
is close to be not identifiable due to an almost pole-zero
cancellation, the bias will be large. It was shown that the bias
is O(1/δ) where δ is the pole-zero separation. This result
applies for the pole-zero separation of the system transfer
function as well as for the noise-shaping filter. Further, a
comparison between using the output error model structure
or an ARMAX model was performed. On the contrary to the
general linear model case in Section IV, there is no general
result in the ARMAX case that the bias is always O(1/δ)
for a small pole-zero separation δ.
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