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Abstract— Source term estimation (STE) is a field of growing
interest in the context of air pollution, both for people living
in urban areas and for decision makers. Thus retrieving maps
of sources of pollution in an urban context is a necessity. Since
urban pollution mainly depends on car traffic conditions, it
is important to develop fast estimation methods to quickly
and enough accurately identify highly-polluting vehicles. The
challenge is high since the problem requires the inversion
of distributed models defined on a 3D heterogeneous domain
including complex obstacles. This paper proposes an estimation
method based on a flexible least squares-radial basis function-
finite differences (LS-RBF-FD) reduced model of an advection-
diffusion PDE on 3D heterogeneous domains representing
complex urban areas. The STE problem is solved by using
an adjoint-based method relying on the reduced model to
effectively estimate pollutant sources given a limited number of
measurements. The paper provides preliminary results demon-
strating the potential of the proposed approach.

I. INTRODUCTION

Pollution modeling is a research field of increasing interest
for public alerting and decision-making. Regulatory authori-
ties in the European Union point out that air pollution caused
by fine particulate matter (PM2.5), mainly due to car traffic,
causes about 420 000 premature deaths in Western Europe
[1]. These public health concerns raise the need to develop
methods to accurately identify the most polluting sources
in heterogeneous urban areas, within a timeframe compat-
ible with the change of traffic conditions. In particular,
source term estimation (STE) could be very useful to isolate
highly pollutant cars in urban streets based on measurements
provided by a crowd of low-cost sensors. STE had been
extensively studied in the literature, especially in highly
constrained urban areas. Many authors studied model-based
estimation methods to perform urban STE such as ensemble
Kalman filter [3], particle filter [17], or variational calculus
[9], but at the price of computationally expensive models
requiring hours of computation. Some authors addressed
this limitation by introducing a reduced-order model of a
pollutant transport PDE with the use of proper orthogonal
decomposition (POD) [8] but this method is data-driven
and impose to create a large database and learn a model
for each use-case. Overall, current methods for urban STE
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are computationally expensive, since requiring a large-scale
transport model to be solved several times on fine 3D
grids. Therefore, 3D STE remains challenging in complex
and heterogeneous urban environments characterized by the
presence of various obstacles (such as buildings).

Fast and accurate computation represents the ”holy grail”
in computational physics. The here-proposed approach relies
on the use of a meshless radial basis function-finite differ-
ences (RBF-FD) method to get a reduced-order model of
the pollution dynamics defined on 3D heterogeneous do-
mains including potentially complex obstacles and boundary
conditions without the need of a structured grid (meshless
approach). Flyer et al. first developed a RBF-FD method
for solving shallow water equations defined on spherical
domains and showed that the RBF-FD method can be faster
than discontinuous Galerkin methods with equivalent accu-
racy [5]. The RBF-FD approach has proven to be effective
in the past 10 years. Various applications in geosciences
[12], biomedical engineering [19], hydrodynamics [4], [5],
epidemiology [15] can be found in the recent literature.
Advection-diffusion equations have also been investigated,
e.g. Liu et al. applied a RBF-FD method to compute non-
stationary pollutant dispersion, but in an urban 2D domain
only [11]. To illustrate a realistic 3D configuration, Fig. 1
depicts the pollutant concentration in a abstracted 3D urban
domain with three buildings. The wind velocity field is not
uniform due the presence of buildings acting as obstacles,
so that the pollution plume is highly dependent on the local
wind conditions.

Fig. 1: Left: pollutant concentration and wind field (arrows)
at a height of 2 m. Right: 3D domain composed of 3 buildings
of different sizes.

The STE method proposed in this paper is a finite-
dimensional variational approach based on a 3D meshless
least squares-RBF-FD (LS-RBF-FD) reduced-order model.
The LS-RBF-FD modelling approach is similar to that pro-
posed in [18]. To the best of our knowledge, this is the first
use of a LS-RBF-FD approach to a 3D pollution simulation
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and estimation problem. This method appears to provide
good approximate solutions even on coarse grids, which are
more numerically robust and accurate in 3D domains that
the RBF-FD collocation method. The approximate operators
obtained with this approach exhibit high sparsity, which
can be efficiently exploited to induce lower computation
costs. The LS-RBF-FD approach inherently leads to reduced-
order finite-dimensional models of the PDEs. Our approach
benefits from both accuracy of adjoint-based methods and
low computational costs of reduced-order models obtained
with the LS-RBF-FD method, and facilitates STE solving
with a limited number of measurements.

The rest of the paper is organized as follows: Section II
introduces the LS-RBF-FD method. Section III describes the
formulation and solution of the adjoint-based STE problem.
A case study is presented in section IV, and Section V sums
up conclusions and perspectives.

II. LS-RBF-FD DIRECT MODEL

A. Assumptions and air pollution model

At the urban scale, air pollution modeling usually relies
on two main assumptions: The fluid is considered as in-
crompressible, and the pollutant does not change the air
density locally. Under these assumptions, pollutant disper-
sion can be represented by Navier-Stockes equations cou-
pled with the advection-diffusion partial differential equa-
tion (ADPDE). In this paper, the Navier-Stockes equations
providing the mean wind velocity and mean diffusion fields
are obtained from a computational fluid dynamics simulation
software. The velocity and diffusion fields are assumed to be
constant or slowing time-varying. Additionally, the source
term is considered stationary both in time and space, and
emits long enough to reach a steady state. Finally, pollutants
are considered passive in this study (e.g. particle matter such
as PM2.5 and PM10), without any further chemical reaction
or photo-reaction. Under these realistic assumptions in the
context of air pollution in urban area [20], the 3D stationary
ADPDE including source term writes:

3∑
i=1

Ui(x)∂ξiu(x) =

3∑
i=1

∂ξi (Ki(x)∂ξiu(x)) + s(x), (1)

∀x ∈ Ω,

∇u(x) · ν(x) = 0, x ∈ Γn, u(x) = 0, x ∈ Γd, (2)

where x = (ξ1, ξ2, ξ3) denotes the vector of spatial Cartesian
coordinates, U(x) = (U1(x), U2(x), U3(x)) and K(x) =
(K1(x),K2(x),K3(x)) denote the mean wind velocity and
the mean diffusion fields respectively, u(x) [µgm−3] denotes
the pollutant concentration, s(x) denotes the pollutant source
term [µgm−3 s−1], and ν(x) denotes the normal vector
pointing towards the exterior of the boundary. ∂ξi is the
partial derivative w.r.t. ξi, while ∇ is the spatial gradient
in R3. Two kinds of boundary conditions are considered:
Dirichlet conditions (u(x) = 0) and Neumann conditions
(∇u(x) · ν(x) = 0). (1)-(2) can be written in operator form
as:

Lu(x) = s(x), x ∈ Ω, Bu(x) = 0, x ∈ ∂Ω, (3)

where L is the differential operator
∑3

i=1 Ui(x)∂ξiu(x) −∑3
i=1 ∂ξi (Ki(x)∂ξiu(x)) defined on the domain Ω, and B

is the boundary condition operator defined on the boundary
domain ∂Ω = Γd ∪ Γn, respectively.

B. RBF-based methods to solve PDEs

Radial basis functions (RBFs) are known to exhibit excel-
lent interpolation properties (see e.g. [6]) so that a continuous
function f : y ∈ Ω 7→ f(y) ∈ f(Ω) can be accurately
approximated by a set of Nx RBFs ϕ centered on a finite set
of nodes (collocation points) X = {xi}i=1,··· ,Nx

⊂ Ω. Let
f̂ denote the interpolation function of f :

f̂(y) =

Nx∑
i=1

aiϕ(∥y − xi∥), ∀y ∈ Ω, (4)

where the ai’s are the coordinates of the function approx-
imate in the basis of RBFs. ∥ · ∥ denotes the Euclidean
norm. Among the most popular RBFs are the Gaussian RBFs,
multiquadric RBFs, and the polyHarmonic splines (PHS), the
latter being used in this work, since it does not require a
shape parameter, unlike the Gaussian or multiquadric RBF
[6], to be tuned to optimize conditioning:

ϕ(y) = r2k−1, k ≥ 1, with r = ∥y − xi∥. (5)

In order to improve accuracy, a polynomial basis is intro-
duced in the PHS-RBF approximation along with coordinates
λj :

f̂(y) =

Nx∑
i=1

aiϕ(∥y − xi∥) +
m∑
j=1

λjpj(y), (6)

associated to matching constraints
∑Nx

i=1 aipj(xi) = 0, for
j = 1, · · · ,m. For the sake of simplicity and without
restriction, the RBF formulations will not explicitly integrate
polynomials in what follows, despite they are actually used
in this work.

In the 90’s, Kansa [7] introduced a RBF approximation
of a PDE solution. Unlike the mesh-based methods, RBF-
based methods do not require any complex mesh and are
therefore well adapted to deal with complex and heteroge-
neous domains. However, Kansa’s approach suffers from a
severe computational limitation when solving large systems,
since the RBF operator matrix is not sparse. To overcome
this limitation, the RBF-FD methods has been introduced
[5]. The idea is to locally approximate the differential and
boundary condition operators by using a RBF approximation
only based on the n closest neighbors (a stencil) of each
node. RBF-FD formulas have been theoretically studied in
[2] and exhibit nice convergence properties.

C. RBF-FD approximation of operators

Consider now two sets of nodes defined in the domain Ω
and on its boundary ∂Ω.

Let X be a set of nodes that covers the domain Ω,
consisting of two subsets XΩ corresponding to nodes chosen
in the domain interior Ω, and X∂Ω, corresponding to nodes
on the boundary ∂Ω. These nodes will be used as centers
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for the local RBF approximation of the operators. Quasi-
random low-discrepancy sequences such as Sobol or Halton
sequences are recommended, since they are known to provide
evenly filling of the spatial domain and are optimal for
the approximation of integrals in the Monte-Carlo sense.
Let NxΩ

= card(XΩ) and Nx∂Ω
= card(X∂Ω), with

Nx = card(X) = NxΩ
+ Nx∂Ω

, where card(·) denotes the
cardinality of a set.

In a similar manner, let Y be a set of evaluation nodes
consisting of two subsets YΩ and Y∂Ω. Y can also be gen-
erated using a quasi-random sequence. Let NyΩ = card(YΩ)
and Ny∂Ω

= card(Y∂Ω), with Ny = card(Y ) = NyΩ +Ny∂Ω
.

The RBF-FD approximation is based on the local RBF
approximation of u(x) on each stencil Syk

, where Syk

contains the n closest neighbors denoted as xyk

i ∈ X, i =
1, ..., n, of each yk ∈ Y (including yk). For each stencil Syk

of cardinality n, it is possible to express the approximate
solution ua at each collocation point xyk

i as the local linear
combination of n RBFs given by:

ua(x
yk

i ) =

n∑
j=1

ajϕ(∥xyk

i − xyk

j ∥), xyk

i ∈ Syk
. (7)

Let ua(yk) denote the vector of the ua(x
yk

i )’s, for all xyk

i ∈
Syk

, then a, the vector of the coordinates aj’s, is given by:

a = A(yk)
−1ua(yk), (8)

where

A(yk) =

ϕ (∥xyk

1 − xyk

1 ∥) . . . ϕ (∥xyk

1 − xyk
n ∥)

...
. . .

...
ϕ (∥xyk

n − xyk

1 ∥) . . . ϕ (∥xyk
n − xyk

n ∥)

 .

(9)
Apart from (7), and by using (8), local approximations of
the operators L and B are easily derived at each yk ∈ Y as:

Lua(yk) =

n∑
j=1

ajLϕ(∥yk − xyk

j ∥) = LΦ(yk)a

= LΦ(yk)A(yk)
−1ua(yk), yk ∈ YΩ, (10)

Bua(yk) =

n∑
j=1

ajBϕ(∥yk − xyk

j ∥) = BΦ(yk)a

= BΦ(yk)A(yk)
−1ua(y

k), yk ∈ Y∂Ω. (11)

It clearly appears that Lua(yk) and Bua(yk) can be expressed
as linear combinations of ua(yk) of the form:

Lua(yk) =

n∑
j=1

wL
j (yk)ua(yk) = wL(yk)ua(yk), (12)

Bua(yk) =

n∑
j=1

wB
j (yk)ua(yk) = wB(yk)ua(yk), (13)

where the wL
j (yk)’s and wB

j (yk)’s are the RBF-FD coeffi-
cients of the finite-difference operators.

Note also that this approach allows the local interpolation
of ua at any point y in the domain Ω by using the interpo-
lation formula:

ua(y) = Φ(y)A(y)−1ua(y), y ∈ Ω, (14)

where ua(y) denotes the vector of ua(x
y
i )’s, for all xy

i ∈ Sy .

D. The RBF-FD method

The RBF-FD collocation method will consist in choosing
Y = X (collocation property) and solving the following
linear system:

Dua = f, (15)

where ua is the vector of the approximate solution evaluated
at each collocation point of Y and f is the vector containing
s which is the vector of source term values evaluated at
nodes of XΩ concatenated with the vector of null boundary
conditions evaluated at the collocation points of X∂Ω . D is
the matrix containing the wL

i (yk)’s and wB
i (yk)’s properly

located at the indices of the points of each stencil Syk
, for

all yk in Y . Since the stencil size n is usually chosen much
smaller that Nx, the finite-dimensional operator matrix D is
sparse.

E. The LS-RBF-FD method

The LS-RBF-FD method has been recently investigated
in [10], [18] as an approach capable of overcoming the
limitations of the RBF-FD collocation method in terms
of numerical stability and accuracy. Indeed, the RBF-FD
collocation approach showed poor accuracy and stability for
the computation of 3D ADPDE solutions, according to our
tests. The proposed approach can be interpreted as a least
squared Galerkin method based on a discretized version of
the following squared L2-norm of the residual r(v), v ∈ V ⊂
Sobolev space W 2,2(Ω) of the PDE problem (3):

ua = argmin
v∈V

∥r(v)∥2L2(Ω) (16)

= argmin
v∈V

∫
Ω

(Lv(y)− s(y))
2
dy +

∫
∂Ω

(Bv(y))2 dy.

By using a Monte-Carlo method for the integral approxima-
tions and (10)-(11), ∥r(v)∥2L2(Ω) can be approximated as:

∥r(v)∥2L2(Ω) ≈
|Ω|
NyΩ

NyΩ∑
k=1

(LΦ(yk)A(yk)
−1v(yk)− s(yk))

2

+
|∂Ω|
Ny∂Ω

Ny∂Ω∑
k=1

(BΦ(yk)A(yk)
−1v(yk))

2, (17)

where |Ω| =
∫
Ω
1dy and |∂Ω| =

∫
∂Ω

1dy.
Equation (17) can be rewritten in compact form as :

∥r(v)∥2L2(Ω) ≈ ∥DΩv − s∥2 + ∥D∂Ωv∥2. (18)

The LS-RBF-FD method is not a collocation method since
the evaluation set Y now differs from the node set X . Y
is chosen to oversample Ω compared to X , i.e. card(Y ) ≫
card(X). Therefore, ua is the solution of an overdetermined
least squares optimization problem defined by:

ua = argmin
v

∥Dv − f∥2, (19)
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where ua and v ∈ RNx , D ∈ RNy×Nx and f ∈ RNy . By
using (18), D and f can be expressed as:

D =

(
DΩ

D∂Ω

)
, f =

(
s(YΩ)
0

)
, (20)

where s(YΩ) denotes the vector of the source term evaluated
at the nodes of YΩ.

Unlike the RBF-FD collocation method, the LS-RBF-FD
method helps to relax hard constraints induced by the bound-
ary conditions. The stability of ua is also reinforced by the
fact that the evaluation points of Y are more numerous than
the unknowns ua which helps to improve the well-posedness
of the problem. The approximate differential operator D in
(20) remains sparse due to the use of local approximations
on stencils of limited size. The LS-RBF-FD approach could
also be adapted to solve a time-dependent PDE.

Since the problem (19) is linear-quadratic, provided D has
full rank, a unique explicit solution is given by:

ua = D+f, (21)

where D+ = (DTD)−1DT is the left pseudo-inverse of D.
In practice, the solution ua can be effectively computed by
using an iterative least square solver optimized for sparse
problems, such as the algorithm proposed in [16].

However, it is interesting to derive the necessary condition
for optimality of the problem (19) given by:

DTDua −DTf = 0

⇔ Eua −DT
Ωs(YΩ) = 0, (22)

where E = DT
ΩDΩ +DT

∂ΩD∂Ω.
Equation (22) will be used as direct model of the adjoint-

based STE method proposed in the next section.

III. SOURCE TERM ESTIMATION

The problem is to simultaneously estimate the unknown
source term vector s ∈ RNx and the pollutant concentration
u ∈ RNx both defined on X , from a limited number
of measurements y

mes
∈ RNs , where Ns is the number

of measurements properly located in the domain Ω. STE
is performed using a batch of the Ns measurements and
relies on an adjoint-based method. Here the source term is
parametrized by using the RBF interpolation formula (14):

s(z) = Φ(z)A(z)−1s(z), (23)

where s(z) denotes the vector of the source term evaluated
on the stencil Sz . It follows that the approximate source term
can be evaluated on YΩ by using (23). The resulting operator,
which provides a source approximation defined in YΩ from
a source approximation defined in X , will be denoted as Ψs

such as s(YΩ) = Ψss.
The measurement operator, here denoted as C, is defined

as an interpolation operator, very similar to that of (23):

y = Cu = Ψ(Ymes)u (24)

where y denotes the model output vector and Ymes is the set
of the measurement locations in Ω (which do not necessarily
coincide with the nodes in YΩ).

A. An adjoint-based approach based on the LS-RBF-FD
reduced model

The STE problem consists in solving the following least
square optimization problem (a LS-RBF-FD model-based
regularized minimization of the least square error of output
prediction):

min
s,u

J (s, u) =
1

2
∥Cu− y

mes
∥2R−1 +

1

2
∥s∥2B−1

s.t. Eu−DT
ΩΨss = 0,

(25)

where R and B are measurement noise covariance and
regularization matrices respectively.

We can state the following result:
Theorem 3.1: The optimal solution (s∗, u∗) of the STE

problem (25) is solution of the following linear system:(
K E
E −Q

)(
u
λ

)
=

(
CTR−1y

mes
0

)
, (26)

where K = CTR−1C and Q = DT
ΩΨsBΨT

sDΩ. Further-
more, s∗ = BΨT

sDΩλ
∗, where λ∗ is the adjoint of u∗.

Provided that the symmetric matrix E is positive definite,
u∗ = [E + QE−1K]−1QE−1CTR−1y

mes
, and λ∗ is given

by λ∗ = −E−1CTR−1(Cu∗ − y
mes

).
Proof. We first introduce the Lagrangian of the problem (25):

L(s, u, λ) =
1

2
∥Cu − y

mes
∥2R−1 +

1

2
∥s∥2B−1 + λT(Eu −

DT
ΩΨss). Lagrange’s theory provides the following necessary

conditions for optimality:

∇uL = 0 ⇔ CTR−1(Cu− y
mes

) + Eλ = 0, (27)

∇sL = 0 ⇔ B−1s−ΨT
sDΩλ = 0, (28)

∇λL = 0 ⇔ Eu−DT
ΩΨsBs = 0, (29)

where (27) is the adjoint model equation. Under the assump-
tion that E is positive definite (thus invertible), λ∗ can be
explicitly computed as λ∗ = −E−1CTR−1(Cu∗ − y

mes
).

From (28), we get s∗ = BΨT
sDΩλ

∗. From (29) and by using
the expression of s∗, we get Eu∗ −Qλ∗ = 0. Finally, u∗ =
[E+QE−1K]−1QE−1CTR−1y

mes
, by using the expression

of λ∗. Notice that E +QE−1K is always invertible if E is
positive definite, since the symmetric matrix QE−1K is at
least positive semi-definite.

The invertibility of the matrix E is guaranteed if and only
if the matrix D in (20) has full rank. This condition is easily
met by using the PHS basis functions and a sufficiently large
number of nodes in X and Y . However, obtaining analytical
conditions seems to be out of reach. In practice, the 2Nx ×
2Nx linear system (26) can be effectively solved by using a
least square or a Krylov method, well suited for large-scale
problems, without explicit inversion of E.

IV. CASE STUDY: SIMULATED SOURCE TERM
ESTIMATION IN A URBAN AREA

A. Description of the case study

The problem is to estimate the Gaussian source inducing
the pollution field in Fig. 1 (left subplot). The studied 3D
domain mimics an urban area with 3 buildings of different
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heights of 10 m, 15 m and 12 m, respectively. The dimensions
of the domain are Lξ1 = 205m, Lξ2 = 120m and Lξ3 =
105m. The 3D domain is displayed in Fig. 1 (right subplot).
In this work, the PHS5 basis functions are used since they
appear to be here a good choice in terms of accuracy and
stability:

ϕ(y) = r5, with r = ∥y − xi∥. (30)

Additionally, second-order regularization polynomials are
used to improve accuracy.

The LS-RBF-FD direct model (22) used in (25) has the
following additional characteristics: Ny = 15 000 evaluation
nodes are used to ensure a sufficiently high resolution. For
the set X , the node distribution is much coarser with Nx =
2 060 nodes which naturally leads to a reduction of the
variables to estimate s and u. Null flux (Neumann) boundary
conditions are assigned to the ground, the edges of the
buildings and to the top of the domain, while null Dirichlet
conditions are assigned to the edges of the domain. The size
of the stencils is equal to 90, which here appears to be a
good compromise in terms of both approximation accuracy
and sparsity preservation.

The matrices R and B in (25) are here chosen as R =
rINs

and B = bINx
, where IN· denotes the N·×N· identity

matrix. r is related to the variance of the measurement noise
and b is a regularization coefficient. With this choice of the
matrices and the studied domain, the best results have been
obtained with r = 1 and b = 0.15.

1) Wind and turbulence fields computation: The 3D wind-
field and diffusion fields are computed by using the Micro-
SWIFT-M code [14] which is part of the PMSS software
suite [13]. The model produces both the mean wind field U
(ms−1) and the mean diffusion field K (m2 s−1).

2) Measurements: The forward problem was simulated
with addition of white noise to produce measurements y

mes
such that:

y
mes

= y0 + ϵobs with ϵobs ∼ N (0, σ2), (31)

where y0 is the ”true” pollutant concentration computed from
a high-resolution LS-RBF-FD simulation with Ny = 50 000,
Nx = 15 648 (see Fig. 1), and ϵobs is a Gaussian white noise
vector of variance σ2 with σ = 0.002. The simulated ”true”
source term used to generate the reference concentration field
is a parameterized Gaussian function defined over Ω:

s : x 7→ as exp

(
−1

2
(x− xs)

TΣ−1(x− xs)

)
, x ∈ Ω,

(32)
where the amplitude as = 1 µgm−3 s−1, the source posi-
tion xs = [0.42Lξ1 m, 0.39Lξ2 m, 0.02Lξ3 m] and Σ is a
diagonal matrix whose non-zero elements are the squared
source spread value chosen as 8m in each of the three spatial
dimensions. The source term is depicted in a 2D layer at an
altitude of 2 m on Fig. 3.

B. Results
Two estimations were performed with 1 500 and 200

measurements randomly distributed on the whole 3D com-
putational domain. The resulting estimated source terms,

and the estimated concentration field derived from STE are
displayed in Fig. 2. The estimated source position x̂s is
rather well computed in the two inversion test cases. 1 500
measurements are sufficient to obtain an estimation of the
source position with errors inferior to 5m in the (ξ1, ξ2)-
plane (Fig 2-A), while x̂s is shifted by 25m along ξ1 and
10m along ξ2 by using 200 measurements (Fig 2-C). Some
inversion artifacts caused by the inversion process are visible
in Fig 2-C where the source reaches 0.5 units instead of
0 close to the bottom right building. Nevertheless sources
are retrieved well enough to produce pollutant field patterns
(Fig 2-B and D) close to the field of reference returned by
our full model shown in Fig 1. It is not surprising that the
field resulting from an STE with 1 500 measurements (Fig 2-
B) is closer to the reference field, in terms of configuration
and order of magnitude, than that resulting from only 200
measurements shown in Fig 2-D.

The computation of our STE approach is reasonably
fast and appears to be compatible with realistic real-time
constraints in an embedded configuration. Once the operator
matrix D in (20) is computed, the estimated source term and
pollutant field, solution of the problem (25), are obtained in
about 4 minutes by using an Intel® Xeon® E-2276M 6-core
processor and 32 GB of RAM running Python code, without
exploiting parallel computing capabilities.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, promising preliminary results of a fast
reduced model-based atmospheric source term estimation
method well suited for complex urban areas are presented.
To the best of our knowledge, this paper proposes the
first application of the LS-RBF-FD method for the model
reduction and simulation of a 3D ADPDE, together with
the first use of LS-RBF-FD in an adjoint-based estimation
method. This methodology appears to be effective in quickly
producing good estimates of isolated sources and meets the
objective of monitoring pollution in a complex 3D urban
environment. By choosing the number of approximation and
evaluation nodes, along with the stencil size, the trade-off
between computational complexity and accuracy for model-
based STE purpose is easily tunable. The estimation of
distributed sources is also effective, although not presented in
the paper due to the length limitation, thanks to the flexible
RBF parameterization of the source term.

Our work in progress is currently dedicated to the eval-
uation of the approach in real urban districts, including
the extension to the non-stationary case, and determining
the number of measurements required for ensuring a valid
estimation. Furthermore, the integration of LS-RBF-FD ap-
proach will be investigated in the framework of Bayesian
methods such as ensemble Kalman filtering, together with
the optimal navigation of mobile sensors to ensure the
best possible estimate given meteorological situation and
urban configuration. Future work will also be devoted to a
comparison in terms of accuracy and computational speed
with physics-informed machine learning methods.
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Fig. 2: A : Source term estimate with 1 500 noisy measurements. B: Corresponding reconstructed concentration field.
C: Source term estimate with 200 noisy measurements. D: Corresponding reconstructed concentration field. Red crosses
correspond to 3D measurement locations projected onto the 2D layer at ξ3 = 2m, where the results are plotted.

Fig. 3: True source at ξ3 = 2m.
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