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Abstract—For many robot manipulators tasks, the main
objective consists in following accurately position and velocity
time varying trajectories. Sliding Mode Control (SMC) tech-
niques allow exact position tracking despite a poor knowledge
of the robot model and in the presence of external pertur-
bations. In the last years fixed time stability has become an
area of great interest, where one of the main problems to be
solved is the possible appearance of singularities. The current
contribution introduces a singularity free fixed time SMC
scheme for position and velocity tracking of robot manipu-
lators in the presence of external perturbations. The control
scheme avoids singularities by using linear sliding mode (LSM)
surfaces, which are yielded to zero in a predefined fixed time.
Although the employment of LSM allows to avoid singularities,
the tracking errors tend to zero only asymptotically once the
sliding surface is reached. Simulation results show that this
does not represent a big drawback since tracking errors tend to
zero even in the presence of external perturbations as foreseen
in theory.

Index Terms—Finite time, robot manipulator, robustness,
position tracking.

I. INTRODUCTION

Sliding Mode Control (SMC) theory is a well suited
technique for the control of robot manipulators. In the recent
years, there has been a tendency to achieve fixed time
stability. Conventional SMC systems adopt linear sliding-
mode (LSM) surface based controllers. Another class of
SMC, the terminal sliding-mode (TSM), offers some su-
perior properties such as fast and finite-time convergence,
and high steady-state tracking precision. However, the TSM
controller has a singularity problem, that is, in some areas of
the state space, the TSM control may require to be infinitely
large in order to maintain the ideal TSM motion. In [1] a
global non-singular TSM controller for rigid manipulators
is presented. The time taken to reach the equilibrium point
from any initial state is guaranteed to be finite time. The
singularity phenomena and the dynamic behaviors of the
TSM control systems are studied in [2] and a systematic
method to overcome the singularity problem for global
TSM control of general dynamical systems is proposed.
In [3] a fixed-time sliding mode control for the global fixed-
time trajectory tracking of robot manipulators subject to
uncertain dynamics and bounded external disturbances is
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introduced. A fixed-time sliding surface is proposed and a
singularity-free fixed-time sliding mode control (SFSMC)
is constructed. Lyapunov stability theory is employed to
prove stability. In [4], the problem of finite-time trajectory
tracking of robot manipulators with uncertain dynamics,
external bounded disturbances, and bounded torque inputs
is studied. In order to achieve finite-time convergence a
nonlinear control algorithm based on a second-order sliding
mode controller in combination with nonsingular terminal
sliding mode is proposed. The controller structure is simple
since it does not require the knowledge of the robot dy-
namic model. In [5], new global robust fixed-time stability
results for scalar systems by using constant and variable
exponent coefficients are proposed. Then, they are applied to
global robust fixed-time stabilization of a class of uncertain
nonlinear second-order systems by using SMC. In [6], it
is proposed a time-varying nonsingular TSM control for
a class of uncertain second order nonlinear system and
its application to n-links rigid robotic manipulators. The
singularity problem is avoided and the reaching phase ex-
isting in conventional TSM control is totally suppressed,
which ensures the global robustness of the system against
uncertainties and disturbances. However, a nominal robot
model is required for implementation. In [7], a robust
adaptive fixed-time SMC method for robotic systems with
parameter uncertainties and input saturation is proposed.
In [8], the authors explore the prescribed-time stabilization
problem of strict-feedback uncertain systems, both in the
presence of unknown control gains and mismatched non-
parametric uncertainties. It is shown that the settling time
is user-assignable a priori regardless of the initial condition.
In [9], a robust controller for first-order uncertain nonlinear
systems is proposed by introducing a novel hybrid sliding
surface. The convergence of the system state in bounded
time, independent of the initial conditions of the system, is
guaranteed without singularity problems.

In this paper, a simple robust sliding mode controller is
designed for robot manipulators to achieve exact tracking in
the presence of external bounded perturbations. The main
characteristic is that the LSM surface is reached in finite
time, thus allowing the tracking errors to tend to zero
exponentially while singularities are avoided. Simulation
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results are in good accordance with the developed theory.
The paper is organized as follows. Section II provides some
basic preliminaries on robot model properties and on the
standard DREM procedure. Section III introduces the new
adaptive law and the stability analysis, while simulation
results are given in Section IV. The paper concludes in
Section V.

II. PRELIMINARES

Consider a n-degrees of freedom rigid robot whose dy-
namics can be described by [10]:

H(q)q̈ +C(q, q̇)q̇ +Dq̇ + g(q) = τ + τ p , (1)

where q ∈ Rn is the vector of generalized joint coordinates,
H(q) ∈ Rn×n is the symmetric positive definite inertia
matrix, C(q, q̇)q̇ ∈ Rn is the vector of Coriolis and
centrifugal torques, D ∈ Rn×n is a symmetric positive
semidefinite matrix of joint viscous friction coefficients,
g(q) ∈ Rn is the vector of gravitational torques, τ p ∈ Rn
represents external perturbations, and τ ∈ Rn is the vector
of input torques acting at the joints. Assume for simplicity’s
sake that the robot has revolute joints only and that velocity
measurements are available. Some useful model properties
are listed below:

Property 2.1: It holds λh‖x‖2 ≤ xTH(q)x ≤ λH‖x‖2
∀ q ∈ Rn, x ∈ Rn, and 0 < λh ≤ λH < ∞, with
λh = min

q∈Rn
λmin(H(q)) and λH = max

q∈Rn
λmax(H(q)).

λmin(·) and λmax(·) denote the minimum and maximum
eigenvalues of a symmetric matrix, respectively. 4

Property 2.2: By using the Christoffel symbols of the
first kind to compute C(q, q̇), the matrix Ḣ(q)−2C(q, q̇)
is skew-symmetric. 4

Property 2.3: There exists a positive constant
0 < kc < ∞ such that ‖C(q,x)‖ ≤ kc‖x‖ holds ∀
x, q ∈ Rn. 4

Property 2.4: The vector of the generalized gravitational
torques g(q) satisfies ‖g(q)‖ ≤ kg, kg > 0. 4

III. A ROBUST CONTROL LAW FOR ROBOT
MANIPULATORS

In this section, a control law for position tracking of
robot manipulators will be developed. Given a bounded
desired trajectory qd with at least bounded first and second
derivatives, the control problem consists in achieving that
the tracking error

e = q − qd , (2)

tends to zero asymptotically in the presence of external
perturbations. Define first

q̇r = q̇d −Λe (3)
s = q̇ − q̇r = ė+ Λe , (4)

where Λ ∈ Rn×n is a diagonal positive definite matrix.
Definition (4) is equivalent to the stable linear filter

ė = −Λe+ s , (5)

so that if s is bounded and tends to zero, so do e and ė.
Consider now the following control law based on [5]

τ = −Kv sign(s) |s|
λss

2

1 + µss
2︸ ︷︷ ︸

τ s

−Kp‖s‖s , (6)

where Kv,Kp,λs,µs ∈ Rn×n are diagonal positive defi-
nite matrices, and for i = 1, . . . , n the i-th element τsi of
τ s ∈ Rn is defined as

τsi = sign(si) |si|
λsis

2
i

1 + µsis
2
i ≡ sign(si)fsi(si) , (7)

with λsi and µsi the i-th element of λs and µs, respectively,
which satisfy

λsi
1 + µsi

= βsi > 1 . (8)

The following error dynamics for s can be computed by
substituting (6) into (1)

H(q)q̈ +C(q, q̇)q̇ +Dq̇ + g(q) = τ p − Kvτ s (9)
− Kp‖s‖s .

Define

τ a = − (H(q)q̈r +C(q, q̇)q̇r +Dq̇r + g(q)) , (10)

to rewrite (9) as

H(q)ṡ = −C(q, q̇)s−Ds+ τ p + τ a (11)
−Kvτ s −Kp‖s‖s .

Assumption 3.1: The external perturbation vector is
bounded, i. e. ‖τ p‖ ≤ pmax, ∀ t ≥ t0 and some pmax > 0.

Theorem 3.1: Consider the closed loop error dynam-
ics (11) generated by substituting the control law (6) into
the robot dynamics (1). If Assumption 3.1 is fulfilled and

kv > αmax · e
λmax(λs)

2e (12)

holds with αmax defined in (23) and with kv = λmin(Kv),
then

a) s, e and ė remain bounded for all t ≥ t0.
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b) s becomes zero in a time no larger than

Tmax = Ts1 + Ts2 (13)

=
λ

3
2

H

λ
1
2

h λmin (Kp)

+

√
λhλH(

kve
−λmax(λs)

2e − αmax

) ,

where Ts1 and Ts2 are defined in (35) and (41),
respectively. λh and λH are defined in Property 2.1.

c) e and ė → 0 as t→∞.

Proof:

The proof closely follows that of Theorem 2 in [5]. First
of all, consider fsi in (7) rewritten here for simplicity as

fsi(x) = |x|
λsix

2

1 + µsix
2
= e

(
λsix

2

1 + µsix
2 ln(|x|)

)
(14)

for x ∈ R. Note that it can be shown that fsi(x) = fsi(si)
is continuous at x = si = 0 with fsi(0) = 1, so that the
right-hand side of (7) is locally bounded [5]. The steps of
the proof are:

a) Consider the following positive definite function

Vs(t) =
1

λh
sTH(q)s , (15)

which satisfies

‖s‖2 ≤ Vs(t) ≤
λH
λh
‖s‖2 , (16)

with λh and λH defined in Property 2.1.

By using Property 2.2, the derivative of Vs = Vs(t)
along (11) can be shown to satisfy

V̇s =
2

λh
sTH(q)ṡ+

1

λh
sTḢ(q)s (17)

= − 2

λh
sTDs− 2

λh
sTKvτ s

− 2

λh
sTKp‖s‖s+

2

λh
sT(τ a + τ p) .

It is necessary to find a bound for τ a, but this can only
be made by carrying out a local stability analysis. In
fact, if V̇s ≤ 0 then from (16) one has

‖s‖2 ≤ Vs(t) ≤ λH
λh
‖s(t0)‖2 (18)

⇒ ‖s‖ ≤
√
λH
λh
‖s(t0)‖ = smax .

Since |si| ≤ ‖s‖ ≤ smax, then it is not difficult to
show that [11]

|ei(t)| ≤ |ei(t0)|+
1

λi
smax , (19)

where ei is the i-th element of e and λi is the i-th
element of Λ in (4). This means that as long as V̇s ≤ 0
a bound for e can be found as

‖e‖ ≤ emax . (20)

Note also that after (5) it holds

‖ė‖ ≤ λmax(Λ)‖e‖+ ‖s‖ (21)
≤ λmax(Λ)emax + smax = ėmax .

Next it will be shown that it is possible to set gains
to satisfy V̇s ≤ 0 by taking into account (18)-(21).
Note that s(t0) and e(t0) are not only known, but they
can even be set to zero if desired. Keeping in mind
the previous discussion, recall that by assumption one
has ‖q̇d‖ ≤ vmax and ‖q̈d‖ ≤ amax for some positive
constants vmax and amax, and consider that in view
of Properties 2.1, 2.3 and 2.4 it is possible to get the
following bounds

‖τ a‖ ≤ λH‖q̈r‖+ kc‖q̇‖‖q̇r‖+ λmax(D)‖q̇r‖+ kg

≤ λH(amax + λmax(Λ)ėmax) + kg (22)
+(kc(vmax + ėmax) + λmax(D)) ·
·(vmax + λmax(Λ)emax) = τamax ,

where (2) and (3) have been used. Then, by taking
Assumption 3.1 into account, one has

‖τ a‖+ ‖τ p‖ ≤ τamax + pmax = αmax . (23)

Now it is possible to rewrite (17) as

V̇s ≤ − 2

λh
sTKvτ s −

2λmin(Kp)

λh
‖s‖3

+
2

λh
αmax‖s‖

≤ − 2

λh
sTKvτ s −

2λmin(Kp)

λh
‖s‖3 (24)

+
2

λh
αmax(|s1|+ · · ·+ |sn|) .

According to (7) one has

− 2

λh
sTKvτ s +

2

λh
αmax

n∑
i=1

|si| = (25)

−
n∑
i=1

2kvi
λh

sisign(si) |si|
λsis

2
i

1 + µsis
2
i

+
2

λh
αmax

n∑
i=1

|si| ,

so that for i = 1, . . . , n one can analyze separately the
terms

−2kvi
λh

sisign(si) |si|
λsis

2
i

1 + µsis
2
i +

2

λh
αmax|si| . (26)
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For each and one of these terms, if |si| > 1 one has

−2kvi
λh
|si|

λsis
2
i

1 + µsis
2
i

+1

+
2

λh
αmax|si| ≤

−2(kvi − αmax)

λh
|si|βsi+1 ≤ 0 , (27)

where it has been taken advantage of the fact that |si| ≤

|si|
λsi

1 + µsi
+1

whenever |si| > 1, while from (8) it
holds

λsis
2
i

1 + µsis
2
i

+ 1 ≥ λsi
1 + µsi

+ 1 = βsi + 1 > 2 (28)

also for |si| > 1. Note that in view of (12) one has

(kvi − αmax) > 0 because αmax · e
λmax(λs)

2e > αmax

is always true.

On the other hand, if |si| ≤ 1 use for simplicity the
notation x = si to show that since |x| ≤ 1 and (1 +
µsix

2) ≥ 1, then

|x|
λsix

2

1 + µsix
2
≥ |x|λsix

2

(29)

holds and therefore (26) satisfies

−2kvi
λh

x sign(x) |x|
λsix

2

1 + µsix
2
+

2

λh
αmax|x| ≤(30)

−2kvi
λh
|x| |x|λsix

2

+
2

λh
αmax|x| .

It can be shown that the minimum value of |x|λsix
2

=

eλsix
2 ln(|x|) can take is given by e−

λsi
2e [5]. By taking

this into account, (30) satisfies

−2kvi
λh
|si| |si|

λsis
2
i

1 + µsis
2
i +

2

λh
αmax|si| ≤ (31)

− 2

λh

(
kvie

−λsi
2e − αmax

)
|si| ≤ 0 ,

where once again the last inequality holds in view
of (12). This means from (24) that

V̇s ≤ − 2

λh

(
sTKvτ s − αmax(|s1|+ · · ·+ |sn|)

)
︸ ︷︷ ︸

≤0

−2λmin(Kp)

λh
‖s‖3 ≤ 0 (32)

as long as (12) is satisfied. This concludes the first
part of the proof because s ∈ L∞ ⇒ e, ė ∈ L∞. Note
that the result can be considered semi-global since
Kv can be made arbitrarily large.

b) To show that s becomes zero in a finite time, assume
first that Vs(t0) > 1, which from (16) implies by raising
to the power 3

2 that

1 < V
3
2
s ≤

λ
3
2

H

λ
3
2

h

‖s‖3 ⇒ −‖s‖3 ≤ −
λ

3
2

h

λ
3
2

H

V
3
2
s , (33)

so that (32) satisfies

V̇s ≤ −2λmin(Kp)
λ

1
2

h

λ
3
2

H

V
3
2
s < 0 . (34)

According to the proof of Lemma 1 in [12], Vs(t0) > 1
becomes Vs(t) ≤ 1 from a fixed time

t ≥ t0 +
1

2λmin(Kp)
λ

1
2
h

λ
3
2
H

(
3
2 − 1

) = t0 + Ts1 . (35)

Once Vs(t) ≤ 1 the following can be deduced

from (16)

s2i ≤ ‖s‖2 ≤ Vs(t) ≤ 1 ⇒ |si| ≤ 1 (36)

for i = 1, . . . , n, so that from (31) one can get

− 2

λh

n∑
i=1

(
kvie

−λsi
2e − αmax

)
|si| ≤ (37)

− 2

λh

(
kve

−
λmax(λs)

2e − αmax

)
n∑

i=1

|si| ≤ 0 .

Since
n∑
i=1

|si| = |s1| + · · · + |sn| ≥ ‖s‖, then one has

from (32) and (37)

V̇s ≤ −
2

λh

(
kve

−
λmax(λs)

2e − αmax

)
‖s‖ ≤ 0 . (38)

Now, from (16) one has

V
1
2
s ≤

√
λH
λh
‖s‖ ⇒ −‖s‖ ≤ −

√
λh
λH

V
1
2
s , (39)

which means that (38) satisfies

V̇s ≤ −2 1√
λhλH

(
kve

−
λmax(λs)

2e − αmax

)
V

1
2

s

≤ 0 . (40)

The proof of Lemma 1 in [12] can be used again to
show that once Vs(t0 + Ts1) ≤ 1 then Vs(t) ≡ 0 in a
time Ts2 no larger than

Ts2 =

√
λhλH(

kve
−
λmax(λs)

2e − αmax

) . (41)

Tmax in (13) is gotten by considering (35) and (41).

c) Since it has been proven that s is bounded and tends
to zero, then from (5) it can trivially be shown that
e, ė→ 0. This concludes the proof. 4
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IV. SIMULATION RESULTS

To test the control law (6) proposed in the previous
section, the simplified version of the robot model CRS-
A465 described in [13], [14] is employed. This manipulator
has three degrees of freedom and the interested reader can
see the references for details. The gains for the controller
given by equations (3)-(4) and (6)-(7) have been chosen
as Λ = 10I , Kv = diag{700 200 200}, Kp = I ,
λs1 = λs2 = λs3 = 2 and µs1 = µs2 = µs3 = 0.1. To have
a point of comparison, the algorithm introduced in [3] has
also been implemented since it owns the same properties
as the current proposal. The interested reader is referred
to this work for details, while the parameters employed
for simulation are the following1: δ = 0.3, γ1 = 0.0873,
γ2 = 4.6129, α = 0.7, r = 1.7, β = 1.9, C1 = 3I ,
C2 = 3I , K1 = 5I , K2 = 5I , ν1 = 2.5, ν2 = 0.5,
a0 = 12, a1 = 2.2, H0 = 2

γ1 + γ2
I , C0(q, q̇) = C(q, q̇),

D0 =D, g0(q) = g(q).
One simulation has been carried out, where the desired

trajectories have been chosen to be the sum of six different
sinusoidal signals for each joint shown in Figure 1, while
the external perturbations shown in Figure 3. From Figure 1
it can be appreciated that both schemes have a similar
performance. However, to have a better insight, Figure 2
shows the tracking errors. Here it can be recognized that
the proposed scheme can deal better with the external
perturbation despite it does not employ any knowledge of the
robot model, on the contrary to the scheme in [3]. This better
performance is confirmed in Table I, where the Position
tracking RMSE’s of each joint are shown. Finally, Figure 4
shows the controller outputs where it can be appreciated that
the proposed scheme delivers lower values, which represents
another advantage. Furthermore, no chattering arises in
neither case. Note that only a representative window is
shown to be able to appreciate the behavior of the input
torques.

TABLE I
POSITION TRACKING RMSE.

e[◦] Control (6) Control in [3]
e1 0.7582 1.0513
e2 0.6337 0.9398
e3 0.7118 0.9436

V. CONCLUSIONS

Some of the main tasks for robot manipulators can be
described in a general framework as position and velocity
trajectories tracking. In particular, Sliding Mode Control
(SMC) techniques allow to achieve (theoretically) exact
position tracking despite a poor knowledge of the robot
model and in the presence of external perturbations. SMC
techniques can yield to zero the tracking errors in finite (but
not necessarily tunable) time. In the last years fixed time

1The gains were chosen as given in the reference.
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stability has become an area of great interest, where one of
the main problems to be solved is the possible appearance
of singularities. The current contribution introduces a singu-
larity free fixed time SMC scheme for position and velocity
tracking of robot manipulators in the presence of external
perturbations. The control scheme avoids singularities by
using linear sliding mode (LSM) surfaces, which are yielded
to zero in a predefined fixed time. Although the employment
of LSM allows to avoid singularities, the tracking errors
tend to zero only asymptotically once the sliding surface is
reached and it remains as future work to design a controller
which guarantees that tracking errors do become zero in a
finite time as well. Simulation results show that this does not
represent a big drawback since tracking errors tend to zero
even in the presence of external perturbations as foreseen in
theory. A comparison with a well-known scheme is carried
out to show some of the advantages of the new approach.
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