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Abstract— In this paper the exogenous control of gene reg-
ulatory networks is investigated through the semi-discretized
partial integro-differential equation (PIDE) describing the time-
evolution of the network’s probability density function. With an
appropriate finite volume method the semi-discretized system
is a mass-conservative linear compartmental model, and thus
it preserves most qualitative properties of the solution of
the PIDE, namely, it is nonnegative and mass conservative.
These advantages combined with the newly investigated mesh-
invariance of control allows us to efficiently determine the
reachability set. The possibilities of this framework are demon-
strated through an illustrative example from literature.

I. INTRODUCTION

Gene expression is one of the most fundamental biological
processes, where DNA information is realized to proteins
in living organisms. Gene regulatory networks (GRNs) are
complex mechanisms through which cells can process inter-
nal and external information (signals) [1].

The control of gene regulatory networks is an active
area of research in synthetic biology, where the design and
implementation of suitable controllers is needed to improve
the reliability and performance of synthetic gene circuits for
various applications [2]. One of the challenges in controlling
gene regulatory processes is the presence of molecular noise,
which is particularly relevant in bacteria, due to the low copy
number of the species involved. Two important advances in
control in synthetic biology over the last years are the anti-
thetic control by Briat et al [3] allowing perfect adaptation
in the context of noise, and the stabilization of the toggle
switch in E. coli by Lugagne et al [4]. A linear feedback
control algorithm is employed in both cases.

The dynamical model applied in this work is rooted in
[5], where the evolution of the probability density func-
tion of protein concentration is approximated with a partial
integro-differential equation (PIDE), derived from the master
equation. This model is able to capture the characteristic
random bursts of protein production as it has been observed
and described in the literature [6]. An important step in the
PIDE-based modeling of GRNs was [7], where the multi-
dimensional (also called generalized) Friedman model was
introduced, which is able to describe the dynamics of several
genes expressing different protein types. The numerical solu-
tion of such PIDEs is a difficult technical challenge for which
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a semi-Lagrangian computation framework was proposed in
[8]. It has been shown that such an approach is already
suitable for simulation based control [9], [10]. However,
an ODE-based description of the process is also preferred
both for dynamical analysis and controller design. Therefore,
a semi-discretization of the multidimensional PIDE model
was proposed in [11] resulting in a kinetic compartmental
description of the system in possibly time-varying linear
ODE form.

Based on the above mentioned results, the goals of this
paper are firstly to further develop the kinetic discretization
scheme in [11], and secondly to propose a control design
approach to reach a stationary protein distribution with
prescribed properties.

II. NOTATIONS AND BACKGROUND

In this section we briefly introduce multidimensional gene
regulatory networks and the relevant theory of compartmen-
tal and kinetic systems.

A. PIDE model for gene regulatory networks

The following short introduction is based on [5], [7],
[11]. We consider a gene regulatory network consisting of
n genes G = {DNA1, DNA2, . . . , DNAn} that express n
proteins X = {X1, X2, . . . , Xn} via the corresponding mes-
senger RNAs M = {mRNA1,mRNA2, . . . ,mRNAn}.
We follow the central dogma of molecular biology, which
asserts that the gene instructions are transcribed into mRNAs,
that are translated into proteins. The continuous number of
mRNA molecules and proteins are denoted by m,x ∈ Rn,
respectively.

The promoters corresponding to each gene are assumed
to switch between active and inactive states, denoted by
DNAi,on and DNAi,off, respectively. The transition is con-
trolled by a feedback mechanism of protein binding. In
general, this mechanism may require the binding of multiple
types of proteins besides the one expressed by the given
gene, and thus for the sake of generality, we assume that
any protein can repress or activate any gene in the network.
This mechanism is typically modeled by multivariate Hill
functions. We define the matrix H ∈ Zn×n, where Hij

represents the Hill coefficient of the cross-regulation. If
Hij is positive (respectively, negative), then Xj inhibits
(respectively, promotes) the expression of Xi.

The transcription of DNAi into mRNAi is assumed to
be a first order processes occurring with rate kim per unit
time and with transcriptional leakage ϵi ∈ (0, 1). Then the
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transcription can be written as

Ri
T (x) = kimci(x),

where ci : Rn
+ → [ϵi, 1] is an appropriate Hill function

depending on the feedback regulation. Finally, the translation
rate of protein Xi is defined as

Ri
X(mi) = kixmi.

The messenger RNA and protein degradation is assumed
to take the form

Gi
m(mi) = −γi

mmi Gi
X(x) = −γi

x(x)xi,

where γi
m > 0 and γi

x : Rn
+ 7→ R+. Following [7] it is

assumed that γi
m

γi
x(x)

≫ 1 in order to ensure the validity of
the subsequent model.

We use the standard exponential distribution to model
protein bursting; that is, the conditional probability of the
protein level jumping from yi > 0 to xi ≥ yi is

ωi(xi − yi) =
1

bi
exp

[
−xi − yi

bi

]
,

where bi =
ki
x

γi
m

.
With the above assumptions the probability density func-

tion (PDF) of the protein level, denoted by p(t,x), can be
modeled with the following PIDE:

∂p(t,x)

∂t
=

n∑
i=1

∂

∂xi

[
γi
x(x)xip(t,x)

]
+

n∑
i=1

kim

∫ xi

0

βi(xi − yi)ci(yi)p(t,yi) dyi ,

(1)

where yi = x + (yi − xi)ei and the βi functions have the
following form:

βi(x) = ωi(x)− δ(x),

where δ is the Dirac delta function. In [12] the authors show
the well-posedness of (1) in the generalized (mild) sense;
that is, for p0 ∈ L1(Rn) there exists a unique mild solution
p ∈ C

(
R+;L1(Rn)

)
with the following properties:

1) nonnegativity: if p0 is nonnegative, then so is the
solution p(t, .) for all t ≥ 0,

2) mass conservation:∫
Rn

+

p(t,x) dx =

∫
Rn

+

p0(x) dx .

In fact, if p0 ∈ C1,b(Rn
+) for some appropriate b > 0

(e.g., in one dimension b = b1), then there exists a unique
classical solution p ∈ C1

(
R+;L1(Rn

+)
)
. Note, that in the

probabilistic setting in applications we usually assume that
p0 is nonnegative and its integral is one.

B. Compartmental and kinetic systems

We briefly introduce compartmental systems based
on [11], [13]. Compartmental differential equations are
often used to model physical phenomena governed by
a conservation law, such as conservation of mass. A
compartment can store a certain amount of a material that
is kinetically homogeneous; that is, the entering material is
instantly mixed with that of the compartment. As long as
we can interpret the conservation law, a compartment can
even describe abstract quantities, such as probabilities in our
case. Nevertheless, we will usually refer to the amount of
the modeled quantity in the compartment as the mass in the
compartment, and to the conservation law as conservation
of mass.

Let us consider a system with m compartments and let qi
represent the mass in the ith compartment. In general, any
compartment can be connected to any other compartment and
to the environment in both directions. We denote with Fij the
flow from the compartment qj to the compartment qi, with
Ii the material inflow from the environment to compartment
qi and with F0i the material outflow from compartment qi to
the environment. We assume that there are no loops in the
system as they do not introduce additional dynamics in this
setting. Then the time-evolution of the system is given by
the following system of differential equations:

q̇i =
∑
j ̸=i

(−Fji + Fij) + Ii − F0i. (2)

We impose the following physical assumptions to the system:
1) for any i, j, t ≥ 0, i ̸= j we have that Fij ≥ 0, Ii ≥ 0

and F0i ≥ 0,
2) for any i, t ≥ 0 if qi(t) = 0, then F0i = Fji = 0 for

each j.
These properties ensure the invariance of the nonnegative
orthant; that is, assuming a nonnegative initial condition,
our solution is guaranteed to be nonnegative. In general, the
above functions can depend on the mass of any compartment
and possibly on t as well. Then it can be shown that if each
Fij and F0i is at least Ck, then we can rewrite (2) as

q̇i = −
(
f0i +

∑
j ̸=i

fji

)
qi +

∑
j ̸=i

fijqj + Ii, (3)

where Fij = fijqj and the so-called fractional transfer
coefficients fij are at least Ck−1. We can then naturally
rewrite (3) in matrix form as

q̇ = fq + I.

If each fractional transfer coefficient fij only depends on
qj , then the system is called a donor controlled system.
If each coefficient is constant, then the system is called a
linear donor controlled system.

Linear donor controlled systems can naturally be repre-
sented as chemical reaction networks, or kinetic systems. For
a brief introduction, we refer to [14]. For each compartment
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with index i, qi represents the mass (or alternatively, the
concentration) of the one-specie complex Qi, and for each
transition from compartment i to j, we assign the reaction
Qi → Qj . Using this construction, we can not only rely
on the comprehensive theory of compartmental models but
on that of kinetic systems as well. While most qualitative
properties of linear donor controlled systems we consider
can be derived from both modeling approaches, a notable
piece of additional information in chemical reaction network
theory is the stability analysis using a logarithmic Lyapunov
function, discussed in more detail in III-B.

III. MODIFIED KINETIC FINITE VOLUME METHOD

In this section we introduce an extended version of the ki-
netic finite volume method described in [11], modified to be
suitable for control design. We wish to employ an exogenous
control on the population level through appropriate inducers
affecting protein bursts; that is, we assume that ci(x) =
ci(x, I) in (1), where I denotes the concentration vector of
the inducers. In order to adhere certain biological constraints
we assume that the range of ci remains in ∈ (0, 1). For the
sake of simplicity we assume that I ∈ Rn and note that we
set Ii ≡ 0 if we do not control the production of protein Pi.

Note that in practical applications we may assume that
there can only be a finite number of proteins of each kind.
This consideration is naturally backed by the fact that the
solution of (1) is integrable so that p(t,x) vanishes as
∥x∥Rn → ∞, for any t ≥ 0. Thus, we discretize over
the finite domain Ω =×n

i=1
(0, Li) for appropriately large

Li > 0 values. According to these considerations we also
assume that

∫
Ω
p0(x) dx = 1.

For each i = 1, 2, . . . , n we divide the interval (0, Li) into
Ni equal subintervals, and thus define the positive step sizes
hi =

Li

Ni
. Let

Kα =
n×

i=1

Kαi
(hi) =

n×
i=1

[
(αi − 1)hi, αihi

]
,

where α ∈ Nn is a multi-index and
⋃

α Kα = Ω. Let us
note that each cell has the same size and define h = |Kα| =∏n

i=1 hi. For each cell Kα we introduce the function pα(t)
assumed to approximate the cell average as

pα(t) ≈
1

h

∫
Kα

p(t,y) dy .

Let xα = [x1
α x2

α . . . xn
α]

⊤ be the midpoint (w.r.t. each
dimension) of Kα and x

i± 1
2

α = xi
α± hi

2 ; that is, the variables

x
i± 1

2
α correspond to the coordinates of the boundaries of Kα.

Similarly to a classical finite volume setting, we introduce
coefficients as cell averages of the coefficient functions γi

x

as

γi
α =

1

h

∫
Kα

γi
x(y) dy ,

We slightly modify this in the case of the functions ci
and instead use their midpoint values so that they are not

integrated; that is, we set ciα(I) = ci(xα, I). Hence, for
i = 1, 2, . . . , n we compute the coefficients

biα,αi
=

1

hi/2

∫
[(i−1)hi,(i−1/2)hi]

βi(x
i
α − y) dy

=
1

hi/2

∫
[xi

α−hi/2,xi
α]

βi(x
i
α − y) dy ,

biα,j =
1

hi

∫
Kj(hi)

βi(x
i
α − y) dy , j = 1, 2, . . . , αi − 1.

The derivative terms describing protein degradation are ap-
proximated with difference quotients of the form

∂

∂xi

[
γi
x(x)xip(t,x)

]∣∣∣∣∣
Kα

≈ 1

hi

(
γi
α+eix

i+ 1
2

α pα+ei(t)− γi
αx

i− 1
2

α pα(t)
)
,

and the integrals corresponding to protein bursts in (1) are
approximated with weighted sums, yielding the system

ṗα(t) =

n∑
i=1

1

hi

(
γi
α+eix

i+ 1
2

α pα+ei(t)− γi
αx

i− 1
2

α pα(t)
)

+

n∑
i=1

kim

αi∑
j=1

hi
α,jb

i
α,jc

i
αi,j

(I)pαi,j (t);

pα(0) =
1

h

∫
Kα

p0(y) dy ,

(4)

where αi,j = α+ (j − αi)ei and

hi
α,j =

{
hi/2, j = αi,

hi, j ̸= αi.

A calculation identical to that of [11] shows the system (4)
is a mass-conservative linear compartmental/kinetic system
with a strongly connected compartmental structure even if
the ciα variables are just point-values and not cell averages.
This shows via standard results on compartmental systems
that if I is constant, then there exists a unique positive
equilibrium that attracts every admissible initial value [15,
Theorem 6]. Note that while the bursts and degradations
inherently define some “spatial” structure between the pα
variables, it might be more useful to think of the truncated
semi-discretized model as a flattened N :=

∏n
i=1 Ni-

dimensional system of the form

ṗ(t) = Γ(I)p(t). (5)

Here Γ(I) corresponds to a compartmental strongly con-
nected graph structure; that is, according to Section II-B it
has nonnegative off-diagonal elements and zero column sums
and it describes a trap containing all compartments. Let us
collect the degradation coefficients γi

α, burst coefficients biα,j
and controlled coefficients ciα(I) into the matrices G,B and
C(I), respectively. Then (5) can be rewritten as

ṗ(t) = Gp(t) +
(
B ⊙ C(I)

)
p(t),

where ⊙ denotes the Hadamard (or elementwise) product.
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A. Explicit equilibrium computation for constant control

When we seek the equilibrium with a constant I control
value we wish to compute p∗ ∈ RN such that Γp∗ = 0
and h

∑N
j=1 p

∗
j = 1, where Γ = Γ(I). Following [11]

we know that such a vector uniquely exists and is strictly
positive. Of course one could simulate (5) for an appro-
priately large final time using some numerical solver to
approximate p∗. However, an essential observation of [11]
is that by incorporating the mass-conservation into Γ we
may approximate the equilibrium by solving a system of
linear equations. In particular, it follows from compartmental
theory that rankΓ = N − 1, but replacing the first (or in
fact, any) row of Γ with h1⊤N ∈ RN yields a matrix with
full rank. Let Γ̃ denote this modified matrix. To compute the
equilibrium we need to solve Γ̃p∗ = e1, where e1 ∈ RN

denotes the first unit vector.

B. Asymptotic behaviour and performance of control

An important observation is that the coefficients of the
system converge given that the controller converges to some
I∗ ∈ Rn, and thus the steady-state (and the steady-state
error) is uniquely determined by the limit of the controller
dynamics. This shows that the exact control trajectory may
be omitted and we can apply a constant control to yield
the same closed-loop equilibrium. Of course it might be
important to compute control trajectories that are optimal in
some sense, for example w.r.t. convergence speed. As shown
in [11] there is an entropy-like Lyapunov function for the
system that simplifies to the well-known Kullback-Leibler
divergence in a mass-conservative setting, given as follows

V (p, p∗) =

N∑
j=1

(
pj log

pj
p∗j

+ p∗j − pj

)

=

N∑
j=1

pj log
pj
p∗j

= DKL(p∥p∗).

We note that while the Kullback-Leibler divergence is not a
metric as it is not symmetric and fails to satisfy the triangle
inequality, it is a nonnegative measure and it is often used
to estimate the difference of discrete probability distributions
[16].

C. Admissible meshes and mesh-independent control

As described before, the mesh size directly determines
the number of variables of the system (5). We consider an
explicit Euler scheme on (4) and denote the approximation
of pα(tk) as pkα. Clearly we have that

∑
α pk+1

α =
∑

α pkα
for each k ≥ 0 since (4) is governed by a linear conservation
law. An elementary computation shows that if the step
sizes satisfy the following Courant-Friedrichs-Lewy (CFL)
condition, then pkα ≥ 0 holds for any k ≥ 0 and α:

∆t

n∑
i=1

max
x∈Ω
I∈Rn

(
1

hi
γi
x(x)xi + kim exp

(
− hi

2bi

)
ci(x, I)

)
≤ 1.

We note that the ci functions are usually Hill-type satu-
rating functions with the property ci(x, I) ≤ 1 and that

exp
(
− hi

2bi

)
≤ 1, thus the second term is bounded by

kim. This shows that the degradation terms are often more
dominant, hence in applications of biological relevance the
CFL condition can be estimated as

∆t

n∑
i=1

1

hi
max
x∈Ω

γi
x(x)xi ≤ 1.

Of course we can normally set larger ∆t values when
applying a more sophisticated time discretization method.
However, this demonstrates a further benefit of the FVM-
based population level control, since our investigation shows
that usually one can resort to very coarse grids leading
to smaller systems and larger admissible temporal steps.
The computed control trajectory (or the steady-state constant
control) can then be applied to a system with a finer mesh.

D. Reachability

A crucial question is what kinds of probability distribu-
tions can be reached from an initial one. The considered
control structure is strictly positive and bounded from below
and above, thus it is anticipated that we cannot reach
arbitrarily low and high expected values. However, relying
on the above observations we can estimate the reachability
set of the system numerically by computing the considered
statistical measures of the unique equilibrium for a simple
scan of control configurations. The continuous dependence
on parameters (see, [17, Chapter V]) shows that the reach-
ability set should be a connected set in Rn, thus we could
even interpolate control values based on an appropriately fine
scan.

E. PI control terms

A natural design principle of PID controllers can be to
use as few control terms as possible. In many applications
a well tuned proportional controller may suffice. This is not
the case for semi-discretized gene regulatory networks as
the above discussions show that in general we need nonzero
steady-state control; that is, the steady-state error of the
controlled system will be proportional to the required control
value. While integral control has proven to be reliable for
biomolecular networks [3], we found that its performance
can be inferior to proportional-integral control. In certain
cases introducing a derivative term could further increase
the convergence speed or reduce overshoots and oscillations,
but it does not seem to be necessary.

IV. NUMERICAL EXPERIMENT: GENETIC TOGGLE SWITCH

We consider the classical toggle switch configuration
consisting of two repressible promoters in a mutually in-
hibitory network. We introduce two corresponding inducers,
each affecting one of the promoters. Our goal is to shift
the expected values of the stationary probability density to
some prescribed values. Figure 1 shows the structure of the
controlled gene regulatory network.
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G1 G2

P1

P2

I1

I2

express inhibit

expressinhibit

Fig. 1: Structure of the gene toggle switch.

Following [4] we introduce the parameters θIi , θXi
and µIi

associated with the inducers’ effects in the protein regulation.
The burst coefficients are given by the following Hill-type
functions

c1(x, I) = c1(x2, I1) =
K12(I1)

H + ϵ1x
H
2

K12(I1)H + xH
2

,

c2(x, I) = c2(x1, I2) =
K21(I2)

H + ϵ2x
H
1

K21(I2)H + xH
1

,

with

K12(I1) = θX2

(
1 +

(
I1
θI1

)µI1

)
,

K21(I2) = θX1

(
1 +

(
I2
θI2

)µI2

)
.

We consider H = 4 and Table I shows the rest of the
parameters of the system.

γi
x kim bi ϵi θXi

θIi µIi

1 12 6 0.1 31.94 11.65 2

1 7 78
7 0.1 30 9.06× 10−2 2

TABLE I: PIDE parameters of the gene toggle switch.

First, we compute the equilibrium of the open-loop system
(that is, when I1 = I2 = 0) and then apply a PI controller
to shape the protein density function. We consider a simple
population level controller based on the expected values of
the number of proteins. The desired and actual expected
values are denoted as m∗

1, m∗
2 and m1(t), m2(t), respec-

tively. We note, that we may use other statistical measures,
for example the modes of the marginal probability density
functions as in [10]. Defining the errors e1(t) = m∗

1−m1(t)
and e2(t) = m∗

2 −m2(t) the dynamics of the PI controller
is of the form

I1(t) = I01 +K1
P e1(t) +K1

I

∫ t

0

e1(s) ds ,

I2(t) = I02 +K2
P e2(t) +K2

I

∫ t

0

e2(s) ds ,

where we assume based on biological constraints that I1 ∈
[0, 50] and I2 ∈ [0, 1]. The initial values are set as I01 = 20,

I12 = 0.25 and the feedback gains, based on [4], [10], as
K1

P = 60, K1
I = 20, K2

P = 2.5 and K2
I = 6.94 · 10−1. We

note that for a new model these values could be obtained
through the linearization of a coarse discretization. Figure 2a
shows the open-loop equilibrium, while Figures 2b and 2c
show the closed-loop equilibrium for m∗

1 = 41 and m∗
2 = 55

on a 300 × 300 and a 50 × 50 mesh, respectively. Table II
shows the performance of the FVM with an explicit Euler
discretization on different mesh-sizes with the same CFL
ratio.

50× 50 100× 100 200× 200 300× 300

0.2087 s 2.4426 s 20.7634 s 90.4794 s

TABLE II: Average runtime of 100 simulations,
performed on a computer with Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz and 16 GB of RAM in
MATLAB R2022b.

Figure 3 shows the performance of the PI control and
the constant control measured as the time-evolution of the
Kullback-Leibler divergence of the state and the equilibrium.
While in this case the PI control outperforms the constant
control, it is clear that the monotonicity cannot be guaran-
teed, while in a constant control setting DKL(.∥p∗) is known
to be a Lyapunov function, thus it is strictly decreasing.
We emphasize that the control is based on the error of the
expected values, not on the Kullback-Leibler divergence.

Fig. 3: Time-evolution of the Kullback-Leibler divergence of
the PI control and the constant control.

Figure 4 shows the estimated reachability set of the system
discretized on a 50 × 50 mesh. For 200 evenly spaced
control values I1 ∈ [0, 50] and I2 ∈ [0, 1] we compute
and plot the expected values of the protein molecules. Each
point has color represented with an RGB triplet, where the
green channel is constant and the red and blue channels
correspond to I1 and I2, respectively. The black polygon
in the background is the filled boundary polygon of the
computed points.

V. CONCLUSIONS

We introduced a modified finite volume method for the
semi-discretization of the PIDE model of gene regulatory
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(a) Open-loop system on 300× 300 mesh. (b) Closed-loop system on 300× 300 mesh. (c) Closed-loop system on 50× 50 mesh.

Fig. 2: PI control of the genetic toggle switch on various mesh sizes with prescribed expected values m∗
1 = 41 and m∗

2 = 55.

Fig. 4: Empirical reachability set computed on a mesh of
size 50 × 50 for 200 equidistant control values I1 ∈ [0, 50]
and I2 ∈ [0, 1].

networks that is suitable for population level control based
on certain statistical measures. We computed a CFL con-
dition for admissible meshes and made crucial observations
regarding the system, such as the possibility of applying con-
stant controlmeasuring control performance using Kullback-
Leibler divergence and mesh-independent control. These
facts allow us to efficiently estimate the reachability of the
system. The results were demonstrated through a PI control
of the classical gene toggle switch. While the feedback
gains were set manually the kinetic semi-discretization can
be used to algorithmically tune a PI(D) controller through
linearization.
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