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Abstract— This paper deals with a new LMI-based observer
design method for a class of nonlinear systems. Novel matrix
multipliers are proposed to improve the feasibility of the LMI
conditions existing in the literature. Two design procedures are
proposed and both of them exploit a more general form of
the matrix multiplier compared to the existing ones. The first
method is based on the use of the standard Young relation
jointly with a specific multiplier matrix, while the second one
uses the LPV-based approach combined with a convenient
Young inequality. The proposed LMIs contain additional num-
bers of decision variables as compared to the methods proposed
in the literature, which add extra degrees of freedom thus
improving the LMI feasibility. This is due to the use of a
reformulated Lipschitz property and new matrix multipliers.
Furthermore, the effectiveness of the proposed methodologies
is highlighted through numerical comparisons.

Index Terms— LMI-based nonlinear observer design, Lips-
chitz systems, H∞ criterion.

I. INTRODUCTION

The topic of state estimation for dynamical systems has
become a centre of research during the last few decades. This
is due to the fact that knowing the current state of the system
is critical in many applications. Such real-time information
is used for monitoring, decision-making, and controlling
the systems. Installing sensors on physical systems is one
of the methods used to capture real-time measurements.
Since the quantity and quality of sensors are frequently
limited in practice due to cost and physical constraints, state
estimation tools play an important role in a wide range of
applications [1], [2], [3].

State estimation approaches for linear systems have been
extensively studied and proven to be quite reliable. The
Kalman filter [4] and the Luenberger observer [5] were the
first state estimation techniques designed for linear systems.
In contrast to linear systems, designing observers for nonlin-
ear systems remains a difficult task. As a result, a substantial
amount of research has been conducted in this domain,
and several methods for each type of system have been
developed. Among these techniques, linear matrix inequality
(LMI)-based methodologies have gained a lot of attention,
and several outcomes are published in [1], [6] and [7].

Various LMI-based observer approaches for the nonlinear
Lipschitz system have been presented in the literature. Some
of these approaches depended on S-Procedure lemma [8],
Riccati equations [9], and Young inequality [10]. Though
each method provides a conservative LMI condition, there is
scope for improvement. The motivation of the article is to
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develop an LMI-based H∞ nonlinear observer with a matrix
multiplier, which is inspired by [6], [11] and [12]. Further,
the proposed approach is combined with the well-known
LPV approach to deduce a less conservative LMI condition.
The use of such a matrix multiplier adds extra decision
variables and enhances an LMI condition from a feasibility
point of view. Furthermore, a numerical example is used to
demonstrate the efficiency and superiority of the proposed
LMI techniques. To verify the observer performance, the
proposed observer is implemented on the same example in
MATLAB/Simulink.

The organisation of this letter is outlined as follows:
Some preliminaries and background results required
for nonlinear observer design are given in Section II.
Further, Section III contains the system description and the
problem formulation. The main contributions related to the
development of the LMI conditions are illustrated in Section
IV. The effectiveness of the new LMI conditions and the
observer performance is shown in Section V. In Section VI,
some conclusions are included.

Notation: Throughout the article, the following notations
are used: ||e|| and ||e||L2 describe the euclidean norm and the
L2 norm of a vector e, respectively. Repeated blocks within
a symmetric matrix are represented by (⋆). The transpose
of matrix A is expressed as A⊤. For a matrix A ∈ Rn×n,
A > 0 (A < 0) indicates that A is a positive definite matrix (a
negative definite matrix). Similarly, a positive semi-definite
matrix (a negative semi-definite matrix) is given by A ≥
0 (A ≤ 0). A = block-diag(A1, . . . ,An) is a block-diagonal
matrix having elements A1, . . . ,An in the diagonal. I denote

an identity matrix. es(i) = (0, . . . ,0,
ith︷︸︸︷
1 ,0, . . . ,0︸ ︷︷ ︸

s components

)⊤ ∈ Rs,

s ≥ 1 is a vector of the canonical basis of Rs. The term
x0 signifies the initial values of x(t) at t = 0. λmin(A) and
λmax(A) are minimum and maximum eigenvalues of matrix
A.

II. PRELIMINARIES

This section contains the mathematical tools and back-
ground results which will be needed in the development of
the main results.

Definition 1 ([6]): Let us consider the following two vec-
tors:

a =
(
a1 . . . an

)⊤
,

b =
(
b1 . . . bn

)⊤
,
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Then, for all i = 0, . . . ,n, an auxiliary vector abi ∈ Rn

corresponding to a and b can be defined as:

abi =


(

b1 . . . bi ai+1 . . . an

)⊤
, for i = 1, . . . ,n

a, for i = 0.
(1)

Lemma 1 ([6]): Let ψ :Rn →Rn be a nonlinear function.
Then, the following two statements are equivalent:

• ψ is globally Lipschitz with respect to its argument, i.e.,

||ψ(X)−ψ(Y )|| ≤ ψψ ||X −Y ||, ∀X ,Y ∈ Rn (2)

• For all, i, j = 1, . . . ,n, there exist functions ψi j : Rn ×
Rn → R, and constants ψi jmin and ψi jmax such that
∀X , Y ∈ Rn,

ψ(X)−ψ(Y ) =
n

∑
i=1

n

∑
j=1

ψi jHi j(X −Y ), (3)

where Hi j = en(i)e⊤n ( j), and ψi j ≜ ψi j(X
Yi, j−1
i ,X

Yi, j
i ).

The functions ψi j(.) are globally bounded as follows:

ψi jmin ≤ ψi j ≤ ψi jmax . (4)
Lemma 2 ([6]): For any two vectors X ,Y ∈ Rn and a

matrix Z = Z⊤ > 0 ∈ Rn×n, the following matrix inequality
holds:

X⊤Y +Y⊤X ≤ X⊤Z−1X +Y⊤ZY. (5)

The authors of [6] proposed the subsequent new variant of
Young inequality (5):

X⊤Y +Y⊤X ≤ 1
2
(X +ZY )⊤Z−1(X +ZY ). (6)

Inequality (5) is used in various control problems with
Z = εI,ε > 0. However, in this paper, both inequalities (5)
and (6) are used with a new form of Z:

Z =


Z1 Za2 . . . Zan

⋆ Z2 . . . Zan

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zn

 , (7)

where Zi = Z⊤
i > 0 ∈ Rn̄×n̄ and Zai = Z⊤

ai
≥ 0 ∈ Rn̄×n̄, ∀ i ∈

{1, . . . ,n}.
Lemma 3 ([12]): Let us define Ψa and Ψb as follows:

Ψ
⊤
a =

[
a1In a2In . . . anIn

]
, (8)

Ψ
⊤
b =

[
b1In b2In . . . bnIn

]
, (9)

where 0 ≤ ai ≤ bi, ∀ i ∈ {1, . . . ,n}. Then, the following
inequality holds:

Ψ
⊤
a ZΨa ≤ Ψ

⊤
b ZΨb, (10)

for any matrix Z = Z⊤ > 0 ∈Rn×n, which has same structure
as in (7).
The inequality (10) will be very useful in LMI formulation.

III. PROBLEM FORMULATION

The class of nonlinear systems with nonlinear outputs is
described by

ẋ = Ax+G f (x)+Bu+Eω,

y =Cx+Fg(x)+Dω,
(11)

where x ∈ Rn, y ∈ Rp, u ∈ Rs are state vectors, output
measurements, and inputs of the system, respectively. ω ∈
Rq represents the L2 bounded noise/disturbance present in
the system dynamics and outputs. A ∈ Rn×n,B ∈ Rn×s,G ∈
Rn×m,E ∈ Rn×q,C ∈ Rp×n,D ∈ Rp×q,F ∈ Rp×r are known
constant matrices. Both nonlinear functions f (.) : Rn → Rm

and g(.) :Rn →Rr are assumed to be globally Lipschitz. The
detailed form of f (x) and g(x) are as follows:

f (x) =

 f1(

θi = Hix︷︸︸︷
H1x )
...

fm(θm)

 , g(x) =

g1(

Λi = Gix︷︸︸︷
G1x )
...

gr(Λr)

 , (12)

where Hi ∈ Rn̄×n ∀i ∈ {1, . . . ,m} and Gi ∈ R p̄×n ∀i ∈
{1, . . . ,r}.

Now, Let us consider the following Luenberger observer
form:

˙̂x = Ax̂+G f (x̂)+Bu+L(y− ŷ),

ŷ =Cx̂+Fg(x̂),
(13)

where x̂, ŷ denote estimated states and observer outputs,
respectively. L ∈ Rn×p is the observer gain matrix. The
estimation error of the observer is defined as x̃ = x − x̂.
From (11) and (13), the estimation error dynamic is given
by

˙̃x = (A−LC)︸ ︷︷ ︸
A

x̃+G f̃ (x, x̂)−LFg̃(x, x̂)+(E −LD)︸ ︷︷ ︸
E

ω, (14)

where f̃ (x, x̂) = f (x)− f (x̂) and g̃(x, x̂) = g(x)− g(x̂). The
objective is to compute the observer gain L such that

1) When ω = 0, the estimation error dynamic (14) is
converging towards zero at t → ∞.

2) When ω ̸= 0, the estimation error dynamic (14) fulfills
the H∞ criterion [13]:

||x̃||Ln
2
≤
√

µ||ω||2Lq
2
+ν ||x̃0||2, (15)

where µ > 0. The term
√

µ indicates the disturbance
attenuation level, and ν > 0 is to be estimated.

Since f (x) and g(x) are globally Lipschitz, then from
Lemma 1, there exist functions fi j : Rn̄ ×Rn̄ → R, gi j :
R p̄ ×R p̄ → R, and known constants fai j , fbi j , gai j and gbi j ,
such that

f̃ (x, x̂) =
m,n̄

∑
i, j=1

fi jHi jHix̃, and g̃(x, x̂) =
r,p̄

∑
i, j=1

gi jGi jGix̃, (16)

where fi j ≜ fi j(θ
θ̂i, j−1
i ,θ

θ̂i, j
i ) and gi j ≜ gi j(Λi

Λ̂i, j−1 ,Λi
Λ̂i, j).

The functions fi j, gi j hold: fai j ≤ fi j ≤ fbi j ; gai j ≤ gi j ≤ gbi j .
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Without loss of generality, let us assume that fai j = 0 and
gai j = 0, i.e.,

0 ≤ fi j ≤ fbi j , (17)

0 ≤ gi j ≤ gbi j . (18)

From (16), the error dynamic (14) becomes:

˙̃x = Ax̃+
m,n̄

∑
i, j=1

fi jGHi jHix̃−
r,p̄

∑
i, j=1

gi jLFGi jGix̃+Eω. (19)

Remark 1: In various practical applications, it is possible
to have fai j , gai j ̸= 0. In such cases, (19) is rewritten as:

˙̃x =
(
A+

m,n̄

∑
i, j=1

fai j GHi jHi −
r,p̄

∑
i, j=1

gai j LFGi jGi

)
x̃

+
m,n̄

∑
i, j=1

f̃i jGHi jHix̃−
r,p̄

∑
i, j=1

g̃i jLFGi jGix̃+Eω,

(20)

where f̃i j = fi j − fai j , and g̃i j = gi j − gai j . For the error
dynamics (20), f̃i j and g̃i j fullfil (17) and (18), respectively.

Let us define a Lyapunov function to evaluate H∞ stability
of the error dynamics (19):

V (x̃) = x̃⊤Px̃, where P = P⊤ > 0.

By computing V̇ (x̃) along the trajectories of (19), we get

V̇ (x̃) = x̃⊤(A⊤P+PA)x̃+ x̃⊤(PE)ω +ω
⊤(E⊤P)x̃+

x̃⊤
[( m,n̄

∑
i, j=1

fi jPGHi jHi

)
+

(
m,n̄

∑
i, j=1

fi jPGHi jHi

)⊤]
x̃−

x̃⊤
[( r,p̄

∑
i, j=1

gi jPLFGi jGi

)
+

(
r,p̄

∑
i, j=1

gi jPLFGi jGi

)⊤]
x̃.

From [6], the H∞ criterion (15) is satisfied if the following
inequality holds:

W ≜ V̇ (x̃)+ ||x̃||2 −µ||ω||2 ≤ 0. (21)

Remark 2: At ω = 0, inequality (21) becomes: V̇ (x̃)+
||x̃||2 ≤ 0, and it yields the exponential stability condition
V̇ (x̃)≤−σV (x̃), where σ = 1

λmax(P)
> 0.

Then,

W =

[
x̃
ω

]⊤ [A⊤P+PA+ In PE
E⊤P −µIq

][
x̃
ω

]
+

[
x̃
ω

]⊤[ m,n̄

∑
i, j=1

([
(PGHi j)

0

][
fi jHi 0

]
+
[

fi jHi 0
]⊤ [(PGHi j)

0

]⊤)][ x̃
ω

]

+

[
x̃
ω

]⊤[ r,p̄

∑
i, j=1

([
(−PLFGi j)

0

][
gi jGi 0

]
+
[
gi jGi 0

]⊤ [(−PLFGi j)
0

]⊤)][ x̃
ω

]
.

(22)

It follows that W ≤ 0 if the following inequality is true:

L1 +N1 +N2 ≤ 0, (23)

where

L1 =

[
A⊤P+PA−R⊤C−C⊤R+ In PE −R⊤D

(⋆) −µIq

]
, (24)

N1 =
m,n̄

∑
i, j=1

([
(PGHi j)

0

]
︸ ︷︷ ︸

U⊤
i j

fi j

Hi︷ ︸︸ ︷[
Hi 0

]︸ ︷︷ ︸
Vi j

+V⊤
i jUi j

)
, (25)

N2 =
r,p̄

∑
i, j=1

([
(−R⊤FGi j)

0

]
︸ ︷︷ ︸

M⊤
i j

gi j

Gi︷ ︸︸ ︷[
Gi 0

]︸ ︷︷ ︸
Ni j

+N⊤
i jMi j

)
, (26)

and R = L⊤P.
Various LMI-based approaches have been developed in

the literature [6], [7], [3], where each approach provides
improved LMI conditions by using different mathematical
tools. Despite advances in this area of LMI relaxations, the
resulting LMIs remain conservative, then more enhancements
are possible. In the sequel, two novel LMI techniques will
be proposed. To this end, we exploit both of Lemma 2 and
Lemma 3.

IV. NEW LMI-BASED DESIGN PROCEDURES

This section focuses on the development of two LMI-based
observer design techniques. First, Young inequality (5) and
Lemma 3 are used to formulate a new LMI. Further, the
variant of Young inequality (6) and the LPV-based technique
are combined to derive less conservative LMI conditions.

Over the last few decades, LMI-based methods have
been extensively studied to handle Lipschitz nonlinearities
([6], [7], [10]). The authors of [10] and [14] have used the
global form of nonlinearities (i.e., f̃ (x, x̂) = f (x)− f (x̂)).
However, the detailed form (12) was used in [6] and [7].
The use of nonlinearities in their detailed form enables
the inclusion of additional decision variables in the LMI
approach. In this paper, a new technique is proposed to
handle the nonlinearities as compared to the one given in [6].

A. First LMI-based method

Let us consider the following notations to avoid cumber-
some equations:

U=
[
U⊤

11 . . . U⊤
1n̄ . . . U⊤

m1 . . . U⊤
mn̄
]⊤

, (29)

V=
[
V⊤

11 . . . V⊤
1n̄ . . . V⊤

m1 . . . V⊤
mn̄
]⊤

, (30)

M=
[
M⊤

11 . . . M⊤
1p̄ . . . M⊤

r1 . . . M⊤
r p̄
]⊤

, (31)

N=
[
N⊤

11 . . . N⊤
1p̄ . . . N⊤

r1 . . . N⊤
r p̄
]⊤

, (32)

where Ui j, Vi j, Mi j and Ni j are defined in (25) and (26).
With these notations, N1 and N2 are rewritten as

N1 = U⊤V+V⊤U, (33)

N2 =M⊤N+N⊤M. (34)
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Z=


Z1 Zb2 . . . Zbm
⋆ Z2 . . . Zbm

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zm

 , where Zi =


Zi1 Zai2 . . . Zain̄
⋆ Zi2 . . . Zain̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zin̄

 ∀i ∈ {1, . . . ,m} and Zbi =


Zbi1 Zci2 . . . Zcin̄
⋆ Zbi2 . . . Zcin̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zbin̄

 ∀i ∈ {2, . . . ,m}, (27)

such that:
• Zi j = Z⊤

i j > 0 ∈ Rn̄×n̄ ∀ i ∈ {1, . . . ,m}& j ∈ {1, . . . , n̄}, Zai j = Z⊤
ai j

≥ 0 ∈ Rn̄×n̄ ∀i ∈ {1, . . . ,m}& j ∈ {1, . . . , n̄};
Zbi j = Z⊤

bi j
≥ 0 ∈ Rn̄×n̄∀i ∈ {2, . . . ,m}& j ∈ {1, . . . , n̄}; Zci j = Z⊤

ci j
≥ 0 ∈ Rn̄×n̄∀i ∈ {2, . . . ,m}& j ∈ {2, . . . , n̄} such that Z> 0.

S=


S1 Sb2 . . . Sbr
⋆ S2 . . . Sbr

⋆ ⋆
. . .

...
⋆ ⋆ . . . Sr

 , where Si =


Si1 Sai2 . . . Saip̄
⋆ Si2 . . . Saip̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Sip̄

 ∀i ∈ {1, . . . ,r} and Sbi =


Sbi1 Sci2 . . . Scip̄
⋆ Sbi2 . . . Scip̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Sbip̄

 ∀i ∈ {2, . . . ,r}, (28)

such that:
• Si j = S⊤i j > 0 ∈ Rp̄×p̄ ∀ i ∈ {1, . . . ,r}& j ∈ {1, . . . , p̄}, Sai j = S⊤ai j

≥ 0 ∈ R p̄×p̄ ∀i ∈ {1, . . . ,r}& j ∈ {1, . . . , p̄};
Sbi j = S⊤bi j

≥ 0 ∈ Rp̄×p̄∀i ∈ {2, . . . ,r}& j ∈ {1, . . . , p̄}; Sci j = S⊤ci j
≥ 0 ∈ R p̄×p̄∀i ∈ {2, . . . ,r}& j ∈ {2, . . . , p̄} so that S> 0.

From the form of Vi j and Ni j described in (25) and (26), V
and N can be written as:

V=
[
V⊤

11 . . . V⊤
1n̄ . . . V⊤

m1 . . . V⊤
mn̄
]⊤

=HΦ, (35)

N=
[
N⊤

11 . . . N⊤
1n̄ . . . N⊤

m1 . . . N⊤
mn̄
]⊤

=GΨ, (36)

where,

H= block-diag(H1, . . . ,H1︸ ︷︷ ︸
n̄ times

, . . . ,Hm, . . . ,Hm︸ ︷︷ ︸
n̄ times

), (37)

Φ
⊤ =

[
f11I . . . f1n̄I . . . fm1I . . . fmn̄I

]
, (38)

G= block-diag(G1, . . . ,G1︸ ︷︷ ︸
p̄ times

, . . . ,Gr, . . . ,Gr︸ ︷︷ ︸
p̄ times

), (39)

Ψ
⊤ =

[
g11I . . . g1p̄I . . . gr1I . . . grn̄I

]
. (40)

By implementing inequality (5) and using equations (35)
and (36) on (33) and (34), we obtain:

N1 ≤ U⊤Z−1U+Φ
⊤H⊤ZHΦ, (41)

N2 ≤M⊤S−1M+Ψ
⊤G⊤SGΨ, (42)

where Z and S are defined in (27) and (28), respectively.
Consider Φm and Ψm as follows:

Φ
⊤
m =

[
fb11I . . . fb1n̄I . . . fbm1I . . . fbmn̄I

]
, (43)

Ψ
⊤
m =

[
gb11I . . . gb1p1

I . . . gbr1I . . . gbr p̄I
]
. (44)

Since Z > 0 and S > 0, H⊤ZH ≥ 0 and G⊤SG ≥ 0.
Then, from (17), (18) and Lemma 3, we have Φ⊤H⊤ZHΦ ≤
Φ⊤

mH⊤ZHΦm and Ψ⊤G⊤SGΨ ≤ Ψ⊤
mG⊤SGΨm. Further-

more, (41) and (42) are reformulated as

N1 ≤ U⊤Z−1U+Φ
⊤
mH⊤ZHΦm, (45)

N2 ≤M⊤S−1M+Ψ
⊤
mG⊤SGΨm. (46)

Hence, inequality (23) is satisfied if

L1 +U⊤Z−1U+Φ
⊤
mH⊤ZHΦm

+M⊤S−1M+Ψ
⊤
mG⊤SGΨm ≤ 0.

(47)

Now, we are ready to state the following theorem.

Theorem 1: The estimation error x̃ satisfies H∞ crite-
rion (15) if there exist symmetric positive definite matrices
P ∈ Rn×n, Zi j ∈ Rn̄×n̄, Si j ∈ R p̄×p̄, a matrix R ∈ Rp×n and
symmetric positive semi-definite matrices Zai j ,Zbi j ,Zci j ∈
Rn̄×n̄, Sai j ,Sbi j ,Sci j ∈ R p̄×p̄ such that the following convex
optimization problem is solvable:
min(µ) subject to

L1 U⊤ Φ⊤
mH⊤Z M⊤ Ψ⊤

mG⊤S
⋆ −Z 0 0 0
⋆ ⋆ −Z 0 0
⋆ ⋆ ⋆ −S 0
⋆ ⋆ ⋆ ⋆ −S

< 0, (48)

where the matrices L1, Z, S, U,M,H,G, Φm andΨm are il-
lustrated in (24), (27), (28), (29), (31), (37), (39), (43)
and (44), respectively. The observer gain is computed as
L = P−1R⊤.

Proof: LMI (48) is derived by using Schur lemma
on (47). Hence, the H∞ criterion (15) is satisfied with
minimum

√
µ obtained from the solution of LMI (48).

B. Second LMI method: LPV-based approach

In this section, an enhanced LMI approach is developed
by combining the well-known LPV technique with the new
variant of Young relation (6) and the proposed matrix mul-
tipliers.

The following inequalities are derived by applying in-
equality (6) on (33) and (34):

N1 ≤
1
2
[(
U+ZHΦ

)⊤Z−1(U+ZHΦ
)]
, (49)

N2 ≤
1
2
[(
M+SGΨ

)⊤S−1(M+SGΨ
)]
, (50)

where Z = Z⊤ > 0 and S = S⊤ > 0 are defined in (27)
and (28), respectively.

Therefore, inequality (23) holds if

L1 +
1
2

[(
U+ZHΦ

)⊤Z−1(U+ZHΦ
)]

+
1
2

[(
M+SGΨ

)⊤S−1(M+SGΨ
)]

≤ 0.
(51)
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From (17) and (18), each element inside Φ and Ψ are
bounded and belong to convex sets Fm and Gr, respectively.
The sets Fm and Gr are defined as follows:

Fm ≜
{

Φ : 0 ≤ fi j ≤ fai j ,∀i ∈ {1, . . . ,m}& j ∈ {1, . . . , n̄}
}
,

Gr ≜
{

Ψ : 0 ≤ gi j ≤ gai j ,∀i ∈ {1, . . . ,r}& j ∈ {1, . . . , p̄}
}
.

The set of vertices of Fm and Gr are given by

FHm =

{
{F11, . . . ,F1n̄, . . . ,Fm1, . . . ,Fmn̄} : Fi j ∈ [0, fbi j ]

}
,

GGr =

{
{G11, . . . ,G1 p̄, . . . ,Gr1, . . . ,Gr p̄} : Gi j ∈ [0,gbi j ]

}
.

(52)

Hence, the inequality (51) is rewritten as:

L1 +

[
1
2
(
U+ZHΦ

)⊤Z−1(U+ZHΦ
)]

∀Φ∈Fm

+

[
1
2
(
M+SGΨ

)⊤S−1(M+SGΨ
)]

∀Ψ∈Gr

≤ 0.
(53)

Theorem 2: The estimation error x̃ satisfies H∞ crite-
rion (15) if there exist symmetric positive definite matrices
P ∈ Rn×n, Zi j ∈ Rn̄×n̄, Si j ∈ R p̄×p̄, symmetric positive semi-
definite matrices Zai j ,Zbi j ,Zci j ∈ Rn̄×n̄, Sai j ,Sbi j ,Sci j ∈ R p̄×p̄

and a matrix R ∈ Rp×n, such that the following convex
optimization problem is solvable:
min(µ) subject toL1

(
U+ZHΦ

)⊤ (
M+SGΨ

)⊤
⋆ −2Z 0
⋆ ⋆ −2S

<0,∀Φ∈Fm,∀Ψ∈Gr (54)

where the matrices L1, Z, S, U,M,H,G, ΦandΨ are illus-
trated in (24), (27), (28), (29), (31), (37), (39), (38) and (40),
respectively. The observer gain is then obtained as L =
P−1R⊤.

Proof: The Schur complement of (53) yields the
LMI (54). From convexity principal [8], the H∞ criterion (15)
is fulfilled by estimation error dynamics (19) if LMI (54) is
solved for all Φ ∈ Fm and Ψ ∈ Gr.

C. Some comments

The introduction of the matrices Z and S in LMI (48)
and (54) allows the inclusion of additional numbers of
decision variables. Hence, it is essential to calculate the
exact number of decision variables and compare them to one
obtained in the existing methods described in the literature.

Both LMIs contain the following number of decision
variables:

Ndv1 = np+
n(n+1)

2
+q+Nadd1 +Nadd2 , (55)

where,

Nadd1 =
(
4mn̄−2m−2n̄+1

)( n̄(n̄+1)
2

)
,

Nadd2 =
(
4r p̄−2r−2p̄+1

)( p̄(p̄+1)
2

)
.

(56)

Nadd1 and Nadd2 are the number of variables obtained from
matrices Z and S, respectively. Thus, LMI (48) and (54)

have total Nadd1 = Nadd1 +Nadd2 additional number of de-
cision variables. However, if we use block-diagonal matrix
multipliers (similar to [6]) in the proposed LMIs, then we
obtain the following number of decision variables:

Ndv2 = np+
n(n+1)

2
+q+m

(
n̄(n̄+1)

2

)
+ r
(

p̄(p̄+1)
2

)
︸ ︷︷ ︸

Nadd2

. (57)

In (57), Nadd2 represents the number of variables obtained
from block-diagonal matrices.

By comparing Ndv1 and Ndv2 , LMI (48) and (54) have
more decision variables than the LMIs with block-diagonal
matrices. From (55) and (57), we get Nadd2 ≤ Nadd1 . It
interprets that proposed matrices have more variables than
the other matrices used in the literature. These additional
variables may improve the feasibility of LMI. In the next
section, the relaxation in LMI conditions due to the matrix
multipliers is highlighted through an example.

V. NUMERICAL COMPARISONS

The effectiveness of the proposed LMI is emphasized
in this section with a numerical example. Consider a
second-order system under the form of (11) with follow-

ing parameters: A =

[
0 1
1 1

]
, G =

[
1 0
0 1

]
, B =

[
1
0

]
,C =[

1 0
0 1

]
, E =

[
−1
−1

]
, D =

[
−1
−1

]
F =

[
1
0

]
, f (x) =

[
f1(x)
f2(x)

]
=[

sin(θx1)
sin(θx2)

]
, g(x) = sin(λx1)sin(λx2), H1 =

[
1 −1
0 1

]
,H2 =[

1 1
−1 0

]
and F1 = I2. Hence, m= 2, n̄= 2, r = 1 and p̄= 2.

The partial derivatives of f and g fulfill following inequal-
ities:

−θ ≤ ∂ f1

∂x1
≤ θ ,−θ ≤ ∂ f2

∂x2
≤ θ ,

−λ ≤ ∂g
∂x1

≤ λ and −λ ≤ ∂g
∂x2

≤ λ .

From Remark 1, we obtain:

f̃a11 = 0; f̃b11 = 2θ ; f̃a21 = 0; f̃b21 = 2θ ;

g̃a11 = 0; g̃b11 = 2λ ; g̃a12 = 0; g̃b12 = 2λ ;

Hence, system nonlinearities satisfy (17) and (18).
Further, we will consider the following cases to test the

feasibility of LMIs:
1) Case 1 : LMI (54) with proposed matrices,

Z=

[
Z11 Zb21
Zb21 Z21

]
; S=

[
S11 Sa12
Sa12 S12

]
(58)

where Z11 = Z⊤
11 > 0,Z21 = Z⊤

21 > 0,Zb21 = Z⊤
b21

≥ 0 ∈
Rn̄×n̄, and S11 = S⊤11 > 0, S12 = Z⊤

12 > 0,Sa12 = S⊤a12
≥

0 ∈ R p̄×p̄.
2) Case 2 : LMI (48) with matrices defined in (58).
3) Case 3 : LMI (48) with the matrices proposed in [11],

i.e.,

Z=

[
Z11 αZ21

αZ21 Z21

]
; S=

[
S11 βS12

βS12 S12

]
,
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where α = 0.1,β = 0.1, Z11 = Z⊤
11 > 0,Z21 = Z⊤

21 >
0Rn̄×n̄, and S11 = S⊤11 > 0, S12 = Z⊤

12 > 0 ∈ R p̄×p̄.
4) Case 4 : LMI approach presented in [6].

TABLE I
OPTIMAL VALUES OF

√
µ FOR DIFFERENT CASES

Case 1 Case 2 Case 3 Case 4
θ = 0.2

and λ = 0.3 1.3731 2.1704 3.0151 1.3737

θ = 0.5
and λ = 0.1 1.5282 2.0772 2.1778 1.5958

θ = 0.9
and λ = 0.25 1.9875 6.3298 7.6210 2.0380

θ = 0.7
and λ = 1 3.2500 8.3932 infeasible 10.6600

θ = 0.85
and λ = 1.5 7.1515 10.1047 infeasible 33.8465

For all the above cases, LMIs are solved in the MATLAB
toolbox, and the obtained optimal values of

√
µ are summa-

rized in Table I. It highlights that LPV-based LMI (54) pro-
vides a better solution compared to other cases. In addition to
this, the solution obtained from the LMI condition (48) is bet-
ter than the one with matrices proposed in [11]. The matrix
defined in [6] and [11] are particular forms of the matrices Z
and S, which are defined in (58). Thus, the solution provided
in case 3 is the particular solution of the LMI (48). Hence,
it is obvious that the derived LMI condition (48) is more
generalized and provides larger sets of solutions. This is due
to the number of additional decision variables. Furthermore,
the LPV-based LMI (54) is less conservative than LMI (48)
because of relationship between two Young’s inequality (5)
and (6). Therefore, the combination of the LPV approach
with the proposed matrices helps to relax the existing LMI
conditions in terms of feasibility and noise attenuation.

VI. CONCLUSION

In this paper, two new LMI techniques for the design
of a nonlinear observer are presented. The key element of
the proposed methods is the use of a generalized matrix
multiplier, which leads to an additional number of decision
variables. Such extra variables lead to additional degrees of
freedom, thus improving the LMI feasibility. Further, the
proposed novel matrix multiplier technique is combined with
the LPV-based approach, which enhances the feasibility of
the previous LMI conditions. Numerical comparisons are
provided to show the validity and superiority of the proposed
design methods compared to existing results in the literature.

As future work, we aim to extend the techniques proposed
in this paper to the problem of observer-based control design
and reference trajectory tracking. Indeed, in such a more
general situation, coupling between the observer gains and
the controller gains lead to bilinear terms which are difficult
to linearize. Then, the objective consists in using our matrix
multiplier based approach to convert such bilinear inequal-
ities into non conservative LMI conditions. We also aim to
exploit the proposed techniques for real-world applications,
namely connected and autonomous vehicles, where there are

several unknown input variables to be estimated together
with the system states.
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