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Abstract— An outstanding, albeit important, problem in
control theory is the static output feedback problem. It deals
with the case when one can neither measure nor actuate all
state variables and exerts control without the use of a state
observer. In this paper, we consider systems of order 4, where
at least 2 states are measured and also directly actuated, and
present means that provide a definite answer to the question
whether a stabilising static output feedback exists or not. We
characterise cases, where such a control law cannot exist, and
show that, for all other cases, either the answer can be provided
by means of using semidefinite and linear programming or that,
for surprisingly many cases, a stabilising static output feedback
always exists. Finally, we show that, for many cases, the
stabilising feedback can be obtained by solving a semidefinite
or linear programme, outperforming off-the-shelf solutions.

I. INTRODUCTION

Solving the static output feedback problem is central to
control theory, since often one cannot measure all state
variables. An early survey on the topic from 1994 calls the
output feedback problem “probably the most important open
question in control engineering” [1], where early approaches
had all in common that they searched for solutions of matrix
equations or inequalities. A more recent survey from 2016
still considers the problem theoretically challenging, of great
importance in practice, and worthy of the great attention
that it receives from the control community [2]. Particularly,
the survey concludes by highlighting that, still, neither an
exact solution to this prominent design problem exists nor
ways to guarantee the existence or non-existence of such a
feedback and by classifying all main methods to solve the
problem. On the one hand, notable recent approaches that
provide solutions to the problem, albeit without guarantee,
are presented in [3], [4], and [5], where the latter introduces
the HIFOO toolbox. On the other hand, the authors of [2]
believe that purely convex results are of much importance,
even if they are only for systems with a specific structure. It
is in this area that the contribution of this paper lies.

In the following, we present different convex results from
the literature, of which not many exist to our knowledge.
Traditionally, for a linear dynamical system given by

ẋ = Ax+Bu, y = Cx,

x ∈ Rn, u ∈ Rp, y ∈ Rq,

A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, (1)
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where x is the system state with n state variables, u the input,
A the system matrix representing the system dynamics, B
the input matrix, y the output, and C the output matrix, if
either matrix B or matrix C has rank n then the static output
feedback problem can be solved efficiently. This is also true
if there exists a matrix P̂ such that PB = BP̂ or if there
exists a matrix Q̂ such that Q̂C = CQ, where P and Q are
positive definite matrices, which we denote by P ≻ 0 and
Q ≻ 0, respectively [6], [7]. The authors of [8] extend the
latter case to include static linear parameter-varying output
feedback controllers.

Nonnegative dynamical system models are derived from
mass and energy balance considerations that involve dynamic
states whose values are nonnegative. A known result for
nonnegative linear dynamical systems of the form ẋ = Ax is
that they are asymptotically stable if and only if there exists
a positive vector p such that pTAx > 0 for all nonnegative
x, x ̸= 0 [9]. In [10], the authors provide an approach that
is based on linear programming for the design of an L1-
optimal controller for nonnegative linear dynamical systems
with single input or single output. In [11], the authors provide
necessary and sufficient conditions for the existence of a
static output feedback for plants of minimum phase if CB
has full row-rank. In a recent paper [12], for a certain class
of linear dynamical systems, we present sufficient conditions
for the existence of a stabilising control gain matrix. The
class of plants considered is of those ones, for which we can
measure at least half of all state variables and where those
measurements affect at least half of all state variables. Note
that this class is different from the one considered in [11].

In this paper, for systems of order 4, where at least 2 states
are measured and also directly actuated, we present efficient
means to provide a definite answer to the question whether
a stabilising static output feedback exists or not. For most
cases, also the controller can be synthesised efficiently. The
outline of the paper is the following. Section I-A formulates
the problem considered. Section II briefly presents previous
work relevant to this paper. Section III-A provides necessary
and sufficient conditions for a stabilising matrix K to exist
for linear dynamical systems of order 4, where at least 2
states are measured and also directly actuated. Section III-B
shows how the conditions can be checked using semidefinite
programming and linear programming. We perform numeri-
cal experiments that highlight the significance of our results
in Section IV-A, and also apply them to an aircraft model
from the literature (Section IV-B). We conclude the paper in
Section V and deal with special cases in the Appendix.
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A. Problem Statement

Static output feedback seeks control gain matrix K that
stabilises system (1) by closing the loop through the feedback
law given by u = Ky = KCx, K ∈ Rp×q . In this paper, if
the real part of all eigenvalues is negative then we say that
the matrix is stable. To understand why the output feedback
problem is difficult, let

ẋ = (A+BKC)x = AFx. (2)

It follows from Lyapunov stability theory [13] that the origin
of closed loop system (2) is globally asymptotically stable if
and only if there exists a positive definite matrix P ∈ Rn×n

such that
AFP + PAT

F ≺ 0. (3)

See also Theorem 2 in [14]. However, finding matrices K
and P , where P ≻ 0, such that the inequality given by (3)
holds, requires to solve a so-called bilinear matrix inequality,
which is known to be NP-hard to solve [15], [16], [17]. Thus,
finding a matrix K such that the system given by (2) is
globally asymptotically stable is difficult.

In [12], for the certain class of systems under consider-
ation, we also show that we can determine the stabilising
control gain matrix from the solution of a linear matrix
inequality and that for random matrices A of dimension n
(A=randn(n) in MATLAB [18]), C =

[
In

2
0
]
, where

In
2

denotes identity matrix of dimension n
2 , and B = CT,

we obtain a stabilising feedback matrix K ∈ Rn
2 ×n

2 in many
cases (see Table I). Notably, for a random matrix A such
a matrix K does not necessarily exist. Thus, we conclude
the paper by asking, under which circumstances are the
sufficient conditions stated in Theorem 1 (see Subsection II)
also necessary?

While [12] provides only sufficient conditions, in this
paper, if n = 4 and there exist real 4-dimensional trans-
formation matrices T , T1, and T2 such that (4) holds and
K̄ ∈ R2×2 has full rank, then we provide necessary and
sufficient conditions for the existence of a feedback matrix
K that stabilises the system given by (2). That is, we
provide a certificate that guarantees that either a feedback
matrix K that stabilises (2) exists or that it does not. We
use linear programming and semidefinite programming to
obtain the certificate and, in many cases, also matrix K;
otherwise, we use fmincon to obtain K (through the
YALMIP toolbox [19]).

TABLE I
THE NUMBER OF TIMES THAT A SOLUTION WAS FOUND SOLVING

PROBLEM (10), WHERE n IS THE DIMENSION OF RANDOM MATRIX A.

n N # of solutions
using (10)

4 100 82
6 100 97
20 30 30
50 10 10
100 10 9

II. PREVIOUS WORK

In this section, we summarise those parts of our previous
work [12] that are relevant to this paper. If n is even, p =
q = n

2 , and real n-dimensional transformation matrices T ,
T1, and T2 exist such that

ĀF = T2TT1AFT
−1
1 T−1T−1

2 =

[
A11 + K̄ A12

A21 A22

]
,

(4)
where A11, A12, A21, A22, and K̄ are ∈ Rn

2 ×n
2 , then it

follows from Theorem 3.2 in [20] that matrix ĀF is stable
if and only if K̄ +A11 +A12R and A22 −RA12 are stable,
where

RK̄ +RA11 +RA12R = A21 +A22R, R ∈ R
n
2 ×n

2 . (5)

Note that free variable matrix K̄ has full rank. It follows that
if R is nonsingular then K̄ + A11 + A12R is stable if and
only if

R
(
R−1A21 +R−1A22R

)
R−1 = A21R

−1 +A22 (6)

is stable. Additionally, if matrix A21 is nonsingular then we
pose the following theorem [12].

Theorem 1: If matrix A21 is nonsingular and there exist
positive definite matrices Q3 ∈ Rn

2 ×n
2 and Q4 ∈ Rn

2 ×n
2

such that

Q3A12 +Q4A22 +AT
12Q3 +AT

22Q4 ≺ 0, (7)
Q3A

−1
21 A22A21 −Q4A21 + (· · · )T ≺ 0, (8)

and R = −Q−1
4 Q3 then matrix ĀF in (4) is stable for

K̄ = R−1A21 +R−1A22R−A12R−A11. (9)
Note that this result can be equivalently applied to matrices

AT , CT , and BT instead of matrices A, B, and C, respec-
tively, for example, if A21 is singular but A12 is nonsingular.
Moreover, the conditions in Theorem 1 can be implemented
as the following semidefinite programme:

given A12, A21, A22,

find Q3, Q4,

sub. to Q3 ≻ 0, Q4 ≻ 0, (7) & (8). (10)

Problems such as the one presented in (10) can be efficiently
solved using the MATLAB toolbox YALMIP and the Se-
DuMi solver [21].

III. MAIN RESULTS

In this section, we present the main results of this paper.
Note that for the reminder of the paper, n = 4.

A. Sufficient and Necessary Condition for n = 4

First, we assume that B and C have, both, rank 2. Thus, by
Lemma 9 in [12], without loss of generality, we can assume
that p = q = 2. Furthermore, we assume that the system
under consideration can be transformed such that, with slight
abuse of notation, AF is given by (4), where K̄ has full rank.

For clarity of presentation, in the following, we assume
that matrix A21 is nonsingular. (In Appendix B, we discuss
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the case when A21 is singular.) If A21 is nonsingular then,
again, with slight abuse of notation, let AF =

SAFS
−1 =

[
A11 + K̄ A12

I2 A22

]
, S =

[
A21 0
0 I2

]
.

(11)
Then, AF is stable if and only if matrices A22 + R−1 and
A22 −RA12 are stable, where A21 = I2 in (5).

Now, let A22 =

[
a1 a2
a3 a4

]
, A12 =

[
b1 b2
b3 b4

]
, and

R =

[
r1 r3
r2 r4

]
, where ai, bi, and ri are ∈ R and i =

1, 2, 3, 4. Then, the characteristic polynomials of matrices
A22 +R−1 and A22 −RA12 are given by

λ2
1,2 +

f1
c
λ1,2 +

f2
c

(12)

and
λ2
3,4 + f3λ3,4 + f4, (13)

respectively, where λ1,2 and λ3,4 denote the eigenvalues of
matrix A22 +R−1 and matrix A22 −RA12, respectively,

f1 = −(r1 + r4 + a1c+ a4c),

f2 = a1r1 + a2r2 + a3r3 + a4r4 + a1a4c− a2a3c+ 1,

f3 = b1r1 + b2r2 + b3r3 + b4r4 − a1 − a4,

f4 = (a3b2 − a4b1)r1 + (a2b1 − a1b2)r2

+(a3b4 − a4b3)r3 + (a2b3 − a1b4)r4

+(b1b4 − b2b3)c+ a1a4 − a2a3, (14)

and
c = r1r4 − r2r3. (15)

It follows from the Routh-Hurwitz criterion [13] that matri-
ces A22 + R−1 and A22 − RA12 are stable if and only if
either

f1 > 0, f2 > 0, f3 > 0, f4 > 0, c > 0 (16)

or
f1 < 0, f2 < 0, f3 > 0, f4 > 0, c < 0. (17)

Remark 1: Note that one can use MATLAB’s general
purpose optimiser fmincon [18] to solve (14), (15), and
either (16) or (17); however, this approach is not guaranteed
to provide a solution even if it exists.

Remark 2: Note that the functions in (14) are affine in r.
In the following, this allows us to rewrite them as in (18).
For even n > 4, they become nonlinear in r and cannot be
rewritten as in (18). Furthermore, note that the case n = 2
is (relatively) trivial.

B. Certificate for Stabilisability

In Theorem 2, we provide efficient means to determine
whether a solution to (15), under the constraints given by
(14) and either (16) or (17), exists. First, we use matrix and
vector notation to rewrite (14) as

f =

 f1
...
f4

 = Fr + vc+ d, r =

 r1
...
r4

 , (18)

where F = −1 0 0 −1
a1 a2 a3 a4

b1 b2 b3 b4
a3b2 − a4b1 a2b1 − a1b2 a3b4 − a4b3 a2b3 − a1b4

 ,

v =


−a1 − a4

a1a4 − a2a3
0

b1b4 − b2b3

 , d =


0
1

−a1 − a4
a1a4 − a2a3

 . (19)

If matrix F is nonsingular then we rewrite condition (15) as

0 = c− r1r4 + r2r3 = z5 − r1r4 + r2r3

= zTEz + zTGT


0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0

Gz

= zTHz,

r = F−1 (f − vc− d) = Gz,

G = F−1
[
I4 −v −d

]
, z =

 f
c
1

 , (20)

where matrix E ∈ R6×6 is empty but for E56 = 1. We also
rewrite condition (16) as z > 0, which means that zi > 0 for
all i, i = 1, . . . , 6, and we let z6 = 1. Thus, if we require
(14) to (16) then we rewrite these conditions as

zTHz = 0, z > 0. (21)

If we require (14), (15), and (17) then we rewrite these as

zTH̄z = 0, z > 0, H̄ = DHD, D = diag


−1
−1
+1
+1
−1
+1

 . (22)

Before stating the theorem, we need the following definition.
Definition 1: A matrix A ∈ Rn×n is strictly co-positive

(co-negative) if yTAy > 0 (yTAy < 0) for all positive y,
that is, yi > 0 for all i, i = 1, . . . , n.

Theorem 2: Condition (21) (or (22)) holds if and only if
H (H̄) is neither strictly co-positive nor strictly co-negative.

Proof: The property stated in the theorem follows
directly from Definition 1 and continuity of zTHz (zTH̄z).

In Appendix A, we discuss the case when F is singular.
Now, using Theorem 2 we prove the following.

Theorem 3: If matrix F is nonsingular and either A22

or A12 has real nonzero eigenvalues then a matrix K that
stabilises AF always exists.

Proof: First, we assume that A22 has real nonzero
eigenvalues and apply a similarity transformation to matrix
AF such that matrix F is given by

F =


−1 0 0 −1
a1 0 0 a4
b1 b2 b3 b4

−a4b1 −a1b2 −a4b3 −a1b4

 ,
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where a1 and a4 are the real nonzero eigenvalues of A22.
Now, evaluating matrix H reveals that[

H33 H34

H43 H44

]
=

[
2a1a4 a1 + a4
a1 + a4 2

]
α, (23)

where α ∈ R and α ̸= 0. Since F is nonsingular, a1 ̸= a4,
and, thus, the matrix given by (23) has a negative and a
positive eigenvalue. Therefore, matrix H is neither strictly
co-positive nor strictly co-negative and, by Theorem 2, a
matrix K that stabilises AF exists. If A12 has real nonzero
eigenvalues then the proof is analogous and, thus, omitted.

If A22 and A12 have, both, complex eigenvalues then AF

might not be stabilisable. For instance, consider

A12 =

[
1.886 0.333
−0.333 1.886

]
, A22 =

[
0.157 −1.454
1.266 1.030

]
.

In general, to provide a definite answer to whether condition
(21) (or (22)) holds or not and, thus, to whether a static out-
put feedback that stabilises the system given by (1) exists or
not, we use Theorem 2 and the following two theorems from
[22] and [23], where we note that zTHz = 1

2z
T
(
H +HT

)
z

and that H +HT is symmetric.
Theorem 4: A symmetric matrix A of order n ≤ 4 is

strictly co-positive if and only if it is decomposable as the
sum A = A1+A2 of a positive definite symmetric matrix A1

and a nonnegative symmetric matrix A2 (that is, A2 ∈ Rn

+).
Thus, matrix A ∈ R4 is strictly co-positive if and only if the
following semidefinite programme has a solution:

given A,

find A1, A2,

sub. to A1 ≻ 0, A2 ∈ R4

+, A2 = AT
2 , A = A1 +A2.

(24)

Theorem 5: Let A be a symmetric matrix of order n such
that each principal sub-matrix of order n − 1 is strictly co-
positive. Then A is strictly co-positive if and only if the
minimum of the following linear programme is positive:

minimise t1 − t2,

sub. to y1 + · · ·+ yn = 1,

aTi y − t1 + t2 + si = 0, i = 1, . . . , n,

y ∈ Rn, s ∈ Rn, yi > 0 ∀i, si > 0 ∀i,
t1 > 0, t2 > 0, (25)

where ai denotes the ith column of A.
Importantly, efficient solvers exist for solving (24) and (25).

IV. NUMERICAL EXPERIMENTS AND APPLICATIONS

A. Numerical Experiments

We created N = 1000 random matrices A ∈ R4×4

and applied different approaches to search for a matrix K
that stabilises (1) for C =

[
In

2
0
]

and B = CT (see
Table II). When solving (10) or using the gradient-based
HIFOO toolbox [5] to find a stabilising matrix K, where we
allowed up to ten initialisations for the latter, we obtained a
solution in 854 or 956 of the cases, respectively.

When using MATLAB’s general purpose optimiser
fmincon to solve for (14), (15), and either (16) or (17),
we obtained 993 solutions. Note that we used the algo-
rithms interior-point, sqp, as well as active-set
when employing fmincon in the search for a solution but,
otherwise, have not changed the function settings. For the
remaining 7 cases, we checked whether H (H̄) is either
strictly co-positive or strictly co-negative. Specifically, we
searched for a feasible solution to programme (24) for all
4 × 4 principal sub-matrices of H (H̄) as well as for a
feasible solution to programme (25) for all 5 × 5 principal
sub-matrices of H (H̄) and for H (H̄) itself. We obtained a
certificate that neither (21) nor (22) hold only for 4 of these
cases, which means that the associated system matrices, A,
cannot be stabilised by means of static output feedback.

For the remaining 3 cases, we used fmincon to solve the
following problem to obtain K:

find w,

sub. to wH̃w > 0 or − wH̃w > 0,

wi > 0 ∀i, (26)

where H̃ is the non-strictly-co-positive or non-strictly-co-
negative principal sub-matrix of H (H̄), for which either
programme (24) or programme (25) failed to find a solution.
(Note that fmincon failed to solve the minimisation prob-
lem given by (26) for H̃ = H .) Finally, we repeated the
numerical experiments for diagonal matrices A12 and A22

(N = 100). Significantly, the linear programme given by
(38) was not only guaranteed to find a solution if it existed,
it also outperformed other approaches (see Table II).

B. Lateral-directional Aircraft Dynamics

We consider the lateral-directional dynamics of a passen-
ger aircraft in cruise configuration given by ẋ = Ax + Bu
from [24]. The system states are roll angle ϕ and sideslip
angle β and the respective angular rates p and r. State vector
x is given by xT =

[
p r ϕ β

]
, where angles are in

radians and angular rates are in rad/s. The input consists
of aileron and rudder deflections, which are in radians, and
is given by uT =

[
δa δr

]
. System matrix A and input

TABLE II
FOR N RUNS, WE PROVIDE THE NUMBER OF TIMES THAT A SOLUTION

WAS FOUND SOLVING (10), USING THE APPROACH FROM [5], SOLVING

(14) – (15) AND EITHER (16) OR (17) USING FMINCON , OR SOLVING (24)
– (26); FOR A12 AND A22 BEING BOTH DIAGONAL, WE COMPARE THE

PERFORMANCE WHEN SOLVING (10), USING THE APPROACH FROM [5],
SOLVING (14) – (15) AND EITHER (16) OR (17), OR SOLVING (38).

Solving N = 1000 (10) [5] (14) – (16) / (17) (24) – (26)
# of solutions 854 956 993 996
Solving N = 100 (10) [5] (14) – (16) / (17) (38)
# of solutions 52 73 55 75
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matrix B are given by

A =


−1.699 0.1717 0 −4.546
−0.0654 −0.0893 0 3.382

1 0 0 0
0 −1 0.0487 −0.0829

 , (27)

B =


27.276 0.5758
0.3952 −1.362

0 0
0 0.0116

 . (28)

For yT =
[
p r

]
, we solve (10) such that u = Ky

stabilises the system, where K =

[
−0.0538 0.1084
−0.8569 3.3839

]
.

V. DISCUSSION AND CONCLUSIONS

In this paper, for a specific class of plants, we answer the
question presented in [2], whether there are ways to provide
guarantees either that a static output feedback exists or that it
does not exist. Specifically, to the best of our knowledge, for
the first time, for the class of four-dimensional systems under
consideration, we provide a certificate that guarantees that
either a feedback matrix K that stabilises the system given
by (2) exists or that it does not. Significantly, the certificate
can be obtained efficiently by means of semidefinite and
linear programming, which lets our approach outperform
other approaches. Interestingly, in this paper as well as in
our previous one [12], we observe that the special systems
under consideration are almost always stabilisable. In the
future, we will investigate the implication of this observation.
Finally, we note that we provide the necessary feasible initial
condition for methods that seek to solve bilinear matrix
inequalities for optimal and robust control such as the one
presented in [25].

APPENDIX

A. Matrix F is Singular

Let us transform matrix AF as in the following. With a
slight abuse of notation, we let

AF = Ṽ AF Ṽ
−1, Ṽ =

[
V 0
0 V

]
, V ∈ R2×2, (29)

such that either

A12 =

[
b1 0
0 b4

]
, (30)

where b1 and b4 are the real eigenvalues of matrix A12, or

A12 =

[
b1 b2
−b2 b1

]
, (31)

where b1 ± ib2 are the complex eigenvalues of matrix A12.
It follows that if (30) holds then

F =


−1 0 0 −1
a1 a2 a3 a4
b1 0 0 b4

−a4b1 a2b1 a3b4 −a1b4

 (32)

and if (31) holds then

F =

 −1 0 0 −1
a1 a2 a3 a4

b1 b2 −b2 b1
a3b2 − a4b1 a2b1 − a1b2 a3b1 + a4b2 −a2b2 − a1b1

 .

(33)

1) Matrix F has Rank 3: Before showing that if matrix
F has rank 3 then a matrix K that stabilises AF can be effi-
ciently determined, we need the following two propositions.

Proposition 1: If matrix F has rank 3 then it is given by
(32) and either a2 = 0 or a3 = 0.

Proof: First, if, for example, a2 = 0 and a3 = 1 or
a2 = 1, a3 = 0, a1 = a4 = b1 = 1, and b4 = 4 then matrix
F , given by (32), has rank 3. Second, if neither a2 = 0 nor
a3 = 0 and F , given by (32), is singular then there must exist
a real nonzero scalar α such that αa2+a2b1 = αa3+a3b4 =
0, which is only possible, for a2 ̸= 0 and a3 ̸= 0, if α = −b1
and α = −b4, which implies that b4 = b1. Then,

F =


−1 0 0 −1
a1 a2 a3 a4
b1 0 0 b1

−a4b1 a2b1 a3b1 −a1b1

 (34)

and nTF = ñTF = 0, where

n =


−(a1b1 + a4b1)

−b1
0
1

 , ñ =


0

−b1
a1b1+a4b1

b1
1

 , (35)

which implies that (34) is of rank < 3. Third, if matrix F is
given by (33) and b2 ̸= 0 then, from looking at the first and
third row of matrix F , it is singular only if either Fn = 0
or Fñ = 0, where

n =


−1
0
0
+1

 , ñ =


0
1
1
0

 . (36)

Then, a4 = a1 and a3 = −a2 must also hold and, thus,

F =

 −1 0 0 −1
a1 a2 −a2 a1

b1 b2 −b2 b1
−a2b2 − a1b1 a2b1 − a1b2 a1b2 − a2b1 −a2b2 − a1b1


(37)

has rank < 3. Finally, if b2 = 0 then matrix F is given by
(34) and, thus, is of rank < 3.

Proposition 2: If matrix F has an empty column then
(14), (15), and either (16) or (17) can be solved through
a linear programme.

Proof: Consider the following linear programme:

find f, c, r,

sub. to f = Fr + vc+ d & (16) or (17). (38)

If the i-th column of matrix F is empty then (38) is
independent of ri. If (38) is feasible then we choose ri such
that, together with the solution of (38), (15) is solved.

Theorem 6: If matrix F has rank 3 and a matrix K that
stabilises AF exists then K can be obtained by solving (38).

Proof: If matrix F has rank 3 then, by Proposition 1, it
is given by (32) and either a2 = 0 or a3 = 0. Thus, either
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the second or the third column of matrix F is empty. By
Proposition 2, if a matrix K that stabilises AF exists then it
can be obtained by solving linear programme (38).

2) Matrix F has Rank 2 or 1: Let the rank of matrix F
be 2 and matrices A12 and A22 be, both, diagonal. Note that
(34) can be linearly transformed to have this form through a
transformation similar to the one given by (29). Then,

F =


−1 0 0 −1
a1 0 0 a4
b1 0 0 b4

−a4b1 0 0 −a1b4

 . (39)

By proposition 2, if a stabilising matrix K exists then such
a matrix can be obtained by solving linear programme (38).

Now, let matrix F be given by (37). Then,[
f1
f2

]
= F1

[
r̃
r̄

]
+

[
ṽ1
ṽ2

]
c+

[
d̃1
d̃2

]
,[

f3
f4

]
= F2

[
r̃
r̄

]
+

[
ṽ3
ṽ4

]
c+

[
d̃3
d̃4

]
, (40)

where

F1 =

[
−1 0
a1 a2

]
,

F2 =

[
b1 b2

−a2b2 − a1b1 a2b1 − a1b2

]
,

ṽ =


−2a1
a21 + a22

0
b21 + b22

 , d̃ =


0
1

−2a1
a21 + a22

 ,

r̃ = r1 + r4, and r̄ = r2 − r3. It follows that[
r̃
r̄

]
= F−1

1

([
f1
f2

]
−
[

ṽ1
ṽ2

]
c−

[
d̃1
d̃2

])
= F−1

2

([
f3
f4

]
−
[

ṽ3
ṽ4

]
c−

[
d̃3
d̃4

])
(41)

and that

0 = c− r̃r4 + r24 + r̄r3 + r23

=
[
r3 r4 1

]  1 0 r̄
2

0 1 − r̃
2

r̄
2 − r̃

2 c

 r3
r4
1

 ,(42)

which has a real solution if either c < 0 or c > 0 and
h = r̄2 + r̃2 − 4c ≥ 0. We formulate the first condition as
the following linear programme:

find c,

sub. to (41) and (17). (43)

We formulate the second condition as the following semidef-
inite programme:

find c,

sub. to r̄2 + r̃2 ≤ 4c, (41), and (16). (44)

Thus, a stabilising matrix K exists if and only if either (43)
or (44) is feasible. Finally, the rank of matrix F is 1 if and

only if A12 = αI2 and A22 = βI2, where α, β ∈ R and α ̸=
0. If β ≥ 0 then matrix A22 +R−1 and matrix A22 −RA12

are, both, stable if and only if α < −β. If β < 0 then they
are stable if we choose a stable matrix R, R ≈ 0.

B. Matrix A21 is Singular
If matrix A21 is singular then we can apply a similar-

ity transformation to the system such that matrix A21 of

transformed matrix AF is given by either A21 =

[
1 0
0 0

]
or A21 =

[
0 1
0 0

]
. Then, the characteristic polynomial of

matrix A22+A21R
−1 is given by λ2

1,2+
f1
c λ1,2+

f2
c , where

f1 = −(sri + a1c+ a4c),

f2 = sa3rj + sa4ri + a1a4c− a2a3c, (45)

and either i = 4, j = 3, and s = 1 or i = 2, j = 1, and
s = −1, depending on A21. It follows that either

F =

 0 0 0 −1
0 0 a3 a4
b1 b2 b3 b4

a3b2 − a4b1 a2b1 − a1b2 a3b4 − a4b3 a2b3 − a1b4


(46)

or

F =

 0 1 0 0
−a3 −a4 0 0
b1 b2 b3 b4

a3b2 − a4b1 a2b1 − a1b2 a3b4 − a4b3 a2b3 − a1b4

 ,

(47)
while vectors v and d are as before in (19), but for d2 = 0.
Note that both cases can be handled similarly. Thus, for
brevity, we continue with (46) only. First, the following
theorem shows that if matrix F is nonsingular then a matrix
K that stabilises AF always exists.

Theorem 7: If matrix A21 is singular and matrix F is
nonsingular then matrix K that stabilises AF always exists.

Proof: Evaluating matrix H reveals that[
H22 H24

H42 H44

]
=

[
2(b2b3 − b1b4) b1

b1 0

]
α, (48)

where α ∈ R, α ̸= 0. Since F is nonsingular, if b1 = 0 then
b2 ̸= 0 and vice versa. Thus, matrix (48) has a negative
and a positive eigenvalue, which, by Theorem 2, implies
that matrix H is neither strictly co-positive nor strictly co-
negative and that a matrix K that stabilises matrix AF exists.

Next, note that if matrix F is singular and a3 ̸= 0 then
either a1 = a4 + a2

b1
b2

− a3
b2
b1

, b1 = b2 = 0, or a2 = b2 = 0.
The following theorem shows that if matrix F is singular,
a3 ̸= 0, and a1 = a4 + a2

b1
b2

− a3
b2
b1

then matrix K that
stabilises AF always exists.

Theorem 8: If A21 and F are singular, a3 ̸= 0, and a1 =
a4 + a2

b1
b2

− a3
b2
b1

then K that stabilises AF always exists.
Proof: If matrix F is singular, a3 ̸= 0, and a1 =

a4 + a2
b1
b2

− a3
b2
b1

then, for w =

[
a3b2 − a4b1

−b1

]
and

F3 =

[
b3 b4

a3b4 − a4b3 a2b3 − a1b4

]
, the following holds:[

r3
r4

]
=

[
0 −1
a3 a4

]−1 ([
f1
f2

]
−

[
v1
v2

]
c

)
(49)
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and

0 = wT

[
b1 b2

a3b2 − a4b1 a2b1 − a1b2

] [
r1
r2

]
= wT

([
f3
f4

]
− F3

[
r3
r4

]
−
[

v3
v4

]
c−

[
d3
d4

])
.

(50)

Note that, for either (16) or (17), (50) is always solvable.
If matrix F is singular, a3 ̸= 0, and either b1 = b2 = 0

or a2 = b2 = 0 then at least one column of F is empty.
By Proposition 2, if a stabilising matrix K exists then it can
be obtained by solving linear programme (38). Finally, if
a3 = 0 and a matrix K that stabilises AF exists then it can
be also obtained by solving (38), as the next theorem shows.
Note that such a matrix K cannot exist if a4 ≥ 0.

Theorem 9: If a3 = 0 and a matrix K that stabilises AF

exists then such a matrix K can be obtained by solving (38).
Proof: If a3 = 0 then a4 < 0 must hold for stability.

If a matrix K that makes matrix AF stable exists then it
does it independently of the values of b2, b4, and a2, which
we, therefore, set to 0. Then, the second column of matrix
F becomes empty and it follows from Proposition 2 that if
a stabilising matrix K exists then such a matrix K can be
obtained by solving linear programme (38).
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