
Learning Piecewise ARX models via Regression Trees with probabilistic
guarantees

Alessandro D’Innocenzo and Francesco Smarra

Abstract— Recent research literature shows that system iden-
tification techniques can be successfully combined with machine
learning to improve the accuracy of the models obtained. In this
context, the contribution of this work builds upon a research
line that combines the Regression Trees method with AutoRe-
gressive eXogenous identification to derive models of dynamical
systems exploiting historical data. The main contribution of this
paper is to formally relate such methodology with the scenario
approach framework, thus providing probabilistic guarantees
on the derived model. The proposed method is validated on a
real experimental setup: first a comparison in terms of accuracy
with the former method - which does not provide probabilistic
guarantees - is provided, then the effectiveness of the derived
probabilistic guarantees is validated on the testing dataset from
our experimental setup.

I. INTRODUCTION

Control of complex cyber-physical systems has received
increasing attention in recent years [1], [2]. In this context,
Model Predictive Control (MPC) is a well-known control
strategy used to design optimal control actions to optimize
a performance metric while guaranteeing a desired system
behavior (i.e., reference tracking and constraints), and has
been widely applied in past years to control a large variety
of systems, as for example energy systems such as smart
buildings, smart grids and power systems [3], [4], [5].
To provide the optimal control strategy, MPC leverages a
mathematical model to predict the system’s behavior over a
finite time horizon. However, creating a physics-based model
for a large-scale system as the ones mentioned above is often
cost and time prohibitive [6]. Several works deal with this
problem, and use both system identification from control the-
ory and machine learning algorithms from computer science
to construct models to be used for MPC. In what follows,
we provide a survey of literature related to the topic of this
paper and illustrate the novelty of our work with respect to
the state of the art.

Previous work. To the best of the authors’ knowledge, the
use of regression trees with predictive control purposes has
been addressed for the first time in [7], where data-driven
models have been developed to enable one-step lookahead
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closed-loop control for the Demand-Response problem in
buildings. This approach has been extended in [8], where
the authors proposed a regression trees and random forests-
based strategy that implements MPC over a horizon of
arbitrary length. The basic idea was to bridge machine
learning and control theory by adapting regression trees and
random forests techniques to build control-oriented models.
The aforementioned approaches make use of data-driven
static models, namely where the input-output relation is
represented by static affine functions instead of dynamical
models. Such a modeling framework neglects the presence
of the internal state evolution and loses the information of the
past inputs applied to the system over the predictive horizon:
in [9], [10] our approach has been extended, proving a novel
methodology to build a switching affine dynamical model of
a system using historical data by appropriately combining
the regression trees and random forests classical algorithms
with AutoRegressive eXogenous (ARX) identification. On
the same research line, in [11] a methodology has been
provided to build a Markov switching affine model that
extracts the dynamics of the disturbance as a Markov chain
exploiting historical data: the resulting model is a special
case of Markov jump systems [12], and can be used to
implement stochastic MPC via standard algorithms [13].

Paper contribution. The methodology illustrated above
has been applied on real datasets of a variety of application
domains [14], [15], [16], [17], [18], [19], [20] obtaining
excellent performance compared to the state of the art with
the added value that, while the static models derived in
[7], [8] do not allow to formally define and characterize
fundamental properties such as stability, stabilizability, con-
trollability, etc., the models built in [10], [11] do. On the
other hand, the analysis of such properties on the constructed
models is not endowed with any kind of guarantees.

The main contribution of this paper is to provide proba-
bilistic guarantees for models constructed with the methodol-
ogy in [10] exploiting the well known scenario approach (see
e.g., [21], [22], [23], [24], [25], [26] and references therein).
More precisely, we provide a bound to the probability that
testing samples (i.e. not belonging to the training dataset) do
not satisfy the estimation accuracy obtained on the training
dataset: to the best of the authors’ knowledge, this is a novel
contribution to the scientific literature.

As we show in the paper, the scenario approach cannot
be applied directly to the methodology in [10]. To this aim
we will modify the original algorithm in [10] and then
formally derive probabilistic guarantees. We validate our
approach on a real experimental setup consisting of a two-
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story building, where each floor is composed of 5 zones,
located inside the campus of the University of L’Aquila, Italy.
We apply the proposed method to two different scenarios:
room temperature and energy consumption prediction. We
first compare in terms of accuracy our novel algorithm with
that of [10], which does not provide probabilistic guarantees;
then we statistically evaluate, on the testing dataset, the ef-
fectiveness of the theoretical guarantees derived in this paper.
Our experiments show that the modifications introduced to
our original algorithm suffer just a slight decrease of the
prediction accuracy, and that the theoretical probabilistic
guarantees are coherent with the results obtained on the
testing dataset.

II. SCENARIO APPROACH BACKGROUND

In this section, we provide the mathematical background
on the scenario approach, which we will exploit to derive
probabilistic guarantees on the technique proposed in this
paper. For more details, the reader is referred to [26] and
references therein.

Consider a probability space (∆,D,P) and a sample
(δ(1), . . . , δ(N)) ∈ ∆N of N elements drawn independently
from ∆ according to the same probability measure P . We
call each observation δ(·) a scenario. Let us also consider
a set Θ ⊆ Rd, called decision space, and define a function
AN : ∆N −→ Θ denoted as the scenario decision θ∗N :=
AN (δ(1), . . . , δ(N)). Let the scenario decision AN be a
unique solution θ∗N , possibly after applying a tie-break rule,
of a constrained optimization program:

min
θ∈Θ

f(θ) subject to θ ∈ Θδ(i) , i = 1, . . . , N, (1)

where f , Θ and Θδ(·) can be any function and constraint (i.e.,
convex or nonconvex). Let us define the violation probability
of a decision θ ∈ Θ as

V (θ) = P{δ ∈ ∆ : θ ̸∈ Θδ}. (2)

For a given reliability parameter ϵ ∈ (0, 1), we say that θ ∈
Θ is ϵ-feasible if V (θ) ≤ ϵ. The violation of a scenario
decision V (θ∗N ) is a random variable over ∆N . The idea
behind the scenario approach framework is to characterise
the distribution of V (θ∗N ) and find a confidence bound 1−β
such that the relation V (θ) ≤ ϵ is satisfied.

Convex case: When the optimization program (1) is
convex, as the deepest result it has been shown in [23] that
V (θ∗N ) is dominated by a Beta distribution, i.e.

PN{V (θ∗N ) > ϵ} ≤ β, β =

d−1∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i, (3)

where we recall that d is the dimension of the optimization
variable, and that the only assumption on the probability
space is that each scenario is drawn independently.

Non-convex case: When the optimization program (1) is
non-convex, a different approach is used in [26]. Assume
that AN (δ(1), . . . , δ(N)) is the (unique, possibly suboptimal)
scenario decision given a sample (δ(1), . . . , δ(N)): we define
a support subsample (δ(i1), . . . , δ(ik)), k ≤ N , as a k-tuple of

elements of (δ(1), . . . , δ(N)) such that Ak(δ
(i1), . . . , δ(ik)) =

AN (δ(1), . . . , δ(N)). Let a support subsample of cardinality
k exist, then the following holds:

PN{V (θ∗N ) > ϵ(k)} ≤ β

ϵ(k) =


1 k=N,

1−
(

β

N(Nk)

)(N−k)−1

otherwise.
(4)

III. LEARNING ARX MODELS VIA REGRESSION TREES

In this section, we first provide a short description of the
CART algorithm [27], and then we illustrate a technique,
that we proposed for the first time in [9], [10], to identify
from a dataset a model of a dynamical system that combines
the CART algorithm and the ARX identification.

The CART algorithm: Due to space limitations, we only
briefly recall the partitioning algorithm of CART, and refer
the reader to [27] for more details. In a supervised learning
framework, we consider an input dataset X = {xi}Ni=1 and
an output dataset Y = {yi}Ni=1 of N samples each, where
yi ∈ R and xi ∈ Rn. The final goal of CART is to identify
a function T : Rn → R to estimate ŷ = T (x): to this
aim, the data set is iteratively partitioned, according to a
tree graph structure grown during the algorithm, by a set
of hyper-rectangles R1, . . . , R|T | that induce a partition of
the input space Rn: to each hyper-rectangle corresponds one
(and only one) leaf of the grown tree graph.

More in detail, without any loss of generality we restrict
our attention to recursive binary partition of the CART
algorithm [27]: starting with the whole dataset, which is
associated to the root node of the tree, consider a split
variable j over the n available and a split point s, and define
the half-spaces RL(j, s) = {xi | xi,j < s} and RR(j, s) =
{xi | xi,j ≥ s}, where xi,j is the j-th component of
sample xi ∈ Rn. The CART algorithm solves the following
optimization problem to find the optimal ι∗ and s∗:

min
ι,s

min
cL

∑
xi∈RL(ι,s)

(yi − cL)
2
+ min

cR

∑
xi∈RR(ι,s)

(yi − cR)
2

 , (5)

and for any choice of ι and s the inner minimization is
solved by cL = ave(yi | xi ∈ RL(ι, s)) and cR = ave(yi |
xi ∈ RR(ι, s)), where ave(·) is the arithmetic mean of
the output samples. In other words, the optimal ι∗ and s∗

minimize the sum of the squared prediction errors of the
left and right partitions induced by the split variable and
split point. For each splitting variable, the determination of
the split point s∗ can be done very quickly and hence, by
scanning through all the input components, the determination
of the best pair (ι∗, s∗) is computationally tractable. Once
the best split is found, the dataset is partitioned into the
two resulting regions, and the splitting procedure is repeated
starting from each of the nodes associated to the new defined
regions. The process is repeated until a stopping criterion is
applied, e.g. the tree size is a tuning parameter that should be
chosen to avoid overfitting and variance phenomena. Then,
ŷ is estimated in each leaf ℓj using a constant cℓj given by
the average of the samples in the partition.
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In the rest of this work we will denote with T the
regression tree, with ℓj the jth leaf of T , with |T | the number
of leaves of T and with |ℓj | the number of samples in the
leaf ℓj . Also, slightly abusing the notation, we will denote
with cj = ave(yi|xi ∈ ℓj) the prediction associated to leaf
ℓj , with Rj the hyper-rectangular partition set associated to
leaf ℓj and with ŷ = T (x) the regression tree prediction to
a new sample x given by T (x) =

∑|T |
j=1 cj · I {x ∈ Rj},

where I {x ∈ R} is the indicator function that is equal to 1
if x ∈ R, and 0 otherwise. The algorithmic complexity of
growing a tree via the CART algorithm is O(nN lnN).

The CART algorithm combined with ARX identifica-
tion: We briefly illustrate the approach proposed in [10],
which combines the CART algorithm and ARX identification
to build a model of a dynamical system starting from a
dataset of trajectories. Consider a set of N sample trajectories
{zi(0), . . . , zi(r), di(0), . . . , di(r − 1)}Ni=1, with a measure-
ment variable zi(t) ∈ R, t = 0, . . . , r and an exogenous
variable di(t) ∈ Rν , t = 0, . . . , r − 1. All trajectories, each
considered as a scenario δ(i), are assumed to be collected
as independent drawns from a same probability measure.
Let us define an input dataset X = {xi}Ni=1 with xi :=
(zi(0), . . . , zi(r− 1), di(0), . . . , di(r− 1)) ∈ Rn, n = r(ν +
1), and an output dataset Y = {yi}Ni=1 with yi := zi(r) ∈
R. In [10] we derived Algorithm 0: we first applied the
standard CART algorithm to a training dataset X and Y , thus
obtaining a regression tree T with leaves ℓ1, . . . , ℓ|T | and
corresponding hyper-rectangles R1, . . . , R|T | that partition
the input space; then, instead of using the constant predictor
cj in each leaf, we proposed to assign an affine predictor
mj ∈ Rn,mj,0 ∈ R to each leaf, thus obtaining T (x)
the prediction of the regression tree given by T (x) =∑|T |

j=1(m
T
j x+mj,0) · I {x ∈ Rj}.

Algorithm 0
1: Input: dataset (X ,Y)
2: Apply CART algorithm to (X ,Y), obtaining as output

a tree structure T with leaves ℓ1, . . . , ℓT
3: for all j = 1, . . . , |T | do
4: Compute in leaf ℓj an affine predictor mj ∈

Rn,mj,0 ∈ R by solving the quadratic program

min
mj ,mj,0

∑
xi∈ℓj

(yi −mT
j xi −mj,0)

2 (6)

5: end for

IV. LEARNING ARX MODELS VIA REGRESSION TREES
WITH PROBABILISTIC GUARANTEES

Algorithm 0 has the goal of finding a (possibly suboptimal)
solution of the following nonconvex optimization problem:

min
ι,s,m

N∑
i=1

(yi − T (xi))
2

s.t.T (xi) =

|T |∑
j=1

(mT
j xi +mj,0) · I {xi ∈ ℓj(ι, s)} , i = 1, . . . , N, (7)

where ι := {ι1, . . . , ιp}, s := {s1, . . . , sp} are sequences
of length p of splitting variables and splitting points, p ∈
N is a natural number representing the number of splits
performed by the CART algorithm (which depends on the
chosen stopping criterion, see [27] for more details), and
m := {(mj ,mj,0)}|T |

j=1 are coefficients of the affine models
associated to each leaf. Note that each leaf ℓj(ι, s) is a
deterministic function of the optimization variables ι, s. Let
us define (ι∗, s∗,m∗) := AN (x1, . . . , xN ), where AN is a
solution of the optimization program (7) obtained applying
Algorithm 0. Note that (ι∗, s∗,m∗) is possibly suboptimal,
and can be assumed unique since the CART algorithm is
deterministic and provides a unique solution to any given
dataset: we recall that its uniqueness is indeed a necessary
condition to apply the scenario approach. However, the
scenario approach cannot be directly applied to this problem
neither in the convex case (since the problem is nonconvex)
nor in the nonconvex case (since given any strict support sub-
sample also the cost function changes, therefore the results
in [26] cannot be applied to characterise the distribution of
the violation probability), as illustrated in Section II.

As the main result of this paper we propose two modi-
fications of Algorithm 0 so that the scenario approach can
be applied, and we derive formal probabilistic guarantees for
each of them. The first algorithm, formalised in Algorithm 1,
is based on the following idea: we apply the CART algorithm
to a candidate support subsample X∪Y set that initially only
consists of the first sample of the dataset (line 3); at each
iteration of the while cycle (line 4) we first apply CART to
the dataset X,Y (line 5) and then we update X,Y adding the
sample corresponding to the largest violation, if any, of the
error bound of the constructed predictor (line 15); we stop
the algorithm when all samples not belonging to X,Y satisfy
the error bound derived only using samples in X,Y (line 16):
when this happens we have found a support subsample.

Proposition 1: Let Algorithm 1 be applied to a dataset of
inputs X and outputs Y , then for any given β ∈ (0, 1)

PN
{
P{x ∈ Rn, y ∈ R : (y − T (x))2 ≥ h∗} > ϵ

}
≤ β,

(9)

with

ϵ =


1 k∗ = N,

1−
(

β

N(N
k∗)

)(N−k∗)−1

otherwise.
(10)

Proof: Using Algorithm 1 the derived prediction T (x)
of the regression tree T is a possibly suboptimal solution,
using input and output datasets X,Y with cardinality k∗

each, of the following nonconvex optimization problem:

min
h,ι,s,m

h

such that (yi −mT
j xi −mj,0)

2 ≤ h, xi ∈ ℓj(ι, s),

j = 1, . . . , |T |,
xi ∈ X, yi ∈ Y (11)

with h∗, ι∗, s∗,m∗ = Ak∗(X,Y ) the obtained solution us-
ing Algorithm 1. Note that all steps of Algorithm 1, included
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Algorithm 1

1: Input: datasets X = {xi}Ni=1,Y = {yi}Ni=1

2: Output: T , h∗, k∗

3: Set X := {x1}, Y := {y1}
4: while X ̸= X do
5: Apply CART algorithm to (X,Y ), obtaining as out-

put a tree structure T with leaves ℓ1, . . . , ℓT
6: for all j = 1, . . . , |T | do
7: Compute in leaf ℓj an error bound h∗

j and an
affine predictor m∗

j ∈ Rn,m∗
j,0 ∈ R by solving the QP:

min
hj ,mj ,mj,0

hj

subject to (yi −mT
j xi −mj,0)

2 ≤ hj ,∀xi ∈ ℓj (8)

8: end for
9: Set h̃ := 0, ĩ := 0, h∗ := max(h∗

1, . . . , h
∗
|T |)

10: for all i ∈ {1, . . . , N} : xi /∈ X do
11: if (yi − T (xi))

2 ≥ max{h̃, h∗) then
12: update h̃ := (yi − T (xi))

2 and ĩ := i
13: end if
14: end for
15: if h̃ > 0 then set X := X ∪ {xĩ}, Y := Y ∪ {yĩ}
16: else Return T , h∗, |X| (support subsample found)
17: end if
18: end while
19: Return T , h∗, N (no support subsample found)

the CART algorithm, are deterministic: as a consequence
Ak∗(X,Y ) is a unique, possibly suboptimal, solution of
(11). We can now map our optimization program (11) with
the optimization program (1), and note that all conditions
required to apply the scenario approach for the nonconvex
case are satisfied. In particular, the set X ∪ Y constructed
in Algorithm 1 is by construction a support subsample (not
necessarily the smallest one): indeed we check in lines 9-17
whether the obtained error bound h∗ is also satisfied for all
samples in X \ X,Y \ Y , which implies that the solution
Ak∗(X,Y ) is also a unique, possibly suboptimal, solution
of (11) using all the samples xi ∈ X , yi ∈ Y . By condition
(4) stated in Section II, (9) holds for ϵ as defined in (10).
This concludes the proof.

Algorithm 1 is based on a suboptimal search for a support
subsample set, which requires to apply the CART for every
candidate support subsample. In some real cases, as happens
for the experimental dataset we use in Section V, this
approach can provide very conservative probabilistic bounds.
To overcome this issue we propose Algorithm 2, based on
the idea that the CART algorithm is applied once on the
whole dataset (line 3), and the candidate support subsample
sets are searched within each leaf by removing, one by one,
samples in the leaf (line 8) until the reduced set satisfies the
support subsample property (lines 10-13). This is formalised
in Algorithm 2 below, where for the j-th leaf we will denote
by ℓj = {xj1 , . . . , xj|ℓj |

} the input samples in ℓj and by
{yj1 , . . . , yj|ℓj |} the corresponding output samples.

Algorithm 2

1: Input: datasets X = {xi}Ni=1,Y = {yi}Ni=1

2: Output: T , h∗, {|ℓj |, k∗j }
|T |
j=1

3: Apply CART algorithm to (X ,Y), obtaining as output
a tree structure T with leaves {ℓj}|T |

j=1

4: for all j = 1, . . . , |T | do
5: Compute in leaf ℓj an error bound h∗

j and an affine
predictor m∗

j ∈ Rn,m∗
j,0 ∈ R by solving the QP:

min
hj ,mj ,mj,0

hj

subject to (yji −mT
j xji −mj,0)

2 ≤ hj ,∀xji ∈ ℓj
(12)

6: Set Xj := ℓj , Yj := {yji}
|ℓj |
i=1, k

∗
j := |Xj |

7: while Xj ̸= ∅ do
8: for all ζ = 1, . . . , |Xj | do
9: Compute in leaf ℓj an error bound h̃∗

j and an
affine predictor m̃∗

j ∈ Rn, m̃∗
j,0 ∈ R by solving the QP:

min
h̃j ,m̃j ,m̃j,0

h̃j

subject to (yji − m̃T
j xji − m̃j,0)

2 ≤ h̃j ,∀xji ∈ Xj \ xζ

(13)

10: if h∗
j = h̃∗

j ,m
∗
j = m̃∗

j ,m
∗
j,0 = m̃∗

j,0 then
11: Set Xj := Xj \ {xζ}, Yj := Yj \ {yζ}
12: Set k∗j := |Xj |
13: Exit For cycle (support subsample found)
14: else if ζ = |Xj | Exit For and While cycles

(no support subsample found)
15: end if
16: end for
17: end while
18: end for
19: Return T ,max(h∗

1, . . . , h
∗
|T |), {|ℓj |, k

∗
j }

|T |
j=1

Proposition 2: Let Algorithm 2 be applied to a dataset of
inputs X and outputs Y , then for any given β ∈ (0, 1)

PN
{
P{x ∈ Rn, y ∈ R : (y − T (x))2 ≥ h∗} > ϵ

}
≤ β,

(14)

where ϵ = max
j=1,...,|T |

min{ϵj1, ϵj2},

ϵj1 =


1 k∗j = |ℓj |,

1−

(
β

|ℓj |(
|ℓj |
k∗
j
)

)(|ℓj |−k∗
j )

−1

otherwise.
(15)

and where ϵj2 can be computed solving the following

β =

n+1∑
i=0

(
|ℓj |
i

)
(ϵj2)

i(1− ϵj2)
|ℓj |−i. (16)

Proof: Algorithm 2 first applies the CART algorithm
to the whole dataset, and considers separately the convex
optimization programs (12) solved in each leaf ℓj . Let
(h∗

j ,m
∗
j ,m

∗
j,0) = Aj,N (ℓj) be the obtained solution in each
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leaf, which is clearly optimal and unique. We can now
map our optimization programs (12) with the optimization
program (1), and note that all conditions required to apply
the scenario approach, both for the convex and nonconvex
cases, are satisfied.

In particular, the set Xj ∪ Yj iteratively generated in
Algorithm 2 is by construction a support subsample (not
necessarily the smallest one): indeed in lines 8-16 we search,
removing one sample by one (xζ), until the optimal solution
of (12), using all samples in ℓj , is equal to the solution of
(13), only using samples in Xj \xζ . Formally, the set Xj of
cardinality k∗j ≤ N is constructed such that Aj,k∗

j
(Xj) =

Aj,|ℓj |(ℓj). By conditions (3), (4) respectively stated in
Section II, (14) holds for the worst case violation probability
of all leaves, i.e. for h∗ = max

j=1,...,|T |
h∗
j , and ϵ = max

j=1,...,|T |
ϵj ,

where ϵj is the least conservative bound obtained by applying
both the nonconvex-case and the convex-case conditions to
the inner optimization in each leaf ℓj . More precisely, for
each ℓj , ϵj := min{ϵj1, ϵj2}. It directly follows by (3)
that ϵj1 is defined as in (15), with the remark that in the
optimization program (12) the dimension d (using the same
notation as in (3)) of the optimization variable (hj ,mj ,mj,0)
is given by d = 1 + n + 1. Also, it directly follows by (4)
that ϵj2 is defined as in (16). This concludes the proof.

V. EXPERIMENTAL VALIDATION

In this section we validate the proposed method on a
dataset collected from a real benchmark consisting of a build-
ing HVAC system (see [15] for a detailed description): we
first compare it in terms of accuracy with the existing method
described in Section III, which cannot provide probabilistic
guarantees; then we statistically evaluate, on the testing
dataset, the effectiveness of the theoretical guarantees derived
in this paper. We provide results on two different scenarios:
room temperature and energy consumption prediction.

Case study description. We consider a two-story build-
ing located inside the Coppito campus of the Univer-
sity of L’Aquila, Italy, coordinates 42◦22’10.4”N and
13◦20’54.2”E. Each floor is composed of 5 zones – 4 rooms
and a small lobby, and can be independently controlled.
The gross area of the ground and first floor is 72 m2 and
77 m2, respectively. About the heating system, the building
is equipped with a variable refrigerant flow heat pump (a
type of rooftop unit) from Mitsubishi. The heating system
comprises of (1) an outdoor unit on the roof that includes a
compressor and an evaporator, and (2) an indoor unit (also
called split) in each zone that includes a fan and a condenser.
Heating is provided through refrigerant conduits connecting
indoor and outdoor equipment. The thermal energy from
the evaporation and compression phases is carried by the
refrigerant. This energy is transferred by the condenser into
the zones where warm air is then distributed by the fan. Addi-
tionally, each room and lobby is equipped with a temperature
sensor and a thermostat that are used to monitor and control,
via temperature setpoint selection, the room temperature.
Power consumption of the building is measured using a

multimeter. The system is configured to be programmatically
controlled and monitored via M-NET (Mitsubishi network)
protocol. Temperature control is performed via a traditional
control system for buildings that relies on fixed rules for
manipulation of temperature setpoints. During winter, when
the setpoint in a zone is kept constant, the corresponding
indoor unit is switched ON when the measured temperature is
∼1.5◦C below the setpoint. As the zone starts to heat up, the
indoor unit is switched OFF when the measured temperature
exceeds the setpoint by ∼0.5◦C. Since different rooms have
different temperatures, the external unit may be kept ON for
usually longer periods of time. For further details about the
benchmark please see [15].

Dataset description. We collected from the building two
different datasets: a training dataset, (Xtrain,Ytrain), that is
used to learn the models, and a testing dataset, (Xtest,Ytest),
for the validation process, both for the model accuracy
and the probability guarantees. The sampling time is of 2
minutes. The training dataset contains measurements from
November 17th, 2018, to February 26th, 2019, for a total
of N = 72369 samples, while the testing dataset contains
data from March 6th, 2019, to March 22th, 2019, for a total
of 11250 samples. The input datasets are composed by 23
variables consisting of the 10 room temperatures Ti, i =
1, . . . , 10, the 10 temperature setpoints to control each room
Tsp,i, i = 1, . . . , 10, the apparent energy consumption in
the sampling interval, i.e. the apparent energy consumption
since the last measurement, E, and 3 disturbances related
to weather conditions D = [Tout,H,S], that correspond to
outside air temperature, external humidity, and solar radiation
respectively. As we will see later on, depending on the appli-
cation, e.g. temperature or energy consumption prediction, a
subset of such variables is used, and regressive terms are
added to the datasets to improve the modeling accuracy.
The output datasets are composed by the room temperatures,
Ti, i = 1, . . . , 10, and apparent energy, E, measurements.

Results on temperature prediction. In this section we
show the results obtained by applying the methodologies
described above for the prediction of the room temperatures.
For the simulation we consider a single room, e.g. room
1, with datasets composed by temperature, control setpoint
and weather variables, together with their regressive terms.
Simulations for the other 9 rooms provided similar results.
The training dataset is thus defined as follows, the testing
dataset is defined similarly with testing data:

Xtrain = {T1(t),T1(t− 1),Tsp,1(t),Tsp,1(t− 1),

D(t), . . . ,D(t− 5)}Nt=5,

Ytrain = {T1(t+ 1)}Nt=5.

We used (Xtrain,Ytrain) to identify the models. In partic-
ular, we identified 3 different models: (i) the first is obtained
following Algorithm 0 from [10], and we refer to it as
NAHS20; (ii) the second is obtained following Algorithm
1, and we refer to it as Case 1; (iii) the third is obtained
following Algorithm 2, and we refer to it as Case 2.

The results of the validation process on the testing dataset
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are shown in Figure 1. Since the testing dataset is composed
by 17 days the figure would have been messy, thus for the
sake of clarity we randomly picked 12 hours and showed the
plot of the trajectories of March 8th from 6 am to 6 pm.
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Fig. 1: Temperature trajectories comparison from 6 am to 6
pm on March 8th, 2022.

Results show that the accuracy provided by NAHS20 is
the best one, and this is expected as the learning procedure
aims at minimizing the mean square error. Differently, Case
1 and Case 2 approaches minimize an upper bound of such
square value, hence giving a suboptimal solution with the
advantage of providing probabilistic guarantees as described
in the above sections. The accuracy error over the whole
testing dataset is provided in Table I in terms of NRMSE,
normalized with respect to the mean of the temperature
values in the testing dataset, and expressed in percentage.

Method NAHS20 Case 1 Case 2

NRMSE 1.85% 2.98% 2.19%

TABLE I: Room temperature prediction errors provided by
the validation of the 3 models over the testing dataset .

In Table II the violation bounds are reported. For the
computation, we chose β = 10−6. We can see how the
theoretical bound ϵ of Case 1 is equal to 1, i.e. it is useless
in the considered experimental dataset - of course, it might
be useful on different datasets. Differently, the results from
Case 2 show a theoretical bound ϵ that is coherent to the
one obtained statistically on the testing dataset.

Remark 1: We recall that the scenario approach can be
applied with the only assumption on the probability space
that each scenario is drawn independently. It is well known
from the scientific literature that this huge generality is paid
by some conservatism of the derived probabilistic bounds:
this is the reason why we believe that, in our validation setup,
the theoretical bound we have derived can be considered
reasonably close to the one obtained statistically. We also
remark that, in order to satisfy the assumption that each
scenario is drawn independently, our probabilistic bound on
the estimation error holds when both the training and testing
datasets are generated using the same control policy.

Results on energy prediction. In this section we show
the results obtained by applying the methodologies described
above for the prediction of the energy consumption. Differ-
ently from the previous case, where for the prediction of the
temperature of a room the measurements from that room are

Violation probability bound Case 1: h∗ = 1.52 Case 2: h∗ = 1.59

Theoretical ϵ = 1 ϵ = 0.0290
Statistical ϵ̂ = 0.0060 ϵ̂ = 0.0009

TABLE II: Violation bounds obtained from the simulations
of Case 1 and Case 2 over the temperature dynamics. The
first line of the table represents the theoretical bounds as
described in Section IV. The second line represents the
constraints violation ratio derived on the testing dataset.

enough for a good model identification, the energy is affected
by the behaviour of the whole building. For this reason, we
consider the measurements from all the rooms, in addition
to the energy itself and the weather variables. The training
dataset, and similarly the testing dataset, are thus defined as
follows:

Xtrain = {E(t),T(t),T(t− 1),Tsp(t),Tsp(t− 1),

D(t), . . . ,D(t− 5)}Nt=5,

Ytrain = {E(t+ 1)}Nt=5,

where T = [T1, . . . ,T10] and Tsp = [Tsp,1, . . . ,Tsp,10].
Similarly to the temperature case, we used (Xtrain,Ytrain)

to identify the 3 different models described above. The
results of the validation process on the testing dataset are
shown in Figure 2. As before, for the sake of clarity, only
the trajectories of March 8th from 6 am to 6 pm are shown.
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Fig. 2: Energy trajectories comparison from 6 am to 6 pm
on March 8th, 2022.

The accuracy error over the whole testing dataset is
provided in Table III in terms of NRMSE, normalized with
respect to the minimum and maximum values of the energy
in the testing dataset, and expressed in percentage. Results
show that the accuracy provided by NAHS20 is the best
one. As usual, the energy consumption prediction is much
less accurate than the temperature prediction; nevertheless,
the obtained accuracy is coherent with the 15% tolerance
considered as acceptable by the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE).

Method NAHS20 Case 1 Case 2

NRMSE 12.69% 16.72% 16.77%

TABLE III: Modeling accuracy errors provided by the valida-
tion of the 3 models over the testing dataset for the prediction
of the energy consumption.
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In Table IV the violation bounds are reported. For the
computation we chose β = 10−6. Results are coherent
with the theoretical bounds, which in the case of energy
consumption prediction are, as expected given the nonlinear
nature of the energy variable, more conservative than the
temperature case.

Violation probability bound Case 1: h∗ = 4.26 Case 2: h∗ = 4.18

Theoretical ϵ = 1 ϵ = 0.0670
Statistical ϵ̂ = 0.0004 ϵ̂ = 0.0004

TABLE IV: Violation bounds obtained from the simulations
of Case 1 and Case 2 over the energy dynamics. The first line
of the table represents the theoretical bounds as described
in Section IV. The second line represents the constraints
violation ratio derived on the testing dataset.

VI. CONCLUSIONS

In this paper we extended our research line on learning
techniques based on a combination of the Regression Trees
method and ARX identification to derive models of dynam-
ical systems exploiting historical data. We improved our
methodology to formally relate it with the scenario approach
framework, thus providing bounds on the probability that
testing samples do not satisfy the estimation model accuracy
obtained on the training dataset. We validated our technique
on a dataset collected from a real experimental setup, show-
ing that the obtained performance is valid both in terms of
accuracy and of effectiveness of the derived probabilistic
guarantees. In future work we plan to extend our results to
provide probabilistic guarantees on the structural properties
of the identified model and to consider other application
domains [18], [19], [28].
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