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Abstract— Data driven system identification is the technique
for learning models from input/output data. To increase the
robustness of the model estimation, prior knowledge can be
incorporated, the so-called gray-box identification. In finite
impulse response (FIR) models, prior knowledge of the process
under investigation can be introduced by regularization. In
the regularization term basic impulse response characteristics
such as smoothness and exponentially decaying behavior can be
incorporated. For estimation of time-delay systems, the novel
impulse response and time-delay preserving (IRDP) regular-
ization matrix is proposed. In this contribution this method
is extended to the estimation of multiple input single output
(MISO) processes and is compared to other state-of-the-art
approaches. A linear process with four inputs and different
input dynamics and time-delays is investigated. The focus of the
evaluation is placed on model quality, time-delay estimation,
and computation time. The simulation results point out the
superiority of the novel regularization approach in comparison
to state-of-the-art methods.

I. INTRODUCTION

Dynamic models are an important basis for many tasks
such as prediction, simulation, optimization, control, fault
detection and diagnosis. System identification is one way to
obtain these models. For example, finite impulse response
(FIR) models can be utilized to predict the output from
given input data. The main advantages of FIR models are,
their inherent stability and robustness with respect to wrong
model orders as well as time delays. Moreover, they are
linear in their parameters, whereby an efficient estimation
with the least squares (LS) method can take place [1]. In
addition, the output error configuration allows an unbiased
parameter estimation [2]. The major drawback is the high
variance error. In contrast, autoregressive with exogenous
input (ARX) and output error (OE) models typically exhibit a
low variance error. However, ARX models have to deal with
a bias error due to the equation error configuration and the
parameters of OE models have to be optimized nonlinearly.

Another disadvantage of ARX models arises when consid-
ering multivariate processes: Different inputs share the same
denominator polynomial (see Fig. 2c). Therefore, the order
of ARX models has to be chosen significantly higher than the
orders of the true sub-processes for each input dynamics [3].

To get more robust identification methods, data-driven
methods can be combined with prior knowledge. This re-
sults in a gray-box approach. Recent publications propose
introducing prior knowledge of the investigated process into
the estimation of FIR models by regularization.
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By applying this concept, the high flexibility of FIR mod-
els is limited and therefore, the number of effective parame-
ters can be significantly reduced. Therefore, the high variance
error can also be overcome [4].

In this paper, we will discuss a special class of processes
called time-delay systems. There exist some state-of-the-art
approaches which can determine the time delay, like area
and moment methods or higher order statistics methods [5].
These approaches perform a two-step procedure to obtain a
good quality model: First, the time delay is determined and
the signal is compensated for it. Second, a model without
time delay is estimated. In contrast, there are also one-step
methods that carry out the time-delay estimation simulta-
neously with the model estimation. For this, a candidate
set of ARX or OE models with different time delays are
estimated and the best model is selected with the help of
validation data. However, due to the combinatorial nature
of this approach in the multiple input single output (MISO)
case, many models have to be estimated.

The estimation of time-delay systems with regularized FIR
models with the standard regularization schemes in [6], [7]
will fail, since they have one limitation: The smoothness
and the exponentially decaying behavior assumptions of the
impulse response are not fulfilled. Therefore, in previous
work a novel regularization matrix is introduced which also
allows the estimation of time-delay systems [8]. It utilizes
multiple kernels to perform the estimation of the time delay
and the model in one step.

The goal of this paper is to extend our proposed approach
in [8] to identify MISO time-delay systems. Moreover, this
method is compared to other established state-of-the-art
approaches:

• Two-stage procedure, first compensating for time delay
and then identifying regularized FIR models,

• One-step procedure with ARX models,
• One-step procedure with OE models.

The paper is structured as follows. First, Sect. II deals
with regularized FIR models and the novel impulse response
and time-delay preserving (IRDP) regularization matrix. It
is explained, how to estimate the time delay with a multiple
kernel approach and how to deal with the hyperparameter
optimization. Afterwards, the extension of the proposed
approaches and of other state-of-the-art approaches to the
MISO case is addressed in Sect. III. The different model
types are evaluated and compared on a MISO test process
with four inputs in Sect. IV. Finally, the findings are con-
cluded in Sect. V.
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II. TIME DELAY ESTIMATION WITH REGULARIZED
FINITE IMPULSE RESPONSE MODELS

The output y(k) of a linear single input single output
(SISO) process without direct feedthrough can be approx-
imated by an nth-order FIR model. The model output ŷ(k)
is calculated by the convolution of the delayed inputs u(k−i)
and the model parameters θi, i = 1, . . . , n

ŷ(k) =

n∑
i=1

θiu(k − i) = x(k)T θ , (1)

with x(k) =
[
u(k − 1) u(k − 2) · · · u(k − n)

]T
and

u(k) = 0, for k ≤ 0. Hereby, the parameter vector θ can
be interpreted as an approximation of the impulse response
coefficients. The model order n has to be chosen high enough
to cover all coefficients of the true impulse response which
deviate significantly from zero [1]. Since the model is linear
in the parameters, the estimation of the model parameters θ
can be done via an LS method. However, the main drawback
of FIR models is the high variance error. By introducing
regularization, this problem can be overcome [6].

By restricting the flexibility of the model, the effective
number of parameters can be drastically reduced: neff � n.
This is done by adding a penalty term into the estimation
procedure which yields the new objective [7]

J =

N∑
k=1

(y(k)− ŷ(k))
2

+ λθTR(η) θ , (2)

with the regularization matrix R the regularization strength λ
and the hyperparameter vector η. Through the regularization
matrix, prior knowledge is incorporated into the parameter
estimation by linking consecutive parameters. With λ = 0,
no prior knowledge is applied and the parameter estimation
results in the unregularized solution. A high λ weights prior
knowledge more heavily. Therefore, the task is to find an
appropriate tradeoff for λ. The solution of (2) can be found
in [4] by

θ̂ =
(
XTX + λR(η)

)−1
XT y , (3)

with X =
[
x(1) x(2) · · · x(N)

]T
and

y =
[
y(1) y(2) · · · y(N)

]T
. The effective number

of the parameters can be calculated from neff = tr(S)
with S = X

(
XTX + λR(η)

)
XT . An easier interpretation

of the regularization matrix R results from its Cholesky
decomposition

θTRθ = θTFTF θ = ||F θ||2 . (4)

This allows the interpretation of the regularization as a
filtering of the parameters θ with the filter matrix F [11].
Therefore, it enables the incorporation of the prior knowledge
directly via the filter matrix F .

A. Impulse Response Preserving (IRP) Matrix

In [7] a novel regularization method is contributed, which
assumes a transfer function of the process under investiga-
tion. Thus, the prior knowledge of the process is restricted

to a linear nIRPth-order transfer function. However, for the
method in [7] only the denominator polynomial A(z) is
required. Here, a transfer function with nIRP = 2

G(z) =
B(z)

a0 + a1z1 + z2
. (5)

is chosen as an example. An extension to lower- and higher-
order transfer functions is straightforward. The filter matrix
F IRP(a) ∈ R(n−nIRP)×n of the second-order impulse response
preserving (IRP2) matrix is defined as [7]

F IRP(a) =


a0 a1 1 0 · · · 0

0 a0 a1 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 a0 a1 1

 . (6)

The better the transfer function G(z) fits the actual dynamics
of the process, the more accurate the estimation of the model
parameters will be. Therefore, the choice of coefficients a =
[a0 a1]

T is important concerning the resulting FIR model.
Since the regularization only penalizes the FIR parameters
(and the strength depends on λ), the choice of the transfer
function order nIRP is not as crucial here as for the ARX or
OE model order.

For stable processes, the latter parameters of the impulse
response always decay exponentially towards zero. If the true
order is not known, exponential weighting is suggested in
[7], which reduces the regularization strength of the first
parameters and allows for more flexibility. The weighted
filter matrix is defined as F̃ IRP = W exp F IRP, with the
exponential weighting matrix W (α) ∈ R(n−nIRP)×(n−nIRP)

W exp(α) = diag
(
α−0, α− 1

2 , α−1, · · · , α−n−nIRP−1
2

)
. (7)

Here, the hyperparameter α can either be optimized or
chosen heuristically.

This approach is also called the single kernel method,
because only one regularization matrix R with one corre-
sponding λ is utilized.

B. Impulse Response and Time-Delay Preserving (IRDP)
Matrix

The IRP matrix introduced in Section II-A is not able to
estimate time-delay systems well, as they do not correspond
to the assumed transfer function G(z). Thus, only low regu-
larization strengths can be applied. Therefore, in [8] a novel
regularization matrix, called impulse response and time-delay
preserving (IRDP) matrix, has been proposed. The impulse
response is divided into two parts, the part containing the
time-delay parameters and part with the dynamic parameters,
see Fig. 1. The IRDP matrix is defined as

RIRDP(d, β, a, α) =

[
βId 0

0 R̃IRP(a)

]
, (8)

with the identity matrix Id ∈ Rd×d and R̃IRP ∈
R(n9d)×(n9d). The parameter β scales the ridge regression
term for the time-delay parameters and the higher β, the more
the parameters are pushed towards zero. This regularization
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Fig. 1: Separation of the impulse response into time-delay
and dynamic parameters. The process has a time delay of
d∗ = 10.

matrix can only be applied, if the time delay d is known a
priori. In practice, this is oftentimes not the case. Therefore,
a multiple kernel method is proposed to identify the time
delay directly together with the other hyperparameters and
avoid a mixed integer optimization.

C. Multiple Kernel Method

In [9] a multiple kernel method has been proposed. This
method is modified in [8] which allows for a time-delay
estimation. Therefore, nMK matrices RIRDP with different
time delays are applied in the estimation procedure. The
RIRDP matrices are built with δ = [dmin, dmin + 1, . . . , dmax].
Each regularization matrix is multiplied with a separate
regularization strength λi and summed up to

RMK(λ, β, a, α) =

nMK∑
i=1

λiRIRDP(δi, β, a, α) . (9)

The number of multiple kernels nMK and thus the considered
time delays as well as the ridge parameter β have to be set a
priori. Since the regularization strength λ is already included
in (9), the model parameters are estimated with

θ̂ =
(
XTX +RMK(λ, β, a, α)

)−1
XT y . (10)

To extract the time delay d̂ from the different regularization
matrices after identification, the assumed time delays δi are
weighted with their corresponding λi:

d̂ = round


nMK∑
i=1

λiδi

nMK∑
i=1

λi

 . (11)

D. Hyperparameter Optimization

To determine the hyperparameters of the IRDP kernel a,
α, and λ, a hyperparameter optimization can be performed.
In [8] a study is carried out which demonstrates the supe-
riority of the generalized cross-validation (GCV) error over
the marginal likelihood (ML) function for the IRDP kernel.
Therefore, it is considered in the following investigations.
In [12] the GCV error is defined as

JGCV =
1

N

N∑
k=1

(
y(k)− ŷ(k)

1− tr(S)/N

)2

, (12)

with the smoothing matrix S = X
(
XTX + λR

)−1
XT .

The objective JGCV has to be minimized to determine the
optimal hyperparameters and estimate the time delay.

III. ESTIMATION OF TIME DELAY MISO SYSTEMS

There exist several methods for estimating time-delay
systems in the SISO case. They can be applied with minor
modifications also for MISO processes. In Fig. 2 the model
structures of FIR, OE and ARX models with exemplary two
inputs are illustrated. Since the time delay of each input
j is contained in Bj(q), it can be estimated separately. In
the following, four methods are described to estimate the
different polynomials Aj(q) and Bj(q).

A. Multiple Kernel Regularized FIR (MKR-FIR) Models

The output of a MISO FIR model becomes

ŷ(k) =

nu∑
j=1

xj(k)T θj , (13)

where nu is the number of inputs and each vector θj , xj(k) ∈
Rnj×1 can have a separate FIR model order nj . The model
parameters are estimated as described in (10) with a stacked
regressor matrix

X =
[
Xu1

Xu2
· · · Xunu

]
, (14)

where Xuj
denotes the regressor matrix of the jth input and

the new regularization matrix with multiple kernels

RMK(η
MK

) =


RMK,1 0 · · · 0

0 RMK,2

. . .
...

...
. . . . . . 0

0 · · · 0 RMK,nu

 . (15)

The hyperparameter vector η
MK

contains all aj , αj and
λj for each input. Different hyperparameter choices are
possible for each input depending on the different dynamics
(also different orders of the assumed transfer function G(z)
in (5)). Therefore, it is also possible to assume different time
delays δj for each input separately. Thus, the number of

B1(q)

B2(q)

u1(k)

u2(k)

v(k)

y(k)

(a) FIR model

B1(q)
A1(q)

B2(q)
A2(q)

u1(k)

u2(k)

v(k)

y(k)

(b) OE model

B1(q)

B2(q)

1
A(q)

u1(k)

u2(k)

v(k)

y(k)

(c) ARX model

Fig. 2: Model structures of FIR, OE and ARX models for
MISO systems with exemplary two inputs.
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hyperparameter is depended on the assumed input dynamics
and time delays.

B. Single Kernel Regularized FIR (SKR-FIR) Models

By estimation of time-delay systems with a single kernel
method, proposed in Sect. II-B the time delay d̂j for each
input has to be known or determined a priori. This results
in a two-step procedure. The time delay of each input is
determined by the CUSUM detector proposed in [5]. Firstly,
the unregularized impulse response coefficients are estimated
and the internal algorithm parameters of the CUSUM detec-
tor are set to hstd = 2 and vstd = 1 according to [13].

Afterwards there are two estimation possibilities: (i) Es-
timate only the parameters from d̂ (setting the time-delay
parameters to zero) or (ii) the estimation of all parameters
with the IRDP matrix (8). The second estimation method is
more robust with respect to wrongly estimated time delays
and can slightly compensate wrong time delays d̂ by a
lower regularization strength. Therefore, in the following the
second estimation method is pursued for the MISO case.

With stacked regressor (14) and the regularization matrix
with single kernels

R(η
SK

) =
RIRDP,1(d̂1) 0 · · · 0

0 RIRDP,2(d̂2) . . .
...

... . . . . . . 0

0 · · · 0 RIRDP,nu
(d̂nu)

 .

(16)

the parameters can be estimated via (3). By externalizing the
determination of the time delays d, the number of hyperpa-
rameters can be reduced. For the regularization strength only
one λj instead of nMK for each input has to be optimized.

C. ARX Models

Each input of ARX models has an individual numerator
polynomial Bj(q), but there exist only one denominator
polynomial A(q). Therefore, the order of A(q) has to be
chosen in such a way that the different poles of all input
dynamics can be realized in it. By a suitable choice of the
zeros, the not required poles of the respective input dynamics
can be compensated. To integrate the time delay into the
ARX model, it has to be specified in advance. The output of
the ARX model ŷ is defined as

ŷ(k) = −
m∑
i=1

aiy(k − i) +

d̂1+m∑
i=d̂1+1

bi,1u1(k − i) + · · ·

+

d̂nu+m∑
i=d̂nu+1

bi,nuunu(k − i) ,

(17)

with an order m of the ARX model. Here, the order for all
numerator and the denominator polynomials is chosen to be
identical. Only the time delay d̂j is chosen independently for
each input. Thus, a time consuming search for the individual

TABLE I: Four different transfer functions: a first-order, a
second-order, a oscillating second-order, and a third-order
transfer function with different time delays dj .

.

Transfer function Parameter

G1 =
q91q9d1 (1− p1)

(1− p1z91)
,

p1 = 0.92,
d1 = 8

G2 =
q91q9d2 (1− p1)(1− p2)

(1− p1z91)(1− p2z91)

p1 = 0.9, p2 = 0.7

d2 = 7

G3 =
q91q9d3 (1− p1)(1− p2)

(1− p1z91)(1− p2z91)

p1,2 = 0.65± 0.65i,
d3 = 5

G4 =
q91q9d4 (1− p1)(1− p2)(1− p3)

(1− p1z91)(1− p2z91)(1− p3z91)

p1 = 0.9, p2 = 0.7,
p3 = 0.1, d4 = 2

time delays is required, which increases combinatorially with
the number of inputs and the time delays to be considered.
Nevertheless, this can still be done efficiently since the ARX
models can be estimated with an LS method.

D. OE Models

For OE models each input dynamics can be estimated by
its own numerator and denominator polynomials Bj(q) and
Aj(q). The model output of OE models ŷ is given by

ŷ(k) =−
m1∑
i=1

ai,1y(k − i) +

d̂1+m1∑
i=d̂1+1

bi,1u1(k − i) + · · ·

−
mnu∑
i=1

ai,nuy(k − i) +

d̂nu+mnu∑
i=d̂nu+1

bi,nuunu(k − i) .

(18)

The model orders mj � m of the respective input dynamics
can be chosen independently, as it was already the case for
the assumed transfer function of regularized FIR models. The
same intensive search for the time delay has to be done, but
the parameters have to be estimated via nonlinear optimiza-
tion. Thus, this leads to a much more time-consuming model
estimation.

IV. RESULTS

In this section, the four models types – MKR-FIR, SKR-
FIR, ARX, and OE models – are compared. Herefore, a
MISO process with different time delays dj is investigated.

A. Simulation Setup

The output of the MISO process can be calculated by

y(k) = G1u1(k) +G2u2(k) +G3u3(k) +G4u4(k) , (19)

with the four inputs uj(k). The four transfer functions are
defined in Table I.

Four independent pseudo random binary signals (PRBS)
with N = 1 000 data samples are provided as excitation.
The output is disturbed by white Gaussian noise such that
a signal-to-noise-ratio (SNR) of 10 dB results. To test the
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robustness of the methods regarding time-delay estimation
and the model quality, a Monte Carlo study with 100 runs
with different noise realizations is performed.

For the MKR-FIR as well as the ARX and OE model
time delays in the range δ = [0, 1, · · · , 15] are assumed
for each input. This corresponds to 164 = 65 536 models
which have to be estimated for the ARX and OE time-delay
estimation. For all FIR models nj = 90,∀j ∈ [1, 2, 3, 4]
is assumed. The order of the numerator and denominator
of the ARX model is chosen as m = 8 to be able to
include the poles of each input, since all inputs use the same
denominator polynomial. By choosing Bi(q) appropriately,
the non-required poles are shortened. The OE model order
of each input is set to m = 2, because each input has a
separate denominator polynomial and all input dynamics can
be described quite well with second-order transfer functions.
Furthermore, the correct model order should not be chosen
in this study, since typically, the exact model order is not
known in real world applications. For better comparability,
the order of assumed transfer functions for the regularization
methods is chosen the same as for the OE models (nIRP = 2
for each input dynamic). In [8] the GCV error turns out to
be the best quality criterion for hyperparameter tuning, and
therefore it is applied here. For the parameter β = 1 000
is chosen heuristically. For the estimation of ARX and OE
models, the training data set is split. Only the first 80 % of
the training data is taken for training and the other 20 % for
model selection (time-delay estimation).

To evaluate the model quality, an independent PRBS
test signal is created and the normalized root mean square
error (NRMSE) time-delay error

∆dj = dj − d̂j (20)

is evaluated.

B. Comparison of the Proposed Methods

In the following the four methods are compared. In Fig. 3
the error on test data is illustrated. ARX models give the
worst results. The MKR-FIR models are the best with respect
to both mean and median error as well as the narrowness of
the error distribution.

MKR-FIR SKR-FIR ARX OE
0

0.1

0.2

0.3

0.07614 0.08894

0.2205

0.08319N
R

M
SE

Mean Median

Fig. 3: Violine plot of the NRMSE for the different noise
realizations on test data. The four different model types
MKR-FIR, SKR-FIR, ARX, and OE models are investigated
and the mean error is labeled.

In Fig. 4 the time-delay estimation errors are visualized
for the different methods and inputs. Especially, for u3 the
time-delay estimation is very precise, what can be seen by
a maximum estimation error of only one time step. Also
for the first-order transfer function G1, the regularized FIR
models yield good results in the time-delay estimation. The
variance of the time-delay estimation of ARX and OE models
is significantly larger than for the regularized FIR models.
Thereby, OE models provide for all inputs the correct median
time delay. For ARX models, the median time-delay estima-
tion error is zero only once. This in combination with the
equation error configuration causes the low model quality.

For the two estimation methods – MKR-FIR and OE –
40 impulse responses are presented in Fig. 5. It demonstrates
effect of the high variance in the time-delay estimation of
the OE models (especially for G1 and G2). The errors of the
sub-process G3 are less visible due to the higher values of
the coefficients (same gain), but they are similar in relative
terms.

The computation time of the different model estimations
can be seen in Fig. 6. The model types with the best model
performance also take the most time for the estimation
(MKR-FIR, OE). The SKR-FIR method requires the least
computation time, since on the one hand the number of
hyperparameters is quite low and on the other hand only two
models have to be estimated – an unregularized FIR model to
perform the time-delay estimation by the CUSUM detector
and a regularized FIR model including the hyperparameter
optimization to obtain a good model. The estimation of
ARX models with an LS method always need the same
time. Therefore, it has a small variance in computation
time. However, it has to be executed quite often due to
the combinatorial options of the time delays. Due to the
nonlinear optimization required for the estimation of OE
models, it takes significantly longer in comparison to the
ARX model estimation, although the same number of models
have to be estimated.
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Fig. 4: Box plot of the time-delay estimation errors plotted
for the different models and inputs.
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Fig. 5: 40 impulse responses of the estimation methods
MKR-FIR and OE.
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Fig. 6: Box plot of the required computation time of the
respective estimation method.

A part of the test signals’ output along with the estimated
outputs of each median model is illustrated in Fig. 7. It can
be seen that the ARX model is significantly worse than the
other three model types. This is caused by the equation error
configuration and the bad time-delay estimation. The other
model types are comparable, whereas the model output of
the MKR-FIR is most similar to the process output y.

It has to be noted, by considering even more inputs, the
number of ARX and OE models to be investigated grows
exponentially. In contrast, the number of hyperparameters
for the regularized FIR models increases only linear.

550 560 570 580 590 600

0

2

4

discrete time k

y
,ŷ

MKR-FIR SKR-FIR ARX OE y

Fig. 7: The output of the median models on the test data set.

V. CONCLUSION

We extended novel regularization schemes for estimating
time-delay systems with regularized FIR models for the
multiple input single output (MISO) case. Two methods
are proposed: Single kernel regularized FIR models (SKR-
FIR) and multiple kernel regularized FIR models (MKR-
FIR). Both methods require the novel impulse response and
time-delay preserving (IRDP) matrix to estimate time-delay
system. These methods are compared with common autore-
gressive with exogenous input (ARX) and output error (OE)
models, for which a combinatorial search for the time delays
is performed. It is demonstrated that the hyperparameter
optimization in regularized FIR models leads to superior
model estimations (although the number of hyperparameters
is high). OE models also yield good results, however it comes
with the drawback of long computation times as well as a
high variance in the time-delay estimation.

Further research will done by applying the multiple kernel
regularization scheme to nonlinear time-delay processes.
This will be realized by linear local model networks.
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