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Abstract— Direct shooting is an efficient method to solve
numerical optimal control. It utilizes the Runge-Kutta scheme
to discretize a continuous-time optimal control problem making
the problem solvable by nonlinear programming solvers. How-
ever, conventional direct shooting raises a contradictory dynam-
ics issue when using an augmented state to handle high-order
systems. This paper fills the research gap by considering the
direct shooting method for high-order systems. We derive the
modified Euler and Runge-Kutta-4 methods to transcribe the
system dynamics constraint directly. Additionally, we provide
the global error upper bounds of our proposed methods. A set
of benchmark optimal control problems shows that our methods
provide more accurate solutions than existing approaches.

I. INTRODUCTION

Direct transcription methods play a crucial role in nu-
merical approaches for solving optimal control problems.
They convert the continuous-time problem into a finite-
dimensional one through discretization so that the optimal
control trajectory can be computed using nonlinear program-
ming (NLP) solvers. Because of the flexibility to handle
various types of systems and constraints, direct transcription
methods can be adapted to different real-world applications
[1]–[3]. Moreover, the abundance of useful monographs
[4], [5] and open-source software [6]–[8] facilitate the
widespread use of direct transcription methods.

Direct transcription methods can be categorized into direct
collocation and direct shooting. Unlike direct collocation,
which parameterizes the control trajectory and the state
trajectory simultaneously using a set of collocation points,
direct shooting only uses control parameterization. The states
are implied by integrating the dynamics forward in time.
Besides, direct shooting enables us to delve into the Markov
structure of discrete-time optimal control problems and facil-
itates the development of fast optimization techniques, such
as differential dynamic programming (DDP) [9] and iterative
linear quadratic regulator (ILQR) [10]. The well-developed
fast numerical optimal control solvers [11]–[13] relying on
this advantage make direct shooting rapidly popular in di-
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verse applications, such as autonomous driving [14], mobile
vehicles [15], and quadrupedal robots [16].

Direct shooting will reduce accuracy if the approximation
schemes used in problem transcription are not chosen appro-
priately. A typical issue is the contradictory dynamics when
dealing with high-order system dynamics. This issue exists in
all direct transcription methods but was mostly ignored until
the recent research on direct collocation for second-order
systems [17]–[19]. They found that using the augmented state
to transform the second-order ordinary differential equation
to a first-order one will introduce additional numerical error.
To solve this issue, the second-order trapezoidal and second-
order Hermite-Simpson methods were introduced in [17].
Further, Simpson et al. [18] and Martin et al. [19] extended
the idea to the global collocation method and the Legendre-
Gauss pseudospectral collocation method, respectively.

Different from existing works, our research focuses on
direct shooting. The direct collocation relies on the function
approximation for problem transcription, which cannot be
applied to the shooting method directly. Besides, the above
works only demonstrated the effectiveness of their methods
in numerical examples. These factors motivate our research.

This paper investigates the direct shooting method for
high-order systems. Here are our contributions:

1) We evaluate the contradictory dynamics issue of the
direct shooting for high-order systems and propose the
modified Euler and Runge-Kutta-4 (RK4) methods to address
the issue.

2) We provide the global error upper bounds the proposed
modified shooting methods (Theorem 1 and Theorem 2), ad-
dressing the lack of convergence analysis in recent numerical
schemes for high-order systems.

3) We evaluate our proposed methods with several bench-
mark optimal control problems, and the numerical results
illustrate the superior performance of the proposed methods.

Notations: The notation Rn denotes the set of real vectors
with n elements. The i-th element of a vector v ∈ Rn is
denoted by [v]i. The notation tk denotes the time at knot
point k. The notation xk = x(tk) and uk = u(tk) denote
the state and control at knot point k, respectively. We use
q̇(t) = d

dtq(t), q̈(t) = d2

dt2 q(t), and q(i)(t) = di

dti q(t) to
denote the first-order, second-order and the ith-order time
derivative of q(t). We use interval notation j ∈ [a, b) :=
{a, a + 1, . . . , b − 1}, j ∈ [a, b] := {a, a + 1, . . . , b}, for
a, b ∈ N to denote the sets of consecutive integers. The norm
∥ · ∥in this paper is assumed to be Euclidean if not specified.
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II. NUMERICAL OPTIMAL CONTROL

A. Nonlinear Optimal Control

Consider a general nonlinear system

ẋ(t) = f1(x(t), u(t)), (1)

where x(t) ∈ Rnx is the state and u(t) ∈ Rnu is the control
input. The performance index for (1) is defined as

J = ϕ(x(0), x(tf )) +

∫ tf

0

l(x(τ), u(τ))dτ, (2)

where ϕ(·) is the terminal cost function and l(·) is the
intermediate cost function. Given a general inequality con-
straint g(x(t), u(t)) ≤ 0 and a boundary equality constraint
b(x(0), x(tf ), tf ) = 0, the problem to be solved is presented
as follows.
Problem 1: (General Optimal Control Problem)

min
x(·),u(·)

ϕ(x(0), x(tf )) +

∫ tf

0

l(x(τ), u(τ))dτ (3a)

s.t. g(x(t), u(t)) ≤ 0, 0 ≤ t ≤ tf , (3b)
b(x(0), x(tf ), tf ) = 0, (3c)
ẋ(t) = f1(x(t), u(t)), 0 ≤ t ≤ tf . (3d)

B. First-order Direct Shooting

Problem 1 is difficult to solve because it involves infinite-
dimensional optimization. Classical methods require deriving
optimal conditions based on the calculus of variations and
solving them indirectly [4]. The direct shooting method
utilizes the discretization technique to convert Problem 1
into a finite-dimensional optimization problem. In particular,
the continuous state and control functions are approximated
by discrete sets of real numbers, known as knot points. In
particular, for 0 ≤ t ≤ tf , we have

t → t0, . . . , tk, . . . , tN ,

x(t) → x0, . . . , xk, . . . , xN ,

u(t) → u0, . . . , uk, . . . , uN ,

where xk and uk are the approximations to x(tk) and u(tk),
respectively. With the initial condition x(0) = x0, direct
shooting builds state propagation equation based on Runge-
Kutta scheme [4], i.e., ∀k ∈ [0, N),

xk+1 = xk +

s∑
i=1

biKi, (4a)

Ki = h · f1(xk +

i−1∑
j=1

ai,jKj , uk), (4b)

where h = tk+1 − tk is the step size, ai,j ∈ R, bi ∈ R are
coefficients determined by Taylor theorem, and s is the stage
of Taylor expansion. The well-known Euler method and the
Runge-Kutta-4 (RK4) method are with s = 1 and s = 4,
respectively.

By utilizing the Runge-Kutta scheme, we can convert the
decision variables from functions to real numbers. Moreover,
we can convert the differential equation constraints (3d) into

equality constraints and convert the integral in the objective
function (3a) into a summation accordingly. Besides, through
enforcing the inequality constraint (3b) and the boundary
equality constraint (3c) at each knot point, Problem 1 is
converted into a finite-dimensional optimization problem,
which can be solved using off-the-shelf NLP solvers.

C. Downside of First-order Direct Shooting Method
It should be noted that Problem 1 considers the first-order

nonlinear system. However, many practical control systems
are in a high-order form, i.e.,

q(N )(t) = fN (q(t), q(1)(t), · · · , q(N−1)(t), u(t)), (5)

where q(t) ∈ Rnq is the system configuration and N
determines the order. In order to solve the optimal control
problem for the high-order system (replacing (3d) with (5)
in Problem 1) using the first-order direct shooting method,
some proposed to use following transformation:

Transformation 1: The system dynamics (5) is cast
into a first-order form using the augmented state x(t) =
(q(t), q(1)(t), · · · , q(N−1)(t)), i.e.,

ẋ(t) =


q(1)(t)
q(2)(t)

...
q(N )(t)

 = f1(x(t), u(t)) =


q(1)(t)
q(2)(t)

...
fN (q(t), · · ·, u(t))

 .

Transformation 1 is widely used in control and robotics
[11]–[13]. However, combining it with (4) leads to a contra-
diction. We use the following example to illustrate it.

Example 1: Consider a linear second-order system

q̈(t) = u(t). (6)

Since the system is linear, we can use the Euler method
(s = 1 in (4)) to handle the differential equation constraint.
Following with the Euler method with Transformation 1,
the differential equation constraint (6) is converted into the
following equality constraints:

qk+1 = qk + q̇kh, k ∈ [0, N), (7a)
q̇k+1 = q̇k + ukh k ∈ [0, N). (7b)

However, the analytical state propagation equation is

qk+1 = qk + q̇kh+
1

2
ukh

2, k ∈ [0, N), (8a)

q̇k+1 = q̇k + ukh k ∈ [0, N). (8b)

It is easy to see that some transcription error is introduced
to (7). (7) approximates both q(t) and q̇(t) as linear function
between adjacent knot points. However, considering the
inherent mathematical relationship between q(t) and q̇(t),
q(t) should be quadratic if q̇(t) is linear.

The above discussion indicates that the combination of
Transformation 1 with (4) reduces the approximation ac-
curacy. Therefore, it is critical to consider the inherent
relationship of q(t) and its time derivatives when designing
the numerical scheme for the high-order system. In the next
section, modified direct shooting methods are proposed to
alleviate the aforementioned issues of the conventional first-
order direct shooting method.
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III. MODIFIED DIRECT SHOOTING

In this section, we present two modified direct shooting
methods: the Euler method and the RK4 method. Instead of
utilizing Transformation 1, we derive the state propagation
equation from the system dynamics equation. To provide a
clear illustration, we focus on the second-order system, i.e.,

q̈(t) = f2(q(t), q̇(t), u(t)). (9)

It serves as a key example to explain the fundamental concept
behind our proposed method. Subsequently, we will discuss
the extension of this approach to the high-order system (5).

A. Second-order Euler Method

Proposition 1: Under the first-stage Runge-Kutta scheme,
the second-order differential equation constraint (9) is equiv-
alent to the following equality constraints, i.e., ∀k ∈ [0, N),

qk+1 = qk + hq̇k +
1

2
hK1, (10a)

q̇k+1 = q̇k +K1, (10b)
K1 = h · f2(qk, q̇k, uk). (10c)

Proof: For tk ≤ t ≤ tk+1, the Euler method assumes that
q̇(t) is approximated by the first-order Taylor polynomial
around knot point k. Hence, we have

q̇(t) = q̇k + q̈k(t− tk).

Through writing q(t) in the integral form, we have

q(t) = qk +

∫ t

tk

q̇(τ) dτ,

q(t) = qk + q̇k(t− tk) +
1

2
q̈k(t− tk)

2.

As q̈k = f2(qk, q̇k, uk), (10) is directly followed from it. The
transcription of (9) by Euler method is completed. □

Note that (10) builds state propagation equations for the
second-order system. In this case, the first-order Taylor series
approximation only applies to the first-order derivative of
the configuration (10b), while the configuration propagation
(10a) is calculated based on the integral relationship between
q(t) and q̇(t). It is worth mentioning that with the formula-
tion shown in (10), the control input uk takes effect on the
next configuration qk+1, which solves the delay issue of the
first-order method as explained in the Example 1.

B. Second-order RK4 Method

The Euler method is a simple and straightforward numer-
ical method to handle the differential equation. However, it
has a larger truncation error compared to other numerical
methods [20], which means that the accuracy of the solu-
tion decreases rapidly as the step size h increases. In the
following section, we will introduce the RK4 method for the
second-order system. It is a more accurate and widely used
numerical scheme in real-world robotic applications.

Proposition 2: Under the fourth-stage Runge-Kutta
scheme, the second-order differential equation constraint

(9) is equivalent to the following equality constraints, i.e.,
∀k ∈ [0, N),

qk+1 = qk + hq̇k +
h

5
K1 +

h

6
K2 +

h

10
K3 +

h

30
K4, (11a)

q̇k+1 = q̇k +
1

6
K1 +

1

3
K2 +

1

3
K3 +

1

6
K4, (11b)

K1 = h · f2(qk, q̇k, uk). (11c)

K2 = h · f2(qk +
h

2
q̇k, q̇k +

K1

2
, uk), (11d)

K3 = h · f2(qk +
h

2
q̇k, q̇k +

K2

2
, uk), (11e)

K4 = h · f2(qk + q̇k, q̇k +K3, uk). (11f)

Proof: For tk ≤ t ≤ tk+1, the RK4 method assumes that
q̇(t) follows the fourth-order Taylor polynomial around knot
point k. Hence we have

q̇(t) = q̇k +

4∑
i=1

1

i!
(t− tk)

if
(i−1)
2,k . (12)

The notation f (i)(·) denotes the ith-order time-derivative of
function f(·). Through writing q(t) in the integral form, we
have the following relationship:

q(t) = qk + q̇k(t− tk) +

4∑
i=1

1

(i+ 1)!
(t− tk)

i+1f
(i−1)
2,k .

Denote that

K1 = hf2,k, K2 = hf2,k +
h2

2
f
(1)
2,k ,

K3 = hf2,k +
h2

2
f
(1)
2,k +

h3

4
f
(2)
2,k ,

K4 = hf2,k + h2f
(1)
2,k +

h3

2
f
(2)
2,k +

h4

4
f
(3)
2,k .

We have

q̇(tk+1) = q̇k +
1

6
hf2,k +

1

3
(hf2,k +

h2

2
f
(1)
2,k )

+
1

3
(hf2,k +

h2

2
f
(1)
2,k +

h3

4
f
(2)
2,k )

+
1

6
(hf2,k + h2f

(1)
2,k +

h3

2
f
(2)
2,k +

h4

4
f
(3)
2,k )

= q̇k +
1

6
K1 +

1

3
K2 +

1

3
K3 +

1

6
K4,

q(tk+1) = qk + hq̇k +
h2

5
f2,k +

h

6
(hf2,k +

h2

2
f
(1)
2,k )

+
h

10
(hf2,k +

h2

2
f
(1)
2,k +

h3

4
f
(2)
2,k )

+
h

30
(hf2,k + h2f

(1)
2,k +

h3

2
f
(2)
2,k +

h4

4
f
(3)
2,k )

= qk + hq̇k +
h

5
K1 +

h

6
K2 +

h

10
K3 +

h

30
K4.

By Taylor’s theorem in multiple variables [20], we can obtain
a compact form for Ki, as shown in (11c)-(11f). Hence the
transcription of (9) by RK4 method for the second-order
system is completed. □
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Note that (11) builds state propagation equations for
the second-order system with a high-order Taylor series
approximation. Similar to Statement 1, the control input
uk takes effect immediately to the next configuration qk+1.
Compared to the Euler method, the RK4 method utilizes
a weighted average of the derivative estimations to achieve
fourth-order Taylor series approximation on q̇(t), which
results in higher numerical accuracy than the Euler method.
The detailed convergence analysis of our proposed methods
will be discussed in Section IV.

C. Extension to the High-order System

The above results demonstrate the key idea of the proposed
modification in the second-order system. To extend this idea
to the general high-order system, one can use the relationship
between successive orders of the time derivative of q(t). For
instance, within the time interval tk ≤ t ≤ tk+1, we have
the following integral expressions.

q(N−2)(t) = q
(N−2)
k +

∫ t

tk

q(N−1)(τ) dτ,

q(N−3)(t) = q
(N−3)
k +

∫ t

tk

q(N−2)(τ) dτ,

...

q(t) = qk +

∫ t

tk

q(1)(τ) dτ.

By employing the derivation of the Runge-Kutta scheme
described in Proposition 1 and Proposition 2 and recognizing
the above integral relationship, we can effectively extend the
proposed idea to the high-order system.

IV. CONVERGENCE ANALYSIS

In this section, we conduct the convergence analysis on
the modified Euler and RK4 methods. To conduct analysis,
we first define the numerical approximation error and the
convergence condition.

Definition 1: (Global Truncation Error [20]) The global
truncation error of the configuration approximation at time
t = tk is defined as

ek(h) = q(tk)− qk,

where q(tk) is the exact solution of the configuration at t =
tk, qk is the approximation of the solution at t = tk with the
condition q0 = q(0), and h = tk+1 − tk.

Definition 2: (Convergence Condition [20]) The config-
uration approximation is said to be convergent with respect
to the differential equation it approximates if

lim
h→0

max
1≤k≤N

∥ek(h)∥ = 0.

By these definitions, we have the following results.
Theorem 1: (Convergence of Second-order Euler Method)

The configuration approximation stated in (10) is convergent
with the global truncation error

∥ek(h)∥ ≤ αh3

6hL+ 3h2L2
(etfL − 1), (13)

if there exists a Lipschitz constant L > 0 with ∥q(i+1)(t1)−
q(i+1)(t2)∥ ≤ L∥q(i)(t1)− q(i)(t2)∥ for 0 ≤ t1, t2 ≤ tf and
i ∈ [0, 1], and a constant α > 0 with ∥q(3)(t)∥ ≤ α for
0 ≤ t ≤ tf .
Proof: See [21]. □

Theorem 2: (Convergence of Second-order RK4 method)
The configuration approximation stated in (11) is convergent
with the global truncation error

∥ek(h)∥ ≤ βh6

720
∑5

i=1
1
i!h

iLi
(etfL − 1), (14)

if there exists a Lipschitz constant L > 0 with ∥q(i+1)(t1)−
q(i+1)(t2)∥ ≤ L∥q(i)(t1)− q(i)(t2)∥ for 0 ≤ t1, t2 ≤ tf and
i ∈ [0, 4], and a constant β > 0 with ∥q(6)(t)∥ ≤ β for
0 ≤ t ≤ tf .
Proof: See [21]. □

Remark 1: For notational clarity, we define the Lipschitz
continuity with the same constant L for all q(i).

Remark 2: We assume q(t) ∈ C3[0, tf ] for the Euler
method and q(t) ∈ C6[0, tf ] for the RK4 method. Though
this assumption cannot be guaranteed for all control systems,
widely used practical dynamics, such as the unicycle, bicycle,
and quadrotor, satisfy the assumption.

The above results show that the proposed modified Euler
and RK4 methods converge. We can use the theoretical
results on global truncation error bound to estimate the ac-
curacy of the differential equation approximation, which can
further benefit the estimation of the accuracy of the numerical
solution and the implementation of mesh refinement.

V. NUMERICAL EXPERIMENTS

To evaluate the performance of the proposed methods, we
compare the proposed modified shooting methods with the
conventional ones on a number of benchmark optimal control
problems for second-order systems. We choose the following
four methods1.

1) 1st-Euler: the Euler method with Transformation 1.
2) 2nd-Euler: the modified Euler method in Proposition 1.
3) 1st-RK4: the RK4 method with Transformation 1.
4) 2nd-RK4: the modified RK4 method in Proposition 2.
The problems are implemented in MATLAB with the

symbolic framework CasADi [22] and the NLP solver IPOPT
[23]. Each problem minimizes a quadratic objective and
is subject to initial and terminal state constraints. In each
problem, the final time tf is a fixed value.

A. Problem Descriptions

Fig. 1 illustrates the schematics, configuration vector, and
input vector of the benchmark system dynamics. The tasks
to be solved are described as follows.

1) Cartpole (N = 100): a pole attached to a cart via an
unactuated joint. The cart can move along a frictionless
track. The task is to swing the pole from its downward

11st-Euler and 1st-RK4 are widely used in existing numerical optimal
control frameworks, such as ALTRO [11], OCS2 [12], and PWA [13].
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Cartpole Block Acrobot

𝑞 = [𝑥, 𝜃] 𝑇 𝑞 = [𝜃1 ,𝜃2]
𝑇

1D Quadrotor Five Links Biped

𝜃

𝑞 = 𝑧 𝑞 = [𝑥, z,𝜃]𝑇

𝑢 = 𝑇 𝑢 = [𝑇1, 𝑇2]
𝑇

x

z

2D Quadrotor

𝑢 = 𝐹 𝑢 = 𝑇

𝐹𝐹

𝑞 = 𝑥
𝑢 = 𝐹

𝜃

𝜃1

𝜃2

𝑇

𝑇
𝑇1

𝑇2

𝑞 = [𝜃1 ,𝜃2 , 𝜃3, 𝜃4, 𝜃5]
𝑇

𝑢 = [𝑇1,𝑇2, 𝑇3 , 𝑇4 , 𝑇5]
𝑇

Fig. 1: Schematics, configuration, and input vectors of the
benchmark system dynamics.

equilibrium position to its upward equilibrium position
while adhering to certain control limits.

2) Block (N = 50): double integrator with one configura-
tion. The task is to move the block with one meter.

3) Acrobot (N = 50): double pendulum system with one
actuation. The task is to swing the Acrobot from its
downward position to its upward position.

4) 1D Quadrotor (N = 50): simplified quadrotor model
with one configuration. The task is to move the quadro-
tor with one unit of length while overcoming gravity.

5) 2D Quadrotor (N = 30): simplified quadrotor model
with three configurations and two control inputs. The
system is tasked to move from the start pose to the
target pose subject to control limits.

6) Five Links Biped (N = 100): simplified bipedal model
with five links connected by revolute joints. The joints
are actuated by torque motors. The detailed dynamics
of the robot can be found in [5], with the parameters
of the model matching those of the RABBIT [24]. The
task is to optimize the robot’s gait subject to control
limits.

B. Performance Metrics

1) Accuracy: To compare the accuracy of the four meth-
ods on the six problems mentioned above, we define the
following error metric

ε(t) = q̂(t)− q∗(t), (15)

where q∗(t) is the optimal configuration trajectory, while
q̂(t) is the configuration recovered from the solver result
{qk, q̇k, q̈k}Nk=0 using cubic splines. We set large N for
solvers to get the results and treat them as the optimal solu-
tions for the error metric. To evaluate the total transcription
error in each time interval, we use the following expression

TABLE I: Total Transcription Error Comparison

Problem \ Method 1st-Euler 2nd-Euler 1st-RK4 2nd-RK4
Cartpole 2.73 2.02 1.35 1.29
Block 0.032 0.024 0.024 0.024
Acrobot 0.682 0.291 0.283 0.274
1D Quadrotor 0.007 0.004 0.004 0.004
2D Quadrotor 6.612 3.345 2.780 2.778
Five Links Biped 0.0162 0.0169 0.006 0.006

TABLE II: Timing Performance Comparison

Problem \ Method 1st-Euler 2nd-Euler 1st-RK4 2nd-RK4
Cartpole 0.020s 0.026s 0.083s 0.079s
Block 0.010s 0.010s 0.013s 0.014s
Acrobot 0.767s 0.519s 3.301s 3.427s
1D Quadrotor 0.031s 0.032s 0.051s 0.057s
2D Quadrotor 0.034s 0.038s 0.052s 0.063s
Five Links Biped 0.469s 0.500s 2.207s 2.123s

to determine the accumulated error in each time interval:

ηk =

∫ tk+1

tk

|
n∑

i=1

([ε(τ)]i)|dτ,

where the integral can be computed using the Rhomberg
quadrature [20]. The total transcription error of a trajectory
is noted as ηtotal =

∑N−1
k=0 ηk.

2) Timing: To compare the run time performance, we
measure the IPOPT solver time for each method. The initial
guesses for the IPOPT solver were set to zeros for all
problems and all methods to eliminate the effect from the
initial guess. The experiments are conducted on a desktop
computer equipped with an i7, 8-core 12th generation CPU
at 2.10 GHz without GPU acceleration.

C. Results

TABLE I and TABLE II show accuracy results and
timing performance results, respectively. The 2nd-Euler is
more accurate than the 1st-Euler while having a similar
computation time. It is also true for the 2nd-RK4 and the
1st-RK4. This indicates that our proposed methods increase
the approximation accuracy by considering the inherent
relationship between the system configuration and its time
derivatives. Besides, among all the methods, the 2nd-RK4
provides the most accurate results because it is a higher-
order transcription method and uses the proposed method to
handle the second-order system dynamics constraints.

We also evaluate the accuracy of the above four methods
in relation to the number of time intervals N , as well
as the timing performance in relation to the number of
time intervals. The typical results of the cartpole swing-up
problem are shown in Fig. 2 and Fig. 3. Fig. 2 shows the
result of the timing performance comparison, while Fig. 3
shows the result of the total transcription error versus the
number of time intervals. The timing performance of the
original methods and the modified methods are similar. It
is clear that the modified Euler method has a significant
improvement over the original Euler method, and the mod-
ified RK4 method performs best among the four methods.
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Fig. 2: The timing performance comparison of different methods
in the cartpole swing-up problem in relation to the number of time
intervals N .
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Fig. 3: The total transcription error comparison of different meth-
ods in the cartpole swing-up problem in relation to the number of
time intervals N .

Furthermore, both the Euler method and the RK4 method
converge as the number of time intervals increases. This
confirms the theoretical results about convergence presented
in Theorem 1 and Theorem 2.

VI. CONCLUSION

In this paper, we studied numerical optimal control for
high-order systems with the direct shooting method. We
demonstrated the contradictory dynamics issue of the con-
ventional direct shooting method when handling high-order
systems and derived the detailed modified Euler and Runge-
Kutta-4 methods for second-order systems. We also illus-
trated how to extend the proposed idea to high-order systems.
Additionally, we proved the convergence properties of the
proposed methods. Our methods were evaluated with several
optimal control problems, which illustrated the superior per-
formance of our methods. We are now working on extending
the proposed methods to DDP-based algorithms, which can
further enhance the advantage of direct shooting in numerical
optimal control.
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