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Abstract— This paper explores nonlinear model predictive
control (NMPC) for an unmanned aerial vehicle (UAV) oper-
ating in icing conditions, simulated as asymmetric icing on the
wings and icing on the propeller. First, a NMPC flight controller
based on a nominal model is tested together with a disturbance
observer to handle unmodelled effects. Second, we test a NMPC
that includes the effect of asymmetric icing in the prediction
model to explore how it affects its performance and robustness,
and simulations are performed to compare this NMPC to
the NMPC without icing knowledge, and to a conventional
PID controller. The results show a clear improvement in the
performance of the NMPC when the NMPC prediction model
includes icing, as well as better performance and robustness in
extreme icing asymmetry cases compared to the PID controller.
Additional simulations were performed, indicating a significant
degree of robustness.

I. INTRODUCTION

As the use of unmanned aerial vehicles (UAVs) increase,
controllers that are able to operate under severe weather
conditions are needed. This paper focuses on in-flight icing,
which has been shown to lead to a degradation of the aerody-
namic performance of the aircraft, with a significant decrease
in lift, increase in drag, and a deterioration of the stall limits
[1]. This affects a small UAV more severely than a larger
aircraft, as ice accretion will make up a more significant
part of its total weight, lift and drag. As the ice conditions
cannot be identified visually by a pilot in this case, the
controller must be able to handle them and ensure the safety
of the UAV. Knowledge about the icing model is therefore
needed and progress has been made, where Winter’s work [2]
improved the aerodynamic model of the Skywalker X8 [3],
the UAV used in this paper, with its aerodynamic coefficient
data given for iced and clean airfoils. Kleiven [4] extended
the model to account for asymmetric icing on the wings, as
ice accretion and ice shedding might not occur at the same
time on both wings. Additionally, propeller icing results in a
significant decrease in thrust and an increase in torque, and
a propeller icing model was developed by Müller [5] for a
propeller similar to the Skywalker X8’s.
For UAV control, inner-loop PID controllers are typically
used. Previous work by Högnadottir [6] explores model
reference adaptive control (MRAC), which was found to per-
form better than the PID controller under certain conditions.
Although having overall similar tracking performance, both
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struggling the most with severely asymmetric icing. Non-
linear Model Predictive Control (NMPC), on the other hand,
takes nonlinear effects into account and has the advantage of
taking constraints as part of its optimization problem, being
able to consider actuator and safety limits. Due to the fast
dynamics of a UAV, NMPCs are usually used for guidance
[7], while a PID controller handles the low-level control. Few
works such as [8] explore inner-loop MPC control of a fixed-
wing UAV. Moreover, the NMPC developed in Reinhardt’s
work [9], [10] also considers nonlinearities, and it showed in
experiments that real-time control was feasible using state-
of-the-art numerical algorithms and hardware, while having
a similar or superior performance compared to industry-
standard PID controllers.
In this paper, Reinhardt’s NMPC is tested in icing con-
ditions in a Matlab/Simulink simulator, including Winter’s
and Kleiven’s extensions to the icing model, [2], [4]. The
simulator is also expanded to include Müller’s model for
icing on the propeller, adapted to the propeller of the
Skywalker X8. Similar to [10], the NMPC is used with a
disturbance observer to handle disturbances and unmodelled
effects. The disturbance observer’s ability to handle icing is
explored here, as well as how the NMPC can be modified to
increase its robustness and performance when subject to icing
and wind disturbances, particularly asymmetric icing on the
wings, as the PID controller had its greatest performance
degradation in this case. More specifically, the performance
of the NMPC with icing knowledge is compared to the
one of the PID and the NMPC without icing knowledge
in a relatively low airspeed simulation in different icing
levels. The NMPC with icing knowledge was additionally
modified to show how its performance might change when
run in practice, considering that the perfect information
on the states and icing level used in the simulation might
not be achieved. Except for improvements in the tuning of
the NMPC controllers and some additional simulations, the
findings and results presented in this paper originate from
the Master’s thesis on the same topic [11].

II. AERODYNAMIC MODEL

The kinematic and dynamic equations of the UAV are given
in the body-fixed frame { b} and NED frame {n}, which we
assume to be inertial, where the state of the model is given
by x = [pn

nb
⊤, Θnb

⊤, vb
nb

⊤
, ωb

nb

⊤
]⊤. We use the notation

from [12], where e.g. pn
nb denotes the position of { b} in

{n} expressed in coordinates of {n}. This model is used to
simulate the UAV, and can be found in [11]. The vector pn

nb
describes the position of the UAV in the inertial frame {n},
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vb
nb = [u, v, w]⊤ is the velocity vector in the body-fixed

frame { b}. The Euler angles roll, pitch and yaw, Θnb =
[ϕ, θ, ψ]⊤, in {n}, describe the orientation of the UAV, and
ωb

nb = [p, q, r]⊤ is the angular velocity vector, given in
{ b}, where p, q, and r are the roll, pitch and yaw rates.
Reinhardt [9] utilizes an alternative dynamic model, given in
the stability { s} and wind {w} frames, with respect to the
aerodynamic quantities airspeed Va, angle of attack (AOA)
α and sideslip angle (SSA) β, given by:

Va = ||vb
r|| =

√
u2r + v2r + w2

r , (1a)

α = arcsin

(
wr

ur

)
, β = arcsin

(
vr
Va

)
. (1b)

The relative velocity vector vb
r = [ur, vr, wr]

⊤ is given by
vb
r = vb

nb−R⊤
nbv

n
nw, where vn

nw is the wind velocity vector
in the inertial frame, and Rnb = R(Θnb) is the rotation
matrix from { b} to {n}. To rotate vectors in the frames { b},
{ s}, {w}, we use the rotation matrices Rsb(α), Rws(β) and
Rwb(α, β) = Rws(β)Rsb(α), described in [13].

A. The UAV Model

Following Reinhardt’s work [9], the UAV model used in
the formulation of the NMPC is given in stability-wind
frame representation. In this model, pn

nb is not included
in the state vector since it is not needed to control speed
and attitude. The orientation is given by the rotation matrix
Rnb instead of the Euler angles Θnb, in order to obtain
a globally unique and non-singular attitude representation.
The velocity is represented in wind frame using Va, α and
β, and the angular velocity is given in the stability frame by
ωs

nb = Rsbω
b
nb. The model is then given by:

 V̇a
β̇Va

α̇Va cosβ

 =
1

m
Rwb(F

b
a + F b

t + F b
g )− ωw

nb × vw
r (2a)

Ṙnb =
[
ṙx, ṙy, ṙz

]⊤
= RnbS(R

⊤
sbω

s
nb) (2b)

ω̇s
nb = −ωs

bs × ωs
nb + (Js)−1(RsbM

b
a − ωs

nb × Jsωs
nb),
(2c)

where ωw
nb is the angular velocity vector decomposed in

the wind frame {w} and given by ωw
nb = Rwbω

b
nb. The

matrix Js = RsbJ
bR⊤

sb is the inertia matrix decomposed
in the stability frame { s}, ωs

bs = [0, α̇, 0]⊤ is the angular
velocity of { s} relative to the body-fixed reference frame
and decomposed in { s}, and vw

r = [Va, 0, 0]
⊤ is the relative

velocity vector decomposed in {w}.

B. Forces and Moments

The vector M b
a = [l, m, n]⊤ is the aerodynamic moment in

body-fixed reference frame, and the forces F b
a , F b

g , F b
t are

the aerodynamic, gravitational and propulsion forces, where

F b
a = R⊤

wbF
w
a = R⊤

wb

−Fdrag

Fside

−Flift

 . (3)

The aerodynamic model is given by the quasi-linear approx-
imation:

Fdrag

Fside

Flift

 = q̄S

 CD(α) + CDq

c
2Va

q + CDδe
δe

CS(β) + CSp

b
2Va

p+ CSr

b
2Va

r + CSδa
δa

CL(α) + CLq (α)
c

2Va
q + CLδe

δe

 (4)

 l
m
n

 = q̄S

 b(Cl(β) + Clp
b

2Va
p+ Clr

b
2Va

r + Clδa
δa)

c(Cm(α) + Cmq
(α) c

2Va
q + Cmδe

δe)

b(Cn(β) + Cnp

b
2Va

p+ Cnr

b
2Va

r + Cnδa
δa)

, (5)

where S, b, c and q̄ = 1
2ρV

2
a are physical parameters of the

UAV, and δe ∈ [δe,min, δe,max] and δa ∈ [δa,min, δa,max]
are the elevator and aileron deflections. Notice that a rudder
deflection δr is not included in this model as the Skywalker
X8 UAV used in the case study does not have a rudder. The
aerodynamic coefficients C∗ are given by Winter et. al. [2],
based on wind tunnel data for the Skywalker X8 [3] and
CFD analysis of the UAV in icing. The parameters used can
be found in [11].
The gravitational force F b

g follows Newton’s second law and
is given by F b

g = R⊤
nbmgn = R⊤

nb[0, 0, mg]
⊤, where m is

the mass of the UAV and g is the gravitational constant. The
propulsion force F b

t is based on [14] and given by:

F b
t =

T0
0

 =

ρD4

2π2 CT (J)ω
2

0
0

 , (6)

where ρ is the air density, D is the propeller diameter, and
ω = δtωmax is the propeller speed that is proportional to
throttle δt ∈ [0, 1]. The thrust coefficient CT (J) is

CT (J) = CT,0 + CT,1J, J =
2πVa
ωD

, (7)

where J is the advance ratio, and CT,0 = 0.126, CT,1 =
−0.1378, [14].

III. ICING MODEL

A. Asymmetric Icing for Aerodynamic Forces and Moments
The model for icing on the wings is based on aerodynamic
coefficient data from [2] given for the clean and iced states
as C∗,clean and C∗,iced. The icing data corresponds to mixed
ice, the most severe icing type in terms of aerodynamic
performance degradation [1], and is considered valid for this
model. The coefficients in intermediate icing states are then
approximated as in [4]:

C∗(ζ) = ζC∗,iced + (1− ζ)C∗,clean, (8)

with ζ ∈ [0, 1] denoting the icing level on each wing, where
ζ = 0 = clean wing, and ζ = 1 = fully iced wing. As ice
can build up or shed asymmetrically, the aerodynamic forces
and moments on each wing are considered by extending the
icing model to the asymmetric model found by Kleiven [4].

B. Propulsion Icing Model
Based on the work of Müller [5], a model for the thrust
coefficient in icing conditions can be given by:

CT,iced = CT (J) (1 + min(TWC, TWCmax)∆CT (T )),
(9)

∆CT (T ) = ∆CT,0 +∆CT,1T +∆CT,2T
2 (10)
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where CT (J) is given by (7), T is the temperature in [◦C],
TWC is the total water amount collected on the propeller,
and TWCmax is the maximum amount of water collected
on the propeller before ice shedding is expected. They are
given by:

TWC = t · LWC · ωD
2
, (11)

TWCmax =
Amax

D
2 ω

2
, (12)

Amax = Amax,0 +Amax,1T
2, (13)

where t is the icing accretion time, LWC is the liquid water
content, ω is the rotation rate of the propeller and D is the
propeller diameter. Eq. (13) describes the adhesion forces
of the ice on the propeller. It can be seen that there is an
equilibrium between Amax and TWCmax, as ice shedding
occurs when the amount of ice collected is too large for the
adhesion forces to hold it. For information about the values
used as well as details on how they were found, see [11].

IV. NMPC CONTROLLERS

Following [9], the NMPC’s dynamic model is given by Eq.
(2), and can be written as ẋ = f(x,u) where the state vector
is defined as x = [Va, β, α, r

⊤
x , r

⊤
y , r

⊤
z ,ω

s
nb

⊤, δa, δe, δt]
⊤ ∈

Rnx and the input as u = [δ̇a, δ̇e, δ̇t]
⊤ ∈ Rnu . Asymmetric

icing is included as an option in the NMPC prediction
model, whereas the propeller icing model is only used
in simulation model. The model is discretized using an
explicit Runge-Kutta method of order 4, represented as x(k+
1) = fRK4(x(k),u(k)). In order to account for unmodeled
dynamics, modeling inaccuracies and disturbances, and to
obtain offset-free control, a disturbance observer based on
[10] for the states [Va, β, α, ω

s
nb

⊤]⊤ leads to:

fd(x,u,d) ≜ f(x,u) +
[
d⊤
f , 01×9, d⊤

m, 01×3

]⊤
.

The disturbance estimates df and dm are initiated as
df (0) = dm(0) = 03×1 and updated with the NMPC:

df (t)← df (t) +Lf

[
∆Va(t), ∆β(t), ∆α(t)

]⊤
, (14)

dm(t)← dm(t) +Lm∆ωs
nb(t), (15)

where ∆z(t) = z(t)−znmpc(t) represents the error between
a state and the state predicted by the NMPC, and Lf and
Lm are the observer gain matrices, given by:

Lf = diag(lVa
, lβ , lα), Lm = diag(lp, lq, lr). (16)

The NMPC tracks the reference r, defined as

r ≜
[
Va,ref , Γ⊤

ref , ω⊤
ref

]⊤
, (17)

where Γref ∈ S2 is the reference for the reduced attitude
vector, used in order to represent roll angle ϕ ∈ [−π, π] and
pitch angle θ ∈ [−π

2 ,
π
2 ], and can be parameterized as:

Γ(ϕ, θ) =
[
− sin θ, cos θ sinϕ, cos θ cosϕ

]⊤
. (18)

The reduced attitude vector is used to avoid singularities in
the Euler angles, and to ensure that the NMPC can handle
the full range of the attitude space without trigonometric
functions. The reference vector r also contains ωref to add a

damping effect and achieve a smoother response. The vector
ωref is derived from ϕref and θref , as explained in [15].
In addition, constraints on the state x, input u and slack
variables s are added to the problem to ensure that the
operational and physical limits of the UAV are not surpassed:

Va − V a + sVa
≥ 0

β − β + sβ ≥ 0

α− α ≥ 0

ps − ps ≥ 0

qs − qs ≥ 0

rs − rs ≥ 0

δa + δe − δel ≥ 0

−δa + δe − δer ≥ 0

δt − δt ≥ 0

u− u ≥ 0

−Va + V a + sVa
≥ 0

−β + β + sβ ≥ 0

−α+ α ≥ 0

−ps + ps ≥ 0

−qs + qs ≥ 0

−rs + rs ≥ 0

−δa − δe + δel ≥ 0

δa − δe − δer ≥ 0

−δt + δt ≥ 0

−u+ u ≥ 0,

(19)

where the slack variables s = [sVa
, sβ , sVa , sβ ]

⊤ ≥ 0
have been added to ensure the feasibility of the problem.
Slack variables were not deemed necessary for the angular
velocity, whereas for α they were omitted to prevent it from
violating the stall limit, although they could have been added
with a higher weight as the unfeasibility risk remains. Ineq.
(19) is summarised by the function h(x,u, s) ≥ 0. The
optimal control problem (OCP) over a prediction horizon Th,
discretized into N steps with shooting interval ∆t = Th/N
gives the nonlinear problem (NLP):

min
x(·),u(·)

N−1∑
k=0

ℓ(x(k|t),u(k|t), r(k|t)) + 1

2
s⊤Ps, (20a)

s. t. x(0|t) = x(t) (20b)
x(k + 1|t) = fRK4(x(k|t),u(k|t),d(0|t)) (20c)

h(x(k|t),u(k|t), s) ≥ 0, for k ∈ {0, ..., N − 1}, (20d)

The stage cost ℓ(x,u, r) is defined as

ℓ(x,u, r) = qVa
(Va − Va,ref )2 + ||Γ− Γref ||2QΓ

+||ω − ωref ||2Qω
+ ||u||2R, (21)

where qVa
> 0 is the weighting scalar that penalizes the Va

error, and QΓ ∈ R3×3, Qω ∈ R3×3 and R ∈ Rnu×nu are
the symmetric and positive-definite weighting matrices for
attitude error, angular velocity and input. The term 1

2s
⊤Ps

was added to penalize the vector of slack variables s with
the symmetric, positive-definite matrix P ∈ Rns×ns . The
vectors x(·|t) ∈ Rnx·(N+1) and u(·|t) ∈ Rnu·N are the
predicted state and input sequence, respectively. The MPC
scheme is based on solving the NLP given by (20) at time t.
As the variables [δa, δe, δt]

⊤ are included in the state vector
x, the control input applied to the UAV is extracted from the
optimal state after one shooting interval, given by x∗(1|t),
obtained after solving the NLP:

uuav(t) =
[
0nu×(nx−nu) Inu×nu

]
x∗(1|t) (22)

V. SIMULATION RESULTS

Several simulations in varying ice configurations were per-
formed in [11], including nominal airspeed (Va = 20m/s),
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TABLE I: Tuning parameters of the NMPC controllers.

Parameters NMPC w/o icing NMPC w/ icing
qVa , qΓ1

, qΓ2
, qΓ3

0.1, 50, 200, 200 0.1, 100, 200, 200
qp, qq , qr, rδ̇a , rδ̇e , rδ̇t 1, 1, 1, 0.2, 10, 0.08 1, 1, 1, 0.2, 1, 0.01
psVa

, psβ , psVa
, psβ 1, 1, 1, 1 1, 1, 1, 1

lVa , lβ , lα, ll, lm, ln 0.03, 0.01, 0.01, 0.01, 0.01, 0.01,
0.4, 0.1, 0.1 0.4, 0.1, 0.1

relatively low airspeed (Va = 17m/s), severe wind con-
ditions, and path-following simulations. The relatively low
airspeed scenario is presented here, being an interesting case
as it maximizes endurance, and with results showing notable
differences in tracking performance between the PID and the
different NMPC controllers, with the PID controller being
tuned for nominal airspeed, as described in [6].
The UAV model and the NMPC controllers are simulated
and tested in Matlab/Simulink. The NMPC is implemented
in Python using the package acados [16], and interfaced with
the simulator through an S-function, which uses C code
generated from the Python program. The OCP with Th =
3.5 s is discretized into N = 35 steps with shooting interval
∆t = 0.1s, using direct multiple-shooting. This horizon was
chosen to balance the computational load and the tracking
performance of the NMPC. Stability and feasibility of the
NMPC are not ensured by terminal constraints or costs, but
by choosing a sufficiently long prediction horizon. This is
often done in practice and discussed in [17]. To solve the
NLP, real-time iteration sequential quadratic programming
(RTI-SQP) is used with the high-performance interior-point
method (HPIPM) [18] to solve the underlying quadratic
problems.
First, the asymmetric icing model from Section III-A is
included in the NMPC prediction model, where the simulated
icing level on each wing ζleft, ζright ∈ [0, 1] is taken as a
known input. This is referred to as the NMPC with icing
knowledge. Second, to simulate the NMPC without icing
knowledge, the icing level taken as an input is always 0,
so the model only uses the nominal (no icing) aerodynamic
coefficients. The tuning process is explained in [11], and the
final tuning parameters used for the two NMPC controllers
are given in Table I. In the simulator, the NMPC can have
perfect information about the icing level simulated on each
wing, but in a real-life situation it must be measured or
estimated [19]. A third case is only being able to differentiate
between clean and iced. This is considered by the binary
icing detection NMPC, which is tuned as the NMPC with
icing knowledge, but takes the icing level as 0 if it is under
50%, or 1 if it is over. In addition, the aerodynamic forces
and moments are always dependent on AOA/SSA, which are
usually difficult to estimate accurately for small UAVs. This
can typically be done with an RMSE of around 0.58 deg [20]
and 1.25 deg [21], respectively. To account for this, a fourth
simulation case was included with the binary icing detection
NMPC including +1.5 deg offset error in AOA and SSA.
Figures 1 and 2 show how the controllers performed under
the relatively low airspeed simulation with different icing
configurations, where the roll and pitch reference varied in
the intervals t ∈ (10, 70)s and t ∈ (70, 130)s, respectively.
During the two intervals, the ice accretion on each wing is

simulated until both wings are 100% iced, followed by a
100% asymmetric icing interval as the ice on the left wing
sheds, and finally shedding of the ice on the right wing.

(a) Simulation during the interval t ∈ (10, 70)s.

(b) Simulation during the interval t ∈ (70, 130)s.

Fig. 1: Roll, pitch and airspeed tracking response of the
controllers during the relatively low airspeed simulation.

The results in Figures 1 and 2 show performance degradation
during the 100% asymmetry interval, especially in the case
of the PID controller, whose throttle δt saturates to 0, as
well as its aileron δa and elevator δe to −17.5 and −12.5
degrees, respectively. The NMPC without icing knowledge
also struggles during this interval, especially while trying
to keep roll and airspeed to their constant references while
pitch changes to 30 degrees. Oscillations in the control
signals and AOA can be seen, as well as oscillations in
pitch during the 100% icing interval in Figure 1b. Adding
icing knowledge to the model of the NMPC shows a clear
improvement in the controller’s performance during the icing
and icing asymmetry intervals, where the oscillations are
almost eliminated. In the case of the binary icing detection
NMPC, the largest deviation is seen when the ice level on
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Fig. 2: Control signals and AOA of the PID and NMPC
controllers throughout the relatively low airspeed simulation.

TABLE II: The IAE of the controllers in the simulation.

Controllers IAE roll IAE pitch IAE Va
PID 9.6 15.5 82.2
NMPC without icing knowledge 1.6 4.0 29.8
NMPC with icing knowledge 1.3 2.0 13.3
Binary icing detection NMPC 1.6 2.3 16.4
Binary icing detection NMPC 1.8 2.5 18.5

with AOA/SSA offset error

each wing exceeds 50%. This is because the ice level the
controller predicts suddenly changes from 0 to 1. During the
rest of the simulation, it is similar to the behavior of the
NMPC with icing knowledge. Adding a +1.5 deg error in
AOA and SSA to the binary icing detection NMPC worsens
its performance slightly, and introduces some oscillations in
δe and δt during the 100% icing interval. In Figure 3, it can
be seen that this NMPC also requires the highest computation
time during the icing and asymmetry intervals, while the
NMPC with full icing knowledge usually requires the lowest.
To evaluate the performance of the controllers quantitatively,
the Integral Absolute Error (IAE) of the roll, pitch and
airspeed reference error are used, where the results are found
in Table II and are consistent with the previously seen results.

Fig. 3: Computation time of the NMPC controllers in the
relatively low airspeed simulation.

VI. DISCUSSION

The results show that icing asymmetry, when one of the
wings remains iced while the ice sheds from the other,
compromises the controllers’ performance the most, as both
the PID controller and the NMPC without icing knowledge
had significant performance degradation during this interval.
Although the mentioned NMPC can control the UAV in icing
conditions, its performance and robustness are considerably
improved by adding the icing model from Section III-A in
its prediction model, reducing the oscillations in the control
signals and giving a tighter roll and pitch tracking.
The propulsion icing model [5], however, was not added to
the NMPC model. The model was developed for a different
propeller than the one the Skywalker X8 uses, and although
it was modified as explained in [11] to be valid in this case,
many assumptions were made. The model also depends on
variables the UAV might not have access to, such as the
temperature and the LWC. Given its uncertainty, complexity
and the good results obtained without it, implementing it in
the NMPC model was not considered necessary, and it was
only implemented in the Matlab/ Simulink simulator.
In less severe icing cases both the NMPC with and without
icing knowledge perform well, as the disturbance observer
handles modeling errors. This can be seen in the ice ac-
cretion intervals in the simulations. However, during these
intervals the binary ice detection NMPCs have their worst
performance, with observed transients in their response, as
the ice level the controller sees suddenly changes from 0
to 1 when the ice level on the given wing surpasses 50%.
After the initial transient, the icing level error is handled
by the disturbance observer, and the binary icing detection
controllers then perform similarly as in the 100% icing
interval. This can be seen in Figure 4, where a) shows an
ice accretion scenario similar to the one the binary icing
detection NMPC detects in the reduced airspeed simulation,
while b) shows the NMPC’s behavior after the transient. This
shows that the main cause for the performance degradation of
the binary icing detection NMPCs is the sudden asymmetry
the controller predicts in that instant, rather than the error
between the real and the detected icing level. To make the
transition from 0 to 1 icing level less abrupt, it was low-pass
filtered. The filter was tuned to respond relatively quickly, but
the transients can be further reduced by making it slower, as
shown in plot c) in Figure 4. Adding possible AOA and SSA
errors to the binary icing detection NMPC was not shown
to significantly worsen its performance. The most visible
difference is an increased airspeed during the 100% icing
interval in Figure 1b, likely as a result of trying to keep the
pitch reference.
The scenarios tested were rather extreme, as the iced co-
efficients correspond to the most severe icing type, and
100% icing asymmetry was simulated, although less severe
asymmetry can also be expected. The binary icing detection
NMPC with additional AOA/SSA errors was also imple-
mented for this purpose, considering the worst-case scenario
regarding icing detection and AOA/SSA estimation. This
NMPC closely follows the response of the NMPC with icing
knowledge, handling the icing and asymmetry intervals better
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Fig. 4: Binary icing detection NMPCs in different ice accre-
tion scenarios. The response is shown with a) similar icing
as the one detected by the controllers in the original (low
airspeed) simulation; b) constant icing (50% left wing, 60
% right wing), interpreted by the controllers as icing level
0 and 1; c) same icing as in the original simulation, but a
slower low-pass filter to transition from icing level 0 to 1.

than the PID and the NMPC without icing knowledge. The
low computation time, under 30 ms, indicates that real-
time embedded implementation is feasible (see also [9]),
and given the results as well as the discussed improvements
during the ice accretion interval, the NMPC with icing
knowledge is expected to perform well in practice.
Compared to the PID controller, the NMPC has the advan-
tage of constraints in its formulation. This way, the stall angle
of the UAV (α = 10 deg [2]) can be taken into account.
This was considered in this paper by setting α = 8 deg.
Although the NMPC predictions always respect this limit,
the actual AOA violates it at some point, possibly due to
modeling inaccuracies. The upper limit for the AOA was set
lower than the stall limit to prevent it from being violated,
but finding a less conservative solution remains part of the
future work.

VII. CONCLUSION

In this paper, we explore how an NMPC controller can be
improved to be better suited for the control of a fixed-wing
UAV operating in icing conditions, with icing asymmetry on
the wings leading to the greatest performance degradation.
The NMPC controller uses a disturbance observer to handle
unmodelled effects and is improved by including an asym-
metric icing model in its formulation. The NMPC with icing
knowledge performs significantly better in a relatively low
airspeed simulation than an NMPC without icing knowledge
and a conventional PID controller, especially in the case of
severe icing asymmetry. The NMPC with icing knowledge
was further modified to simulate its expected behavior in
conditions where we considered possible errors in AOA
and SSA, as well as reduced information about the icing
level on each wing (binary, i.e. either iced or clean). During
asymmetric icing, it performed similarly to the NMPC with
icing knowledge, and its worse transient performance during
the ice accretion interval could be mitigated by filtering
the abrupt jump in icing level input to the NMPC. As its
computation time remains under 30 ms, the NMPC with
icing knowledge is expected to run in practice with similar
computational performance. This remains part of the future
work, as well as finding a better way to ensure that the stall
limit is kept.
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