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Abstract— We present a principled study on defining Gaussian
processes (GPs) with inputs on the product of directional
manifolds. A circular kernel is first presented according to
the von Mises distribution. Based thereon, the hypertoroidal
von Mises (HvM) kernel is proposed to establish GPs on
hypertori with consideration of correlated circular components.
The proposed HvM kernel is demonstrated with multi-output
GP regression for learning vector-valued functions on hypertori
using the intrinsic coregionalization model. Analytic derivatives
for hyperparameter optimization are provided for runtime-
critical applications. For evaluation, we synthesize a ranging-
based sensor network and employ the HvM-based GPs for data-
driven recursive localization. Numerical results show that the
HvM-based GP achieves superior tracking accuracy compared
to parametric model and GPs of conventional kernel designs.

I. INTRODUCTION

Directional variables appear ubiquitously in control-related
scenarios including signal processing, object tracking, and
computer vision, among others [1]–[6]. Typical examples of
directional manifolds include the unit circle S1 ⊂ R2 and
hyperspheres Sd−1 ⊂ Rd, which are by nature nonlinear and
periodic. Many real-world applications, such as ground/aerial
locomotion, robotic manipulation, and angle-of-arrival-based
tracking, involve stochastic systems composing multiple
directional inputs. Gaussian processes (GPs) have emerged
as a powerful statistical tool for inferential modeling of
uncertain dynamical systems [7], where dependence between
system outputs at different inputs is captured by the similarity
across the input domain quantified by the kernel. This paper
focuses on the study of a representative case, namely GP
modeling of vector-valued functions defined on the hypertorus
T3 := S1×S1×S1 ⊂ R6 (‘×’ denotes the Cartesian product).

The key challenge in addressing the considered problem
is to design a suitable kernel quantifying the similarity
between hypertoroidal data points adaptively to the underlying
manifold structure. The investigation can be decomposed into
two sub-problems. First, each circular component is inherently
periodic and nonlinear, which cannot be simply handled by
conventional kernels defined based on Euclidean distances.
Second, it is essential to properly interpret the correlations
among the circular components for informative similarity
quantification. The former challenge can be overcome by
transforming common periodic kernels w.r.t. the unit cir-
cle S1 [7]. The latter refers to constructing kernels on a
manifold composing multiple domains through the Cartesian
product. In this regard, most existing solutions employ a
straightforward strategy of multiplying the kernels belonging
to each domain component, which overlooks the correlational
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interpretation between them and may result in information
loss for inferential modeling [8].

The major contribution of the presented work is a principled
approach on establishing Gaussian processes on the product
of directional manifolds. We propose the hypertoroidal von
Mises (HvM) kernel for handling input data on hypertori
with consideration of correlated circular components in
a manifold-adaptive manner. Closed-form derivatives are
provided for efficient hyperparameter optimization. Further,
we synthesize an evaluation scenario for recursive track-
ing in sensor networks, where an unknown range sensing
model is learned using angle-of-arrival data. Compared with
parametric and GP modeling using common kernel designs,
the proposed HvM-based GP enables superior tracking
accuracy and robustness. We opensource our code under
github.com/ASIG-X/hyperToroidalGP.

The remainder of the paper is organized as follows. We
summarize related works in Sec. II. Preliminaries on GP
modeling are introduced in Sec. III, after which the HvM
kernel is proposed in Sec. IV. We elaborate the evaluation in
Sec. V, and the work is concluded in Sec. VI.

II. RELATED WORKS

GPs on Riemannian Manifolds: In [9], GP kernels on
Riemannian manifolds (RMs) have been derived implicitly by
solving stochastic partial differential equations incorporating
the Laplace–Beltrami operator. An improvement on scalability
has been achieved in [10] via spectral theory for Matérn
kernels on RMs. The approach was further extended in [11]
to model tangential vector fields defined on RMs through
projective geometry. These implicit strategies are generally
applicable for developing RM-adaptive kernels, however,
suffer from high theoretical complexity and computational
expense, such as the eigendecomposition of Laplace-Beltrami
operators, leading to a considerable gap for their usage in
engineering practices. Alternatively, manifold-adaptive kernels
can be explicitly designed w.r.t. the underlying manifold
structure. This can lead to conciser procedures of establishing
GPs on RMs. However, simply replacing the distance metric
with the geodesic to generalize Gaussian kernels on RMs for
non-Euclidean inputs does not guarantee positive definiteness.
In this regard, Laplacian kernels are eligible if and only if
the distance metric is conditionally negative definite [12].
For GP modeling on domains with complex but known
structures, basic kernels of each domain component are
typically combined through summation or multiplication [8].
In [13], GPs have been established on cylindrical surface
(S1×R) for spatiotemporal modeling of meteorological fields,
where the kernel is obtained by multiplying a sinusoidal and
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a Laplacian kernel of l1-norm. In [14], various GP kernels
have been investigated on manifolds of unit quaternions and
unit dual quaternions based on hyperspherical geometry on
S3 for spatial orientation/pose inferences.

Directional Statistics: Distributions from directional statis-
tics have provided valuable references for quantifying simi-
larities between directional data points [15]. Popular choices
include the wrapped normal and the von Mises distributions
on the unit circle, and the von Mises–Fisher distribution on
hyperspheres [16]–[18]. For modeling directional quantities
of antipodal symmetry, e.g., unit quaternions on S3 ⊂ R4, the
Bingham distribution is commonly used and has been widely
exploited in reasoning uncertain spatial orientations [19], [20].
As for distributions on composite directional domains, one
important aspect is to interpret correlation across manifold
components [21], [22]. Former works were shown on the
torus S1 × S1 for temporal modeling of correlated wind
directions [23] and on the manifold of unit dual quaternions
for modeling uncertain spatial poses [24]–[26].

III. GAUSSIAN PROCESS REGRESSION AND INFERENCE

A. Gaussian Process Modeling

A Gaussian process is a collection of random variables on
a certain domain. Any finite set of these random variables
follows a multivariate Gaussian distribution. We denote
a GP with scalar output as r(x) ∼ GP(m(x),k(x, x′)),
with m(x) and k(x, x′) being the mean and covariance
functions of r(x), respectively [7]. Suppose there is an
arbitrary function that is observed under uncertainty following
z = r(x) + ϵ with noise ϵ ∼ N (0, σ2

r). Given a set of n
input locations and corresponding observations corrupted by
noise, {(x•,i, zi)}ni=1, a GP yields a posterior of the function
value at test locations {x◦,i}mi=1 in the form of a multivariate
Gaussian distribution

r◦|{(x•,i, zi)}ni=1, {x◦,i}mi=1 ∼ N (r̂◦,C◦) ,

with the mean and covariance given by

r̂◦ = K◦•K
−1z and C◦ = K◦◦ −K◦•K

−1K•◦ , (1)

respectively [7], where K = K•• + σ2
rIn. Element in

matrix K•◦ ∈ Rn×m at entry (i, j) is the covariance
given by the kernel evaluated at training and test locations
(x•,i, x◦,j). Matrices K•• ∈ Rn×n, K◦• ∈ Rm×n can be
obtained analogously. Vector z = [z1, · · · , zn]⊤ collects all
observations, and In ∈ Rn×n is an identity matrix. Further,
the vector of predicted observations at test locations follows
the distribution N (r̂◦,C◦ + σ2

rIm).

B. Multi-Output Gaussian Processes

For modeling vector-valued functions expressed as z =
r(x) + ϵ ∈ Rd, where ϵ ∼ N (0d,R) is the noise term
and R = diag(σ2

r,1, · · · , σ2
r,d) its associated covariances,

multi-output Gaussian processes can be utilized. It takes the
form r(x) ∼ GP(m(x),K(x, x′)), with m(x) ∈ Rd being a
vector-valued function collecting the mean of each dimension
and K(x, x′) the matrix-valued covariance function. To

obtain a valid K(x, x′), one popular method is the intrinsic
coregionalization model. This leads to

K(x, x′) = k(x, x′)B , with B ∈ Rd×d (2)

being a coregionalization matrix that is positive semidefi-
nite [27]. Given uncertain observations {zi}ni=1 collected at
training locations {x•,i}ni=1, the posterior at a test location
x◦ follows

r◦|{(x•,i, zi)}ni=1, x◦ ∼ N (r̂◦,C◦) .

Here, the mean and covariance are calculated according to the
general form in (1), with components newly defined as K◦• =
B⊗ k◦•, K◦◦ = k(x◦, x◦)B and K = B⊗K•• +R⊗ In.
Note that K•• still denotes the kernel matrix at training
locations as given in (1). Furthermore, vector z is obtained
through the vectorization z = vec([ z1, · · · , zn ]⊤) ∈ Rnd,
and vector k◦• = [k(x◦, x•,1), · · · ,k(x◦, x•,n)]. Similarly
to the scalar case, the predictive distribution of the observation
at x◦ is obtained as z◦ ∼ N (r̂◦,C◦ +R).

IV. GAUSSIAN PROCESSES ON THE HYPERTORUS

A. A Circular Kernel Based on the von Mises Distribution

We now consider a scalar-valued function r(x) with inputs
defined on the unit circle, namely, r : S1 → R for GP
modeling. In order to quantify the similarity between two
circular inputs u, v ∈ S1, we formulate a kernel kvM(u, v) =
ω2 exp(λu⊤v) based on the von Mises distribution, with ω
controlling signal variance and λ > 0 the concentration. Note
that this kernel can be referred to as a reformulation of the
periodic kernel with angular inputs [7, Eq. 4.31]. To showcase
its functionality within the GP framework compared with
kernels on Euclidean domains, we demonstrate the following
case study.

Case Study 1 We synthesize a function on the unit circle
by mixing three von Mises distributions and one Bing-
ham distribution, with each component configured with
individual parameters. The function is observed via z =
1
3

∑3
i=1 f

i
vM(x) + fB(x) + ϵ, with ϵ ∼ N (0, 0.0025) being

additive noise. We embed the squared exponential (SE) kernel
(distance metric d = θ − θ′, with θ and θ′ denoting the
angular positions of u and v, respectively) and the proposed
von Mises (vM) kernel into the same GP regression scheme
as introduced in Sec. III-A. Shown in Fig. 1-(A), the SE kernel
produces discontinuous curves due to the aperiodic distance
metric of Euclidean geometry. In contrast, the proposed vM
kernel quantifies periodic similarity adaptively to circular
geometry, inducing identical posteriors with period of 2π as
plotted in Fig. 1-(B).

B. The Hypertoroidal von Mises Kernel

We now aim to establish GPs on the hypertorus T3 ⊂ R6.
For constructing kernels on the Cartesian product of multiple
unit circles, a common strategy is to multiply kernels on each
circular component [8]. However, this only considers the
similarity within each unit circle and neglects any potential
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(A) SE (B) vM

Fig. 1: GP regression using different kernels on the circular
function in Case 1. Given the same training set (green dots),
the vM kernel produces a geometry-adaptive posterior (with
blue curves and gray areas denoting means and variances,
respectively), whereas the SE kernel fails.

correlations in between. To achieve informative GP modeling
on hypertori, it is crucial to design a manifold-adaptive kernel
with consideration of correlated circular components. For that,
we define the hypertoroidal von Mises (HvM) kernel

kHvM(u, v) = ω2exp(λ⊤d(u, v) +d(u, v)⊤Λd(u, v)) , (3)

with u, v ∈ S1 × S1 × S1 being a pair of hypertoroidal
inputs. We express them component-wise w.r.t. each circle as
u= [ (u1)⊤, (u2)⊤, (u3)⊤ ]⊤ and v= [ (v1)⊤, (v2)⊤, (v3)⊤ ]⊤.
The metric d is defined as

d(u, v) = [ (u1)⊤v1, (u2)⊤v2, (u3)⊤v3 ]⊤ ,

which measures distances between data points via inner
products on each circular component. This is an analogous
construction to the von Mises kernel given in Sec. IV-A, and
inherently guarantees the symmetry of function (3) and the
periodic nature of the hypertoroidal manifold.

The proposed HvM kernel incorporates three hyperparam-
eters, i.e., the ω ∈ R, λ ∈ R3, and Λ ∈ R3×3. Similar
to the von Mises kernel in Sec. IV-A, ω controls signal
variance. The exponent of the kernel consists of a linear
term and a quadratic term w.r.t. the distance metric d. In the
linear term, λ = [λ1, λ2, λ3 ]

⊤ is a nonnegative vector and
interprets concentrations on each circular component. In the
second term, Λ serves as a weighting matrix in the quadratic
formulation and is defined as

Λ =

 0 a1 a3
a1 0 a2
a3 a2 0

 ,

with all elements being nonnegative. It is specifically designed
to capture the correlations between the three pairs of circular
components through the quadratic term. It allows for more
informative similarity quantification of hypertoroidal data
compared to simple products of circular kernels. To showcase
this efficacy, we provide the following case study.

Case Study 2 We configure the proposed kernel in (3) w.r.t.
the torus S1 × S1 ⊂ R4 based on four sets of parameters
{(ωi, λi,Λi)}4i=1. These are as follows

• ω1 = ω2 = ω3 = ω4 = 1 ,
• λ1 = λ2 = [ 0.3, 0.3 ]⊤, λ3 = λ4 = [ 1, 1 ]⊤ , and

(A) (B)

(C) (D)

Fig. 2: Proposed HvM kernels (normalized function values)
configured in Case 2 with mappings to tori.

• Λ1 = Λ3 = 02×2, Λ2 =

ï
0 0.3
0.3 0

ò
, Λ4 =

ï
0 1
1 0

ò
.

We evaluate the proposed kernel with one input fixed at u =
[ 1, 0, 1, 0 ]⊤, which corresponds to zero angular positions on
each circle, and the other one given by

v = [ cos(α), sin(α), cos(β), sin(β) ]⊤

w.r.t. angles (α, β). Shown in Fig. 2-(A) to (D), the resulted
kernels are plotted corresponding to the parameter sets 1
to 4. In all cases, the kernel indicates the highest similarity
at (α, β) = (0, 0), namely, u = v . When Λ = 02×2, as
illustrated by Fig. 2-(A) and (C), the proposed hypertoroidal
kernel degenerates to a simple multiplication of von Mises
kernels, which disregards the correlation between the two
circular components. In contrast, the nonzero off-diagonal
elements in Λ2 and Λ4 enable correlation interpretation
between circles, leading to more distinguishable similarity
quantification of function values as plotted in Fig. 2-(B) and
(D), respectively.

C. Hyperparameter Optimization

Varying the free parameters, e.g., those in the kernels, has
a considerable impact on the performance of GP regression
and inference. In general, these hyperparameters θ can be
obtained via maximum likelihood estimation following θ∗ =
argmaxθ F(θ). The objective is derived in the form of log
marginal likelihood

F(θ) = 2 log p
(
z|{x•,i}ni=1, θ

)
= −z⊤K−1z− log |K| − n log(2π) ,

(4)

with K and z specified according to Sec. III. In practice, the
nonlinear optimization problem above is solved numerically
with the kernel matrix evaluated in each iteration. The gradient
of the objective w.r.t. the i-th element in θ takes the following
general form

∂F(θ)

∂θi
= z⊤K−1 ∂K

∂θi
K−1z− tr

(
K−1 ∂K

∂θi

)
, (5)
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with tr denoting the trace of a matrix.
As for multi-output GPs using the proposed hypertoroidal

von Mises kernel, the hyperparameters can be collected into
θ = [ω, λ⊤, a⊤, b⊤, σ⊤

r ]⊤. The first three components, ω, λ,
and a = [ a1, a2, a3 ]

⊤ are free parameters in (3). b = vec(B)
denotes the vectorized coregionalization matrix in (2). And
σr = [σr,1, · · · , σr,d ]

⊤ indicates observation noise variance
on each output dimension according to Sec. III-B.

Computing (5) boils down to deriving the derivative of
K(θ) w.r.t. hyperparameters in θ, which we express element-
wise now for the ease of exposition. The derivative of the
kernel matrix w.r.t. the signal deviation ω follows

∂K

∂ω
= B⊗ ∂K••

∂ω
=

2

ω
B⊗K•• ,

where K•• denotes the kernel matrix evaluated at training
sets as introduced in Sec. III-B. Further, the derivative of K
w.r.t. each element in the concentration vector λ follows

∂K

∂λs
= B⊗ ∂K••

∂λs
= B⊗ (K•• ⊙Ds

••) ,

with s ∈ {1, 2, 3} being the index of the s-th circular
component of the hypertorus. Correspondingly, elements
in Ds

•• ∈ Rn×n follow (Ds
••)ij := (xs

•,i)
⊤xs

•,j , which
interprets distance between training inputs on each circle,
and ⊙ denotes the Hadamard product. As for differentiation
w.r.t. the nonzero elements in matrix Λ, we have

∂K

∂as
= B⊗ ∂K••

∂as
= 2B⊗

(
K•• ⊙Ds

•• ⊙Ds mod 3+1
••

)
,

with s ∈ {1, 2, 3}. The derivative of K w.r.t. the s-th element
in the vectorized coregionalization matrix takes the form

∂K

∂bs
=

∂(B⊗K••)

∂bs
=

∂B

∂bs
⊗K•• = Eij ⊗K•• ,

with Eij ∈ Rd×d denoting a matrix unit. Here, bs = (B)ij ,
with s = d (j − 1) + i ∈ {1, · · · , d2}. The derivative of
K w.r.t. observation deviation σr,s of each output domain
s ∈ {1, · · · , d} can be derived in a similar fashion. It follows

∂K

∂σr,s
=

∂(R⊗ In)

∂σr,s
= 2σr,sEss ⊗ In ,

where Ess ∈ Rd×d is a matrix unit. In practice, we utilize
the trust-regions method from Manopt [28] for maximizing
the objective in (4).

V. EVALUATION

We now evaluate the proposed HvM-based GPs within
particle filtering for data-driven recursive tracking in sensor
networks. Here, an unknown range sensing model is learned
on the hypertorus, which consists of multiple angle-of-arrival
data as input.

x [m]

y 
[m

]

x [m]

y 
[m

]

x [m]

y 
[m

]

T1 T2 T3

Fig. 3: Considered trajectories (red) and estimates (blue)
given by GP-based particle filtering using the proposed HvM
kernel. Noise level is set at ξ = 0.01 (corresponding to
sequences of S1). Green dots denote reference points.

A. Scenario Setup

We set up a two-dimensional area of 30× 30 m2, where a
mobile agent is tracked while moving along different trajec-
tories. We have the following system dynamics according to
a random walk

xt+1 = xt +wt , (6)

with xt, xt+1 ∈ R2 denoting positions and wt ∈ R2 the
process noise following wt ∼ N (02,Qt). A range sensor,
e.g., of ultrasonic or ultra-wideband modalities, is equipped
onboard the platform observing distances to three reference
points of coordinates {ιrs}3s=1 ⊂ R2 under uncertainty. This
can be formulated as

zt = h(xt) + δt + vt , (7)

where zt ∈ R3 and vt ∈ R3 denote the range measurement
and corresponding noise, respectively, and vt ∼ N (03,Rt).
The observation function is given by h(xt) := [∥ιr1 −
xt∥, ∥ιr2−xt∥, ∥ιr3−xt∥]⊤, which generates noise-free range
readings of position state xt w.r.t. the three reference points.
Moreover, a time-varying offset δt ∈ R3 is added to the range
signal to include possible interference in sensor networks,
such as clock drift or signal reflection [29]. For the sake of
demonstration, we assume that it is proportional to the range,
namely, δt = c · h(xt), with the ratio c = 0.05.

B. Multi-Output GPs on Hypertorus

Suppose that the offset and uncertainty in range observa-
tions are unknown. However, we are able to obtain accurate
angle-of-arrival (AoA) readings from each reference point
w.r.t. 24×10 grid points {xi}n=240

i=1 that are uniformly spaced
on the xy-plane. Meanwhile, range measurements given
by the onboard sensor are collected, inducing a training
set of {(αi, zi)}ni=1, where the range zi ∈ R3. The input
αi = [ (α1

i )
⊤, (α2

i )
⊤, (α3

i )
⊤]⊤ ∈ T3 ⊂ R6 incorporates the

AoA signal of each reference point w.r.t. grid point xi, which
can be obtained via

αs
i = [ (ιrs − xi)x, (ι

r
s − xi)y]

⊤/∥ιrs − xi∥ ∈ S1 , (8)

with s ∈ {1, 2, 3}. Such a scenario occurs commonly when
there exists no positioning system (e.g., camera networks)
covering the whole tracking space, whereas certain portable
devices such as total stations can be easily deployed to provide
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Fig. 4: Results of particle filtering using parametric and different GP-based reweighting schemes in Sec. V-D. RMSEs of the
APEs are plotted for the trajectories T1− T3 using boxchart of default setting in Matlab. The proposed HvM-based
GP (blue) reweighting consistently enables superior tracking accuracy compared to those based on PvM (red), and PPRD
(lilac) kernels constructed via kernel product, whereas the parametric model (black) produces inferior performance with a
considerable margin. The PSE kernel (green) leads to tracking failures in most sequences due to its nonperiodic definition.
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Fig. 5: Range measurements (red) and predictions (means and
variances plotted by blue curves and gray areas, respectively)
w.r.t. ground truth over T2 of noise level S2. The reference
point on the top in Fig. 3 is selected for demonstration.

accurate relative angles between two locations [30]. Based on
the training set, we exploit the proposed HvM-based vector-
valued GPs to learn the unknown range sensing model as
introduced in Sec. IV. According to Sec. III-B, we reformulate
the measurement model in (7) into zt = r(αt)+vt, with αt ∈
T3 incorporating the AoA inputs and vt the uncertainty in the
output. Given the scenario setup in Sec. V-A, the noise-free
range observation follows r(αt) = h(xt)+δt = (1+c)h(xt).

C. GP-Based Particle Filtering
We apply particle filtering to track the mobile agent

set up in Sec. V-A [31]. Given a particle x̂t|t−1 drawn
at timestamp t from the prior estimate (particle index
is omitted for brevity), we first compute the correspond-
ing hypertoroidal state α̂t|t−1 ∈ T3 following (8). Here,
each circular component is given by α̂s

t|t−1 = [ (ιrs −
x̂t|t−1)x, (ι

r
s− x̂t|t−1)y]

⊤/∥ιrs − x̂t|t−1∥ w.r.t. each reference
point indexed by s ∈ {1, 2, 3}. We further inquire the pre-
trained GPs (using training data {(αi, zi)}ni=1) at α̂t|t−1 to
predict corresponding range measurement distribution, i.e.,
zt|{(αi, zi)}ni=1, α̂t|t−1 ∼ N (r̂t|t−1,Ct|t−1 + R), where
r̂t|t−1 and (Ct|t−1 +R) are posterior mean and covariance
given by the GP regression in Sec. III-B, respectively. Based
thereon, the likelihood function is directly obtained for
reweighting the prior particle x̂t|t−1 given current measure-
ment zt. Afterward, particles are updated via resampling.

D. Evaluation and Results
We equip the GP-based particle filter in Sec. V-C with the

proposed HvM kernel. For comparison, we instrument the

product of squared exponential kernels (PSE), the product
of periodic kernels (PPRD), and the product of von Mises
kernels (PvM) on the hypertorus through multiplication
of the corresponding circular kernels [8]. GPs based on
different kernels are trained using the same data set collected
as introduced in Sec. V-B. Furthermore, we approximate
range measurement noise with a three-dimensional Gaussian
distribution using the same training data to provide likelihood
functions for a parametric form. We set the process noise
in (6) with covariance Qt = diag(0.16, 0.16) and the
measurement noise in (7) with covariance Rt = ξ2I3, where
ξ ∈ {0.01, 0.03, 0.05} controls the level of uncertainty. We
deploy 100 particles to all particle filters for 1000 time steps
and perform evaluation based on 100 Monte Carlo runs
for different noise levels and trajectories shown in Fig. 3.
Subsequently, we compute the absolute position error (APE)
to quantify the tracking accuracy.

Shown in Fig. 4, we collect the root-mean-square error
(RMSE) of APEs given by the particle filters configured
above on sequences of varying trajectories (T1-T3) and
measurement noise levels (S1-S3 w.r.t. ξ). The proposed
HvM kernel delivers superior tracking accuracy of particle
filtering via GP-based reweighting over the PPRD, PvM, PSE
kernels, and the parametric modeling method. Exemplary runs
of HvM-GP-based particle filtering on these three trajectories
are shown in Fig. 3 under the noise level of ξ = 0.01. Almost
identical accuracies are achieved by the PPRD and PvM
kernels, which suggests that the von Mises kernel can be
interpreted as a reformulation of the common periodic kernel.
Moreover, results from these two kernels show better accuracy
compared with the parametric method, whereas the PSE kernel
fails tracking on most sequences due to disregard of periodic
nature of hypertori.

To bring more insights to the functionality of the proposed
HvM kernel on particle reweighting, we demonstrate in Fig. 5
range measurement distributions predicted by GPs using HvM,
PvM, and PSE kernels over time. The proposed HvM-GP
predicts more data-adaptive range distributions than PvM-GP,
and the PSE kernel induces discontinuity when periodicity in
inputs takes effect. The parametric method fails at modeling
the time-varying noise pattern, which can be interpreted in a
straightforward way (thus not plotted).
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VI. CONCLUSIONS

We provide a novel study on establishing GPs on the
product of directional manifolds. Based on the circular
kernel following the form of the von Mises distribution,
a novel hypertoroidal von Mises (HvM) kernel has been
proposed on the hypertorus S1 × S1 × S1 ⊂ R6 in a
manifold-adaptive manner. It captures information not only
within each circular component but also in the correlated
region, leading to a more distinct similarity quantification
of hypertoroidal data compared to conventional strategies
such as kernel multiplication. In consideration of potential
usage in runtime-critical scenarios, derivatives of the marginal
likelihood w.r.t. the hyperparameters have been provided to
facilitate efficient GP modeling. The proposed HvM-based GP
has been evaluated for data-driven recursive localization in
ranging-based sensor networks. Simulations have shown that
it delivers superior tracking performance over the parametric
model and GPs based on kernel multiplications.

For future work, the efficiency of the proposed method can
be improved by reducing the computational complexity, e.g.,
via sparse GPs [32]. We will also present the proof on the
positive definiteness of the proposed kernel in a follow-up
work. In addition, the proposed HvM-GP is to be exploited in
real-world applications for data-driven modeling of complex
stochastic systems with multiple angular inputs [33]. Also, the
HvM kernel can be extended to higher-dimensional spaces,
enabling its application in more extensive scenarios.
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