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Abstract— The problem of controlling autonomous surface
vessels in an energy–optimal way is important for the electrifi-
cation of maritime systems and is currently being investigated
by many researchers. In this paper, we use numerical optimal
control to plan an energy–optimal docking trajectory in river
currents and show that it can save energy compared to other
widespread planning approaches. An optimal control problem
including a detailed vessel model is defined, transcribed into
a nonlinear optimization problem via direct multiple shooting,
and solved using a homotopy procedure. The optimal solution
is compared to a geometrical path planning approach with
path–velocity decomposition. The results of this comparison
show that prescribing a path with fixed vessel orientation
leads to very suboptimal results. Further, we demonstrate how
shrinking horizon MPC can control the vessel in an energy–
optimal way even under severe disturbances, by replanning
the energy–optimal trajectories in real–time. We believe that
energy–optimal MPC could become a key technology for the
electrification of maritime systems.

I. INTRODUCTION

Numerical optimal control (NOC) is a decision making
technique for high–dimensional constrained nonlinear sys-
tems. Recently, NOC has been used in the field of maritime
systems for both, control in the form of model predictive
control (MPC) [1] and planning in the form of trajectory
optimization [2]. Recently, different methods like feedback
linearization [3], flatness–based optimal control [4] or meth-
ods based on graph search [5] have been used to optimize
trajectories in maritime systems. Further, direct approaches
to optimal trajectory planning were presented e.g. in the form
of direct collocation [6] and pseudospectral optimization [7].
In this paper, we employ a direct multiple shooting approach
[8] to calculate the energy–optimal docking trajectory of
an autonomous surface vessel (ASV) time efficiently. This
method could be a key feature in energy–efficient operations
of autonomous water taxis [9] or autonomous ferries [10]
that have to dock several times a day. Because these trans-
portation systems usually act in flowing waters, we consider
current effects in the dynamic model and the optimization
problem. We investigate the question: How to define an
optimal control problem (OCP) for an energy–optimal dock-
ing task considering the river current and how to employ
direct multiple shooting to solve this OCP time efficiently?
Further, we compare the method to an energy–optimal path–
velocity decomposition and present a new method combining
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Fig. 1. Solution trajectories of the energy–optimal maneuver with maximal
current vriver = 1.5 m/s (left) and vriver = 1.1 m/s with disturbance in form
of failed actuators for t ∈ [20,40] s (right). The current field is visualized in
blue. The vessel pose (black) and the actuator force vectors (red) are plotted
at the time instances t = k∆T with k = 0, ...,12 and ∆T = 10 s.

both. The paper is structured as follows: In Section II , the
OCP for the docking task is stated and defined in detail.
In Section III , we present the transcription of the infinite–
dimensional continuous time OCP to a finite–dimensional
nonlinear program (NLP) via direct multiple shooting. In
Section IV , the trajectory planning method is extended to
shrinking horizon MPC. The presented method is applied to
compute the energy optimal docking trajectory of the ASV
Solgenia in Section V . Finally, Section VI concludes the
results of the paper by describing the potential and limitations
of the approach.

II. DEFINITION OF THE OPTIMAL CONTROL PROBLEM

Following standard notation [1], we state a continuous
time OCP with fixed initial and terminal state as

minimize
x(·),u(·)

∫ T

0
L(x(t),u(t))dt +E(x(T )) (1a)

subject to x(0)− x0 = 0, (1b)
x(T )− xT = 0, (1c)

ẋ(t)− f (x(t),u(t)) = 0, t ∈ [0,T ], (1d)
h(x(t),u(t))≤ 0, t ∈ [0,T ], (1e)

where T > 0 denotes the terminal time, x : [0,T ] → Rnx

denotes the state trajectory, u : [0,T ] → Rnu denotes the
input trajectory, L : Rnx×Rnu →R denotes the running cost,
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E :Rnx→R denotes the terminal cost, x0,xT ∈Rnx denote the
desired initial and terminal state, ẋ : [0,T ]→Rnx denotes the
time derivative of the state trajectory, the system dynamics
is denoted by f : Rnx ×Rnu → Rnx , the path constraints are
denoted by h :Rnx×Rnu→Rnh , and nx,nu,nh ∈N denote the
state dimension, the control dimension, and the number of
scalar inequality constraints. In the following, the different
parts of the OCP are defined to dock a vessel energy–optimal.

A. Cost Function

The cost function (1a) is given in standard Bolza form.
To find the trajectory that needs the least electric energy, the
cost function must represent the electric energy consumption,
and therefore the running costs must model the power
consumption of the vessel. In the literature, a variety of
different approaches to modeling the energy consumption of
a vessel can be found. Selected examples of the costs are
given by a quadratic function of the actuator states [4], by a
lookup table [5], or by linear damping [7]. The parameters
of all these models can be identified using real–world data
on the vessel’s electric power consumption. To obtain this
model, a database

D=


(x1,u1,P1)
(x2,u2,P2)

...
(xK ,uK ,PK)

 (2)

with K ∈ N entries is recorded while driving the vessel in
different scenarios. The database contains measurements of
the system state xk, the system input uk, and the correspond-
ing power consumption Pk, where the subscript k denotes the
measurement at time t = k∆t with ∆t > 0 and k = 1, ...,K.
The optimal model parameters denoted by θ ∗ ∈ Rnθ can be
identified by solving the least–squares problem

θ
∗ = argmin

θ∈Rnθ

K

∑
k=1

(Pmodel(xk,uk,θ)−Pk)
2 (3)

numerically. Note that the parameters of both, physics–
based gray box models and black box models e.g. neural
networks can be identified using this strategy. In Figure 2 ,
an exemplary gray box model characteristic is plotted over
full–scale data.

B. Initial and Terminal Constraints

The definitions of the initial and terminal conditions of
the trajectory are given in the form of equality constraints in
(1b) and (1c). The initial state x0 determines the state at the
start of the investigated trajectory, i.e., the current state of
the vessel. The terminal state xT specifies the state that shall
be reached at the end of the trajectory, e.g., at a docking
position.

C. System State, System Input, and System Dynamics

According to [11], by neglecting the pitch, roll, and heave
motion due to calm water conditions, the system state of a
three–degree–of–freedom (3–DOF) model of a vessel can be
decomposed into three parts x=

(
η⊤,ν⊤r ,a⊤

)⊤. The first part

Fig. 2. Exemplary propeller characteristic curves of a bow thruster (BT) and
an azimuth thruster (AT) plotted with measurement data on the propellers’
electrical power consumption recorded in real–world experiments.

is the pose in a local east–north–up (ENU) frame. The pose is
given by η = (xl,yl,ψ)⊤ ∈R3, where the vessel’s position is
defined by xl and yl, and the vessel’s yaw angle w.r.t. the xl–
axis is denoted by ψ . The second part of the system state is
given by the velocity of the vessel relative to the surrounding
water in a body–fixed frame. The relative body–fixed velocity
is given by νr = (ur,vr,rr)

⊤, where ur denotes the relative
velocity in the surge direction, vr denotes the relative velocity
in the sway direction, and rr denotes the velocity of the yaw
angle. The third part of the system state is the actuator state
denoted by a ∈ Rna . Note that na depends on the individual
actuator configuration of the vessel. A visualization of the
different frames is given in Figure 3 . The system input is
given by the time derivative of the actuator state collected in
u ∈ Rnu with nu = na. The dynamics of the actuators is fast
compared to the dynamics of the vessel and is controlled
by lower level controllers, whose dynamics is neglected.
However, the rate of change will be limited. The actuator
configuration differs between vessels. However, we assume
that a function τa : Rna ×R3 → T ⊆ R3,a× νr 7→ τa exists,
where the generalized applied force and torque vector is
given by τa = (Xa,Ya,Na)

⊤. This vector contains the applied
force in the surge direction denoted by Xa, the applied force
in the sway direction denoted by Ya, and the applied torque
in the yaw direction denoted by Na. According to [11], the
dynamics of a vessel f =

(
η̇⊤, ν̇⊤r , ȧ⊤

)⊤ is given by

η̇ = J(ψ)νr + η̇c(η), (4a)
Mν̇r = τa(a,νr)+ τd−MRBν̇c

−CRB(νr +νc)(νr +νc)−N(νr)νr, (4b)
ȧ = u, (4c)

where the temporal dependencies are omitted for legibility,
J(ψ) denotes the rotation matrix due to ψ , η̇c denotes a
current field, M =MA+MRB denotes the invertible combined
mass matrix given by the the sum of the added mass matrix
denoted by MA and the rigid body mass matrix denoted
by MRB, CRB denotes the Coriolis matrix, the nonlinear
hydrodynamic damping effects are collected in N, τd denotes
a generalized torque and force vector of disturbances and
unmodelled effects, νc = J−1(ψ)η̇c(η) denotes the current in
the body–fixed frame, and ν̇c denotes the total time derivative
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Fig. 3. Schematic drawing of the research vessel Solgenia with visualiza-
tion of the local frame, the body–fixed frame, and the actuator configuration.

of νc. For more detailed information about the dynamic
model of a vessel, the reader is referred to [11], [12], and
[13].

D. Path Constraints

To define the path constraints (1e), we define the follow-
ing terms for the docking process and translate them into
mathematical expressions:

1) Stay on the river ↔ y≤ yl(t)≤ y
2) Limit the relative velocity ↔ ν ≤ νr(t)≤ ν

3) Limit the actuator states ↔ a≤ a(t)≤ a
4) Limit the actuator dynamics ↔ u≤ u(t)≤ u

Based on these expressions the path constraints (1e) can be
formulated as

h(x(t),u(t)) =



y− yl(t)
yl(t)− y
ν−νr(t)
νr(t)−ν

a−a(t)
a(t)−a
u−u(t)
u(t)−u


≤ 0, t ∈ [0,T ], (5)

where the underlined values denote the minimal values, the
overlined values denote the maximum values, and every
scalar inequality constraint is evaluated separately.

III. METHODS

In the first part of this section, the OCP is transformed
into an NLP using a direct multiple shooting approach. In
the second part, a homotopy procedure is described to solve
the NLP.

A. Direct Multiple Shooting Discretization

By employing direct multiple shooting [8], the original
infinite–dimensional optimal control problem (1a)–(1e) is
transformed into a finite–dimensional NLP by discretization.
Therefore, we assume piecewise constant controls

u(t) = qk, t ∈ [tk, tk+1]

on each of k = 0, ...,N−1 shooting intervals with qk ∈ Rnu ,
t0 = 0, and tN = T . The discrete time system dynamics is
given by

sk+1 = Fk(sk,qk), k = 0, ...,N−1

where sk ∈ Rnx with k = 0, ...,N denote the states at the
boundaries of the intervals. The corresponding discrete time
costs can be denoted as lk(sk,qk). Note, that both, the discrete
time dynamics Fk and the discrete time costs lk contain
numerical approximations of the integrals given in the OCP.
Here we use n ∈N steps of an explicit Runge–Kutta method
of order four (RK4). The NLP arising from the OCP is stated
as

minimize
s0,..,sN ,q0,...,qN−1

N−1

∑
k=0

lk(sk,qk)+E(sN) (6a)

subject to s0− x0 = 0, (6b)
sN− xT = 0, (6c)

sk+1−Fk(sk,qk) = 0, k = 0, ...,N−1, (6d)
hk(sk,qk)≤ 0, k = 0, ...,N−1, (6e)

that can be solved numerically starting from an initial guess
for the state trajectory and the control trajectory. Because
the NLP is in general nonlinear and non–convex, the per-
formance of numerical optimization methods is strongly
dependent on this initial guess. In the next subsection, a
homotopy procedure is defined, which is a reliable heuristic
for generating an initial guess to solve the NLP numerically.

B. Homotopy Procedure

According to [14], a homotopy parameter φ ∈ [0,1]nφ is
introduced. Based on this parameter, a generalization of (6a)-
(6e) is defined as

H (φ) := minimize
w

ΦH(w,φ) (7a)

subject to GH(w,φ) = 0, (7b)
HH(w,φ)≤ 0, (7c)

.in such a way that H (0nφ×1) is equal to (6a)–(6e) and
H (1nφ×1) is a problem much easier to solve. After ini-
tially solving H (1nφ×1), the homotopy parameter is reduced
sequentially and the initial guess is warmstarted with the
solution of the previously solved problem. This transforms
the problem and its solution along a so-called homotopy

Fig. 4. Visualization of the homotopy procedure to solve an NLP.
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Algorithm 1 Interior–Point–based Homotopy [14]
Input: w0: Initial guess for H (1nφ×1);

γ ∈ N: Number of steps on the homotopy path;
Output: wf: Solution

1: φ ← 1nφ×1;
2: w(0)← NLPSOLVER(H (φ),w0);
3: for i ∈ {1,2, ...,nφ} do
4: w(i)← w(i−1);
5: for j ∈ {1,2, ...,γ} do
6: φi← φi− 1

γ
;

7: w(i)← NLPSOLVER(H (φ),w(i));
8: end for
9: end for

10: return wf← w(nφ );

path. According to [15], it can be shown that, if the ho-
motopy problem satisfies the linear independence constraint
qualification (LICQ) and second–order sufficient conditions
(SOSC) for all φ , there exists a unique and piecewise
smooth homotopy path w∗(φ) between the optimal solutions
w∗(1nφ×1) and w∗(0nφ×1). In Algorithm 1, a proceeding
to numerically cover the homotopy path by γnφ steps is
described. The homotopy procedure is visualized in Figure 4.
Note that introducing a multidimensional homotopy parame-
ter with nφ > 1 creates the possibility to incorporate different
nonlinearities in sequence. With this approach, even highly
nonlinear and non–convex problems can be solved. For
more detailed information about the homotopy procedure,
the reader is referred to [14] and [15].

IV. EXTENSION TO SHRINKING HORIZON MPC

Due to unforeseen disturbances and unmodeled effects, a
state–feedback controller is needed to perform a docking ma-
neuver. E.g. in [11] and [12] various methods to track a pre-
defined trajectory with an ASV are presented. In contrast, a
shrinking horizon MPC scheme [1] is considered, which is a
direct extension of the trajectory planning method presented
in the last section. This method reacts to disturbances in an
optimal way and reaches the desired docking position xT at
time t = T . The time–variant feedback law of the shrinking
horizon MPC is implicitly given by the first element q∗i (xi, i)
of the solution w∗(xi, i) = (q∗i , ...,q

∗
N−1,s

∗
i , ...,s

∗
N) defined for

i = 0,1, ...,N−1 and given by

w∗(xi, i) = argmin
qi,...,qN−1,si,...,sN

N−1

∑
k=i

lk(sk,qk)+E(sN) (8a)

subject to si− xi = 0, (8b)
sN− xT = 0, (8c)

sk+1−Fk(sk,qk) = 0, k = i, ...,N−1, (8d)
hk(sk,qk)≤ 0, k = i, ...,N−1. (8e)

In the following, the NLP (8a)–(8e) is referred as
PMPC(xi, i,wi), where the initial guess for numerical opti-
mization is denoted by wi. The NLP has to be solved in
real–time. A key to reaching real–time capability using this

control method is warm starting with the initial guess of the
solution. According to [1], the initial guesses wi with i > 0
can be warm started by a part of the previous solution w∗i−1.
The control method is described in Algorithm 2. Note that the
first initial guess w0 for Algorithm 2 can be computed using
the interior–point–based homotopy given in Algorithm 1. In
the following section, an application example is presented.

V. APPLICATION EXAMPLE

In this section, the described methods are applied to dock
the research vessel Solgenia in simulation. In the investigated
scenario, the docking process must be terminated in a given
time and shall require the lowest possible electrical energy.
Note that this is a realistic scenario for autonomous water
taxis [9] or autonomous ferries [10]. For reasons of sim-
plicity, the fully actuated case, but no collision avoidance
is considered. Data from real–world experiments is used to
model the propeller characteristic curve. This characteristic
is needed to calculate the required energy for the maneuvers.
Examples of the physical implementation of controllers on
the research vessel Solgenia including sensor fusion are given
in previous work [12], [13].

A. Setup

First, the costs (1a), the initial constraint (1b), the terminal
constraint (1c), the vessel dynamics (1d), and the path con-
straints (1e) are specified in the given application scenario.

1) Costs: The research vessel Solgenia has two propellers.
One bow thruster (BT) with a fixed direction is located at
the bow of the vessel and one turnable azimuth thruster (AT)
with orientation α is located at the stern of the vessel. So the
control vector contains nu = 3 dimensions and is given by
u = (nAT,α,nBT)

⊤. This propulsion configuration is shown
in Figure 3 . According to [16], the torque of a propeller is
proportional to its squared speed n. The mechanical power
is given by a product of the torque and the propeller speed.
These physical foundations motivate the use of a cubic model
in the form of

Pmodel,BT = βBT|n3
BT|, Pmodel,AT = βAT|n3

AT|,

where the scalar parameters βBT and βAT are dependent on
the diameter and the shape of the propeller. A database D (2)
with K = 68359 entries recorded in real–world experiments
is used to specify the least squares problem (3). The power
required to change the orientation of AT is negligible.

Algorithm 2 Shrinking horizon MPC
Input: w0: Initial guess for state and input trajectory;

1: for i ∈ 0, ...,N−1 do
2: xi← GetStateEstimate();
3: w∗(xi, i)← NLPSOLVER(PMPC(xi, i,wi));
4: SendToActuators(q∗i );
5: wi+1← (q∗i+1, ...,q

∗
N−1,s

∗
i+1, ...,s

∗
N);

6: end for
7: Notification: Docking process finished;
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TABLE I
PARAMETERS SPECIFYING THE APPLICATION SCENARIO –

VALUES WITHOUT DECLARED UNITS ARE GIVEN IN SI UNITS

Parameter Value Parameter Value
βAT 97.6 mW/Hz3 ∆t 1
βBT 6.25 mW/Hz3 T 120

vriver 1.1 N 120
R 50 QH diag(1,10,10)

x0 (0,−45,π/2,01×6)
⊤ γ 10

xT (0,45,π/2,01×6)
⊤ nu 3

y -50 y 50
ν (0,−0.5,−1/9π)⊤ ν (1.5,0.5,1/9π)⊤

a (−37.5,−π,−66.7)⊤ a (37.5,π,66.7)⊤

u (−12.5,−π/4,−33.3)⊤ u (12.5,π/4,33.3)⊤

ξ −(01×5,560,400,933,560,400,933,70,38,50,70,38,50)⊤

Therefore, the running costs are given by

L(x(t),u(t)) = βBT|n3
BT|+βAT|n3

AT| (9)

as the sum of the AT’s power and BT’s power. While
the identified model parameters are listed in Table I, the
corresponding model characteristic is visualized in Figure 2 .
Due to the terminal constraint x(T ) is fixed and E(x(T )) = 0
is chosen. By choosing this model, a constant efficiency to
transform electrical energy into mechanical energy is as-
sumed. More detailed hydrodynamic effects on the propeller
power models are neglected due to the low velocities of the
vessel during the docking maneuver [16].

2) Dynamics: The general 3–DOF dynamics of the vessel
is described in Section II C. While for different vessels and
scenarios most parts of the dynamics model only change
quantitatively via the parameters, the current field η̇c(η)
used in (4a) and the actuator model τa(a,νr) used in (4b)
have to be adapted qualitatively. To model complex river
streams partial differential equations (PDE) can be stated
and solved numerically [17]. However, the definition of
reasonable assumptions for those models is a hard task.
Instead, we want to fit a model to real–world measurements.
We measured the current vriver in the middle of the river in
a real–world experiment and define the parabolic model

η̇c(η) =

 vriver

(
1− ζ (η)2

R2

)
0
0

 ,

where ζ (η) denotes the distance to the middle of the river,
and the width of the river is given by 2R. Using this model,
no current in the yl–direction and no rotation is assumed.
Further, we assume η̈c = 0 due to low velocities in the
docking process. For a detailed description of the research
vessel Solgenia, including the dynamic propulsion model, the
reader is referred to [13].

3) Conditions and Path Constraints: The initial constraint
(1b) determines the initial state where the docking process
is starting. The terminal constraint (1c) specifies the target
state as the docking position with zero velocity. All specific
parameters are listed in Table I .

4) Application of Direct Multiple Shooting: For the dis-
cretization a constant time period ∆t = T/N for each dis-
cretization interval (III-A) is defined. For the numerical

approximations of the dynamics the RK4 method with n = 2
immediate steps is used. The path constraints are evaluated
at the time interval boundaries.

5) Details of the Homotopy Procedure: To define the
homotopy NLP H (φ) for the application, we define a three–
dimensional homotopy parameter φ = (φ1,φ2,φ3)

⊤ with
φ1,φ2,φ3 ∈ [0,1]. The first homotopy parameter φ1 is used
to generalize the dynamics (4b) in the form

Mν̇r,H =−CRB(ν)ν−N(νr)νr+(1−φ1)τa(a,νr)+φ1Tu+τd,

where ν = νr +νc, T = diag(1 N/Hz, 1 N/rad, 1 Nm/Hz) is
the unity matrix to transform the units, and φ1 determines
the influence of the nonlinear actuator model. For φ1 = 0 the
original dynamics (4b) is given. For φ1 = 1 the values of u
replace the generalized applied force and torque vector τa.
The second homotopy parameter φ2 is used to generalize the
costs (9) in the form

LH(x,u) = (1−φ2)
(
βBT|n3

BT|+βAT|n3
AT|

)
+φ2a⊤QHa,

where φ2 determines if the original costs are used (φ2 = 0)
or for φ2 = 1 a quadratic cost function with positive definite
matrix QH ∈ Rna×na is used. Finally, the third homotopy
parameter φ3 is employed to generalize the inequality con-
straints (5) resulting in

hH(x,u) = h(x,u)+φ3ξ ,

where ξ ∈ Rnh is a parameter chosen in an appropriate
way to relax the inequality constraints. All parameters used
to specify the application scenario are listed in Table I.
The algorithm is implemented via the MATLAB interface of
CasADi [18] and the NLPs are solved with IPOPT [19].

B. Results

Using the described homotopy procedure, IPOPT finds
a feasible solution to the given problem in various tested
scenarios. It is important to note that if a zero–initialization is
used, no feasible solution can be found without the homotopy
procedure. Therefore, no direct comparison with and without
the usage of the homotopy procedure is reasonable. The op-
timization was performed with four different settings vriver =
{0, 0.5, 1.1, 1.5} m/s. The exemplary actuator trajectories

Fig. 5. Optimal actuator trajectories for the different current settings.
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TABLE II
ENERGY CONSUMPTION OF DIFFERENT SCENARIOS AND METHODS

vriver Method A Method B Method C Method C (dist.)
0 m/s 43.27 kJ 43.27 kJ 43.27 kJ 64.43 kJ

0.5 m/s 177.7 kJ 56.44 kJ 51.35 kJ 80.01 kJ
1.1 m/s infeasible 90.22 kJ 80.03 kJ 133.3 kJ
1.5 m/s infeasible infeasible 107.12 kJ infeasible

are shown in Figure 5 . While for vriver = 0, the energy–
optimal trajectory is a straight line, in the other cases the
energy–optimal trajectories have nontrivial shapes. Examples
of different scenarios are shown in Figure 1 . The failure
of the actuators visualized in the right plot of Figure 1 is
modeled by

τd(t) =
{
−τa(a(t),νr(t)), for t ∈ [20,40] s
(0 N, 0 N, 0 Nm)⊤, else

. (10)

The question arises of how much energy is saved using the
described approach. To answer this question we compare
three methods with τd(t) = 0:

1) Method A: Path–velocity decomposition defined as a
straight line with orientation tangential to the path.

2) Method B: Path–velocity decomposition defined as a
straight line with optimized orientation.

3) Method C: The paper’s method.
In the experiments labeled Method C (dist.), we apply
Method C to the disturbance scenario given in (10). Method A
and Method B are not applicable in this case. Method A
was first presented in [20] and is recently used e.g. see [5].
Method B is a generalization of Method A that requires high–
dimensional nonlinear optimization. The required energy
amounts are listed in Table II . The solutions coincide in
case of no current. In all considered scenarios, Method C
requires the least energy. In the case of non–zero current,
Method A requires a lot of energy or is not applicable in
cases with high currents. It is important to note that Method
A’s performance can be improved by optimizing the path for
example using heuristics or human experts [5]. In contrast,
Method B requires only slightly more energy than Method C
even under current conditions, and might be regarded as a
compromise between optimality and planning certainty of the
geometric path. The Method C (dist.) experiments show the
ability of the shrinking horizon MPC scheme to reach the
docking position in time even in the presence of unforeseen
or misestimated disturbances along the way.

VI. CONCLUSION AND FUTURE WORK

This paper shows the application of direct multiple shoot-
ing with a homotopy procedure to an energy–optimal dock-
ing task for the research vessel Solgenia. A database recorded
in real–world experiments was used within a gray box
model of the propellers’ power consumption. The numerical
experiments show the significance of optimizing the vessel’s
orientation even if the path of the center of mass is fixed.
In still water conditions all methods compared in Section V
require the same amount of energy. In the presence of current
fields, the least energy is required if the path is optimized as
well. Experiments with temporarily failed actuators show the

ability of shrinking horizon MPC to reject disturbances in an
energy–optimal way. In future work, it would be interesting
to improve the model of the propeller characteristic and the
river current using recent data within learning algorithms.
Further, we aim to investigate and evaluate the real–time ca-
pability of the presented methods in real–world experiments
including collision avoidance scenarios.
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