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Abstract— In the realm of autonomous transportation,
executing vehicle manoeuvres accurately and reliably is
paramount. The usual separation of trajectory planning and
tracking, due to diverse origins and complexities, can lead
to limitations in the closed-loop tracking behaviour. Nonlinear
vehicle dynamics, stemming from nonholonomic constraints and
tyre-road interactions demand simplified models for real-time
planning.

This paper comprehensively evaluates the combination of
three trajectory planners with four tracking controllers us-
ing Monte Carlo analysis, considering scenario and model
uncertainties. While planners use simplified or no models,
tracking controllers based on nominal models can deviate
due to uncertain parameters and environmental variations.
Our study systematically evaluates tracking performance under
uncertainty, supposing feasible planned trajectories adhering
to physics-based constraints. We explore tracking error consis-
tency across trajectory planners, assessing if feasibility alone
can limit tracking errors.

I. INTRODUCTION

In autonomous transportation, the ability of vehicles to au-
tonomously plan and execute manoeuvres with a high degree
of accuracy and reliability is of utmost importance, and is
approached in various directions [1, 2]. Historically, path or
manoeuvre planning, execution, and trajectory tracking have
often been treated as distinct topics. This is motivated by the
pragmatic consideration that the components and algorithms
involved may originate from diverse sources and encompass
varied levels of complexity and abstraction. While this sep-
aration may seem prudent, it inherently harbours limitations
that can undermine vehicle operations’ overall effectiveness,
accuracy, and reliability. Model predictive control approaches
aim to bring planning and execution closer together, primar-
ily relying on simplified vehicle dynamic models [3].

The complexity inherent to nonlinear vehicle dynamics,
mainly due to the nonholonomic characteristics and the
nonlinear interaction between the vehicle’s tyres and the
road surface [4] necessitates the utilization of simplified
models to meet the real-time computational demands for
manoeuvre planning. Consequently, planners frequently re-
sort to simplified models, such as the kinematic bicycle
model [5], a point mass model [3], or even use no model
at all [6]. However, these assumptions can result in plans
that do not align with the physical behaviour of the actual
vehicle, highlighting the necessity of using refined models
that encompass feasibility constraints. Addressing this issue

requires the formulation of simplified models capable of
integrating feasibility constraints, enabling the verification of
trajectory limits throughout the planning phase. Noteworthy
contributions, e.g., [7] and [8], have employed a constrained
second-order model to successfully plan trajectories with a
low computational footprint. More recently, [9] utilizes a
kinematic bicycle model in an optimization-based planner
with additional first principle feasibility checks that aim to
approximate the tyre nonlinearity.

Nonetheless, even if a planned manoeuvre is feasible,
ensuring minimal deviation of the vehicle movement from
the plan remains a substantial challenge for the control
algorithm. A remaining discrepancy can be attributed to
uncertain model parameters that can cause the nominal
planning model to diverge from the real vehicle. Further-
more, the performance of tracking controllers, which are
often designed based on a nominal vehicle model, plays
a significant role in determining tracking accuracy. Hence,
variations in vehicle or environmental parameters persist
as crucial factors influencing the tracking behaviour on a
planned trajectory.

A substantial body of literature has emerged that evaluates
the robustness of vehicle dynamic controllers, primarily fo-
cusing on maintaining stability and performance in the pres-
ence of perturbations and parameter variations. The track-
ing performance analysis for changed vehicle parameters is
shown, e.g., in [10], where the vehicle mass and the cornering
stiffness are varied, or in [11], where mass, rotational inertia,
and center of gravity position are altered. The latter and [6]
discuss also the influence of an initial deviation in vehicle
position and orientation. A Monte Carlo based assessment
of the influence of measurement noise is shown in [6]
and [11]. An assessment of multiple discrete benchmark
scenarios for model-based and model-free controllers is given
in [12]. Recently, [13] presented a Monte Carlo simulation
toolbox for uncertainty quantification of closed-loop systems,
which provides a solver for stochastic differential equations
(SDEs) and thus enables a straightforward assessment of
stochastic disturbances or uncertainties. For assessing the
tracking performance resulting from a worst-case sequence
of measurement errors, [6] proposed the use of Rapidly-
exploring Random Trees (RRT), also applied in [11]. A
formal approach to verify a planned trajectory is shown in
[14], where the dynamic system is linearised to efficiently
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Fig. 1. Configuration for the assessment of a highway lane change
manoeuvre with varying planner P and controller C combinations where
the overall system Σ is subject to a randomized configuration vector ∆.

perform a reachability analysis and determine all reachable
positions. However, a noteworthy limitation of the discussed
evaluations lies in their semi-static nature — manoeuvre
scenarios usually remain fixed, rendering the approaches
unsuitable for addressing real-world driving dynamics and
online manoeuvre planning.

Our contribution goes beyond evaluations for static or
discrete manoeuvres by considering scenario and model
parameter variations within the analysis. Bridging trajectory
planning and tracking control, our research illuminates the
interplay between planner and tracking accuracy on a repre-
sentative subset of planners and controllers. Specifically, the
study seeks to determine whether the closed-loop tracking
performance changes when the trajectory planner itself is
varied. Moreover, the research aims to discern whether the
requirement of planned trajectory feasibility alone suffices
to limit tracking errors or if additional requirements are
imperative.

II. METHODOLOGY

In the scope of this contribution, we analyse the tracking
performance of different controllers during a highway lane
change. Specifically, it is interesting whether and how the
used planning algorithm influences the tracking performance
of the overall closed-loop system. For a rigorous assessment,
nominal behaviour, scenario variations, and measurement
errors will be considered. A block diagram illustrating the
chosen approach is given in Fig. 1.

This section begins with an introduction to established
planning algorithms Pi, followed by suitable vehicle dynam-
ics controllers Ci, a subset of the countless implementations
in the literature [2]. Next, a dynamic vehicle model is
discussed briefly, based on which the considered scenario
variations, parameter uncertainties, and measurement errors
are introduced. At the end of this section, the Monte Carlo-
based approach for assessing the closed-loop tracking per-
formance is motivated.

A. Lane Change Trajectory Planners

As a highway lane change is discussed, all planners will
use a fixed lane width llw = 3.5m. The nominal longitudinal
velocity is vl = 100 kmh−1, and the lane change time Tlc
will vary from 2.5 s to 4.5 s, representing a range from fast

TABLE I
OVERVIEW OF ANALYSED PLANNERS AND CONTROLLERS.

Planners Controllers

Pa State variable filter Ca Flatness-based FF & PD control
Pb 5th order polynomial Cb Exact input/output linearisation
Pc Dynamic optimization on Cc Higher-order sliding mode
kinematic single-track model Cd Immersion & Invariance principle
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Fig. 2. Planned lane change trajectories for three manoeuvre speeds with
three different planners.

to slow manoeuvre [15]. Obstacle detection and decision-
making can be omitted, as the tracking performance on the
planned trajectories is analysed.

In this contribution, the simplest planner Pa uses a filter-
based approach to determine an appropriate trajectory for
the lane change. Specifically, a state variable filter (SVF)
with a lane change dependent filter time Tf = Tlc/15
and a preceding rate limiter for the lateral set point with
2.2llw/Tlc is used1. The second planner Pb constructs a 5th

order polynomial for the lateral position, see [16]. Thereby,
start and end conditions for determining the polynomial co-
efficients are uniquely defined by the lane change manoeuvre
itself. Finally, the third planner Pc is a model-based planner.
Here, a dynamic optimization problem with fixed initial
and terminal values is formulated, where the solution must
respect the dynamics of the kinematic single-track model
while minimizing steering and accelerating action, see [5,
9]. As a summary, the planners are listed in Tab. I.

All selected planners provide desired values for the lon-
gitudinal quantities ξ∗l = (x∗, v∗l , a

∗
l ), with the longitudinal

position x, the longitudinal velocity vl and the longitudinal
acceleration al, and the lateral dynamic quantities ξ∗t =(
y∗, ψ∗, ψ̇∗

)
, with the lateral position y, the orientation ψ

and the yaw rate ψ̇, respectively. As the longitudinal velocity
remains nearly constant during a highway lane change, the
comparison of the three planning approaches and all further
parts of this analysis will focus solely on the lateral quantities

1Note that this planner is tuned empirically to provide trajectories rather
similar to the other planners.
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ξ∗t . Fig. 2 illustrates the planned lateral position y∗, planned
orientation ψ∗, and planned yaw rate ψ̇∗ for the three
planners for fast (Tlc = 2.5 s), average (Tlc = 3.5 s), and
slow (Tlc = 4.5 s) lane changes.

B. Vehicle Dynamics Controllers

To track the planned trajectories, four different tracking
controllers will be utilized. These controllers are also a subset
of the comparison performed in [11], allowing us to compare
our results. It can be noticed that each controller is based on
a different control approach and relies on a different amount
of a priori knowledge w.r.t. the vehicle.

The first controller Ca uses the flatness property of the
kinematic bicycle model to calculate an idealized steering
angle and the acceleration as a feedforward (FF) component.
The actual tracking is realized by PD feedback control,
see [14]. Note that the model-free PD controller is not
re-tuned to fit the considered vehicle, which will cause
significant performance degradation. Second, Cb performs
exact input/output linearisation on a single-track model with
nonlinear tyre forces [6]. Specifically, this control requires
a nominal model for the lateral tyre forces. Next, Cc is a
higher-order sliding mode controller using the super-twisting
algorithm, as discussed in [10]. As a model-based approach,
the controller is designed for a single-track model with
linearised tyre characteristics. The fourth and last controller
Cd can also be found in [10] and is based on the Immersion &
Invariance principle. Again, a single-track model with linear
tyre characteristics acts as a design model. As a summary,
the controllers are listed in Tab. I.

C. Dynamic Vehicle Model

For the simulation study, the vehicle dynamics are formu-
lated for a single-track model in the vehicle fixed reference
frame, see [17]. The longitudinal acceleration al and the
lateral acceleration at are modelled by

mal = F rl + F extl + cos (δ)F fl − sin (δ)F ft (1)

mat = F rt + F extt + sin (δ)F fl + cos (δ)F ft , (2)

with the vehicle mass m, the steering angle δ, the longitu-
dinal and lateral tyre forces F ···

{l,t} on the front and rear axle

F
{f,r}
··· , and the external forces F ext··· acting on the centre of

gravity2. The dynamics of the orientation ψ are modelled by

Jψψ̈ = lf

(
F ft cos (δ) + F fl sin (δ)

)
− lrF

r
t +Mext

ψ , (3)

with the yaw moment of inertia Jψ , the front and rear
axle distance to the centre of gravity (COG) lf and lr. and
an external yaw moment Mext

ψ . Due to the vehicle fixed
reference frame, kinematic couplings need to be considered

at = v̇t + vlψ̇ and al = v̇l − vtψ̇ (4)

to determine the time derivatives of the vehicle fixed veloc-
ities vl and vt. The output trajectory of the vehicle in road

2External forces can incorporate air drag or head winds.

TABLE II
NOMINAL PARAMETERS FOR THE DYNAMIC VEHICLE MODEL.

Symbol Description Value Unit

m Total vehicle mass 1654 kg
g Gravitational acceleration 9.81 m s−2

Jψ Jaw moment of inertia 2200 kgm s−2

lf Front axle distance to COG 1.34 m
lr Rear axle distance to COG 1.42 m
µr Road friction coefficient 0.9 -
B Magic formula stiffness factor 10 -
C Magic formula shape factor 1.3 -
E Magic formula curvature factor −0.25 -
cfr Tyre friction coefficient 0.013 -
rt Dynamic tyre radius 0.303 m

coordinates is given by

ẋ = vl cos (ψ)− vt sin (ψ) (5)
ẏ = vl sin (ψ) + vt cos (ψ) . (6)

The lateral tyre forces F ft and F rt in (1)–(3) are modelled
by Pacejka’s well known magic tyre formula

Fα = Fzµr sin(Catan(Bα(1− E) + Eatan(Bα))), (7)

F ft = −F fα , F rt = −F rα, (8)

with the tyre parameters B, C, E, and the road friction
coefficient µr, see [4]. The front and rear tyre loads F fz
and F rz are modelled via a static load distribution according
to

F fz = mg
lr

lf + lr
, F rz = mg

lf
lf + lr

, (9)

and the tyre slip angles for the front and rear tyre αf and
αr are

αf = atan

(
vt + lf ψ̇

|vl|

)
− δ (10)

αr = atan

(
vt − lrψ̇

|vl|

)
. (11)

As a highway lane change without distinct acceleration or
deceleration is considered, the longitudinal tyre forces are
modelled as

F rl = −F rz cfr, F fl = −F fz cfr +
Mf
w

rt
, (12)

with the tyre friction loss coefficient cfr, the dynamic tyre
radius rt, and the motor torque on the front wheel Mf

w.
The nominal model parameters are given in Tab. II and

are based on the Mercedes Benz C220 parameter set from
[18].

D. Scenario and Model Parameter Variations

When analysing the influence of varying scenarios and
model parameters for closed-loop systems, it is always im-
portant to determine reasonable parameter ranges. As already
discussed in Sec. II-A, the lane change time will be varied
from 2.5 s to 4.5 s, representing the range from fast to slow
manoeuvres [15].
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TABLE III
CONSIDERED SCENARIO AND PARAMETER VARIATIONS.

Parameter Min. Max. Unit

Planner / Scenario
Tlc Lane change time 2.5 4.5 s

Vehicle parameters
∆m Additional mass 0 500 kg
∆l Position of additional mass −0.28 0.28 m
B Magic formula stiffness factor 8 12 -
C Magic formula shape factor 1.1 1.4 -
E Magic formula curvature factor −10 0 -
µr Road friction coefficient 0.7 1 -

Initialization
εy Lateral deviation −0.1 0.1 m
εψ Orientation deviation −0.5 0.5 ◦

Besides the scenario configuration, additional variations
will be considered. Therefore, an additional mass ∆m is
introduced, which is placed at a distance ∆l in front of
the centre of gravity of the bicycle model. This leads to an
increased vehicle mass m′ and yaw moment of inertia J ′

ψ

according to

m′ = m+∆m and J ′
ψ = Jψ +∆l2∆m. (13)

Furthermore, the mass shifts the centre of gravity, resulting
in the new front and rear axle distances l′f and l′r as

l′f = lf −
∆l∆m

m′ and l′r = lr +
∆l∆m

m′ . (14)

Adjusted vertical tyre loads are calculated according to (9).
For considering varying road conditions, the road friction

coefficient µr will be varied from 0.7 to 1.0, representing
dry road conditions. As the main contact point between the
vehicle and the road, the tyre model significantly influences
the vehicle dynamics. The tyre model parameter ranges result
from the discussed parameter variations in [4].

As trajectory planning, especially re-planning, relies on
accurate information about the current vehicle state and
position, it is crucial to investigate the influence of errors in
the odometric information. Focusing on a lane change, initial
errors in the lateral position and the orientation according to
[6] will be assumed in the scope of this contribution. These
kinds of offsets can be introduced, e.g., via an initial model
state y|t=0 = εy and ψ|t=0 = εψ .

To obtain a compact notation, the discussed scenario pa-
rameters, model parameters, and error ranges are summarized
according to

∆ = {Tlc,∆m,∆l, B,C,E, µr, εy, εψ} , ∆ ∈ B∆, (15)

where B∆ is specified according to Tab. III.

E. Monte Carlo based Performance Assessment

Considering only corner cases for dim (B∆) = 9 would
already require 29 = 512 simulations for assessing the
performance of the closed-loop system while still omitting
samples in the parameter space B∆. Improved coverage
with an additional central case would lead to 39 = 19683

simulations. Therefore, a Monte Carlo based performance
assessment with Nmc = 5000 is performed as a more
efficient alternative to a grid-based assessment [19].

For the probabilistic performance assessment of the
closed-loop system, a performance metric must be specified.
As the lane change is in focus, it is evident that the lateral
tracking error ey = y − y∗ and the orientation error eψ =
ψ − ψ∗ will be of special interest. When assessing the
performance via a Monte Carlo approach, see [20], it is
beneficial to assess each scenario with a low-dimensional
quantity. Therefore, and based on our prior work [21], the
maximum of the absolute errors up to a simulation time
TE = 6 s according to

γ̄i = max
∀τ∈[0,TE ]

|ei (τ)| with i ∈ {y, ψ} (16)

will serve as a performance function for the closed-loop
behaviour.

The performance of each planner and controller combina-
tion can then be compared by analysing the distribution of
the respective statistics. After generating Nmc randomized
scenario configurations ∆k ∈ B∆, k = 1, ..., Nmc, the statis-
tics of the performance metrics γ̄i,k can be compared, e.g., by
investigating the empiric distribution functions, by gathering
the data in histograms, or by analysing the empirical worst-
case performance γ̄wci = maxk (γ̄i,k).

III. EXPERIMENTAL STUDY

The conducted experiments consist of three stages. First,
the planners and controllers under test are assessed on the
nominal vehicle model. The generated trajectories are first
verified with physics-based feasibility checks to indicate the
expected closed-loop performances. Second, the influence of
scenario and vehicle parameter variations will be investigated
using the Monte Carlo based approach. Third, additional ini-
tial offsets are introduced at planned manoeuvres beginning.

A. Nominal Assessment and Physics-based Feasibility
Checks

Typically, vehicles cannot follow all arbitrary trajectories.
On the one hand, this is due to the rigid rear axle, which
leads to nonholonomic vehicle models. On the other hand,
the force that the tyres can transfer to the road is limited. In
the first step, we will check if the planned trajectories fulfil
these constraints. Therefore, the kinematic bicycle model will
be used. In [9], three feasibility constraints are discussed. The
longitudinal velocity constraint can be omitted here, as the
manoeuvre velocity is fixed. The maximum acceleration ā is
determined by the tyre-road friction coefficient µr and the
gravitational acceleration g according to

a2l + a2t ≤ ā2, with ā = µrg. (17)

Assuming a low friction coefficient µr = 0.7 yields ā ≈
6.87m s−2 as lower estimate for the maximum acceleration.
Again, the longitudinal acceleration al is neglected due to
a nearly constant velocity. Assuming constant velocities,
the planned lateral acceleration can be calculated with the
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Fig. 3. Simulated tracking performance with varying planners (line style) and controllers (colour) with the nominal vehicle model.
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planners.

planned yaw rate ψ̇∗ and the longitudinal velocity v∗l ac-
cording to (4) as

a∗t = ψ̇∗v∗l . (18)

The calculated maximum acceleration for each planner at
varying velocities are given in the left part of Fig. 4. It can be
seen that all planners yield trajectories with accelerations far
below the discussed limit. Also relevant is the limitation in
the steering angle, which is a constructive parameter. For the
considered vehicle, the steering angle is constrained to |δ| ≤
20◦. Using the yaw dynamics according to the kinematic
bicycle model

ψ̇ =
vl

lr + lf
tan (δ) , (19)

see e.g., [5, 9], leads directly to the planned steering angle

δ∗ = atan

(
ψ̇∗

v∗l
(lr + lf )

)
. (20)

The maximum values for each planner at different velocities
are again shown in the right part of Fig. 4. As expected, for a
highway manoeuvre, all planners come with planned steering
angles below the discussed limit. Therefore, the physics-
based checks indicate per se feasible planning results.

In addition, Fig. 3 shows the tracking behaviour for all
possible combinations of planners (line styles) and con-
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Fig. 5. Simulated maximum tracking errors with varying planners (groups)
and controllers (colour) with the nominal vehicle model for the fast lane
change (Tlc = 2.5 s).

trollers (colours) for fast, average, and slow lane changes.
All lane changes are planned for v∗l = 100 kmh−1, and
the simulations are performed on the nominal vehicle model
without any additional sources of uncertainty or errors. The
top row shows the simulated lateral position y, and the
bottom row depicts the simulated orientation ψ. Especially
for the fast lane changes, some oscillations in the orientation
become visible for some combinations. Nevertheless, these
oscillations do not influence the lateral tracking significantly.
Together with Fig. 5, it is clearly visible that the choice of the
controller dominates the tracking performance. The choice
of the planner seems less relevant, at least for the nominal
scenarios. When focusing on the tracking performance for
y, the controllers Cc and Cd are performing better than Ca
and Cb, while the choice of the planner is barely noticeable.
For the orientation ψ, Ca and Cb show an advantage against
Cc and Cd, while all controllers perform worse with planner
Pa.

B. Scenario and Model Parameter Variations

Next, parameter variations in the scenario and the dynamic
vehicle model are investigated by applying a Monte Carlo
scheme. Therefore, Nmc = 5000 randomized parameter
vectors ∆k ∈ B∆ are sampled using a uniform distribution
and random sampling, see (15). The initial offsets are set to
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Fig. 6. Empirical distribution functions (top) and worst-case observations
(bottom) for the tracking performance metrics under scenario and model
parameter variations. Colours represent different controllers, while line
styles denote varying planners.

zero, εy = 0, εψ = 0. Each sample ∆k yields the closed-loop
performance measures γ̄y,k and γ̄ψ,k for each pair of planner
and controller. Using the results of these simulations, Fig. 6
shows the determined empirical distribution functions (EDF)
for each planner (line style) and controller (colour) combina-
tion in the top part and the observed worst-case performance
in the bottom part. The upper representation is beneficial
for an assessment of the closed-loop performance, since it
is directly visible which share of the tested configurations
meets a specific performance limit. The further to the left in
the plot the EDF is found, the lower the expected errors are.
The empirical worst-case performance is given as additional
information in the bottom part.

Like Fig. 3, controller Cd has the best tracking perfor-
mance in γ̄y . With all controllers, hardly any influence of the
used planners is visible in γ̄y , neither in the EDFs nor in the
worst-case representation. In contrast, the orientation metric
γ̄ψ significantly depends on the selected planner. Using the
planner Pa consistently leads to a worse performance as the
EDFs are shifted towards higher tracking errors. Particularly,
an increase in the empirical worst-case performance can be
observed for the controllers Ca and Cb.

It appears that using Cc together with Pc provides a good
trade-off between lateral position and orientation tracking.

C. Manoeuvre Initialisation with Deviation

As a final step, all parameter variations and initial devia-
tions according to Tab. III are considered in the assessment of
the lane change manoeuvre. Again, the EDFs for all planner
(line style) and controller (colour) combinations are depicted
in Fig. 7 (top) and the empiric worst-case performance values
in Fig. 7 (bottom). For comparability, the axis limits are
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Fig. 7. Empirical distribution functions (top) and worst-case observations
(bottom) for the tracking performance metrics with additional initial devia-
tion. Colours represent different controllers, while line styles denote varying
planners.

identical to Fig. 6, even though some planner and controller
combinations lead to EDFs that significantly exceed these
limits.

The overall interpretation of the EDFs is consistent with
the prior section, where the variations in γ̄y are dominated by
the selected controller and the degradation by choosing Pa is
evident in γ̄ψ . It is much more revealing to analyse the empir-
ical worst-case performances. Interestingly, the controller Cd,
which previously performed best on γ̄y , now has the worst
empirical worst-case performance. In contrast, the controllers
Ca and Cb are less sensitive to the introduced deviations in
the manoeuvre initialisation. With controller Cd, worst-case
performances of γ̄ψ > 180◦ are observed for all planners.
This indicates a skidding vehicle and therefore, a failure
of the closed-loop control system. An interesting result is
that the controller Cc, together with the planner Pb, exhibits
the best tracking behaviour. However, the combination with
the other planners Pa and Pc also leads to large errors. In
order to assess the reliability of these empirical estimates, the
sample size bound for the worst-case performance is utilized,
e.g., [20, 21]. Demanding a confidence parameter β = 10−3

yields ϵ = 1 − βN
−1
mc ≈ 1.381 · 10−3 as bound for an even

worse performance on a new sample ∆k+1, i. e.,

Pr

{
Pr

{
max
k

(γ̄i,k) < γ̄i,k+1

}
< ϵ

}
≥ 1− β. (21)

Given the considered variations according to Tab. III and the
carried out simulations, Fig. 7 strongly indicates that within
the analysed planner and controller combinations, the pair
Pb and Cc works best.
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IV. CONCLUSIONS

This study culminates in several key findings that provide
insight into the interplay between trajectory planning and
tracking control for autonomous vehicles under uncertainty.
Our evaluation demonstrates that all analysed planners gener-
ate physically feasible trajectories for the tested lane change
times and speeds. When only varying vehicle parameters, our
results reveal that all tracking controllers can successfully
follow the trajectories generated by the planners. However,
controllers Ca and Cb show substantial deviations even under
nominal conditions, indicating limitations in their control
performance. Importantly, incorporating initial errors into
the analysis uncovers the inability of some controllers to
maintain tracking. This highlights that while certain con-
trollers might perform well under ideal conditions, their
robustness diminishes when faced with deviations from the
nominal model. Individual pairs of planners and controllers
are influenced in varying degrees, with the combination
of Pb and Cc performing best in the considered scenarios.
Overall, the controller selection notably influences tracking
errors the most. Nonetheless, it becomes evident that planner
Pa consistently leads to larger deviations, particularly in
vehicle orientation. This underscores the critical role of both
planning and control components in achieving accurate and
reliable trajectory execution.

These findings collectively underscore the complexity of
achieving precise trajectory tracking in the presence of un-
certainties. As the autonomous driving landscape continues
to evolve, the symbiotic relationship between trajectory plan-
ning and tracking control necessitates careful consideration
to ensure the robust and dependable operation of autonomous
vehicles in real-world scenarios. It is also expected that the
detailed analysis of the interplay between trajectory planning
and tracking control is beneficial for general control systems
besides the vehicle dynamics domain.

OPEN SCIENCE

We encourage the transformation towards an open science
community. Therefore, our generated data, together with
the relevant code for the analysis, is available under DOI
10.5281/zenodo.8402997.
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