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Abstract— This article concerns the performance limits of
strictly causal state estimation for linear systems with fixed, but
uncertain, parameters belonging to a finite set. In particular,
we provide upper and lower bounds on the smallest achievable
gain from disturbances to the point-wise estimation error. The
bounds rely on forward and backward Riccati recursions—one
forward recursion for each feasible model and one backward
recursion for each pair of feasible models. We give simple
examples where the lower and upper bounds are tight.

I. INTRODUCTION

Multiple-model estimation is a valuable tool for state
estimation of systems that operate in different modes, for
problems involving unknown parameters, for dealing with
systems subject to faults, and for target tracking. If the
mode is known, one selects the filter corresponding to the
current mode. Otherwise, one can use a bank of filters, one
for each mode, and cleverly combine the estimates. The
latter approach is precisely what is called multiple-model
estimation.

Almost all of the literature assumes that the system is
affected by stochastic noise and that good noise statistics
are available. Unfortunately, many popular methods are
sensitive to a mismatch between the assumed and actual
noise statistics. This assumption limits the applicability of in
control systems, where we often use simplified models and
disguise the model mismatch as additive disturbances. These
disturbances are sometimes poorly modeled by Gaussian
noise, and the noise statistics are often unknown.

In this article, we consider the problem of predicting the
state of a linear system with unknown but fixed parameters
belonging to a finite set. We assume that the system is
affected by disturbances but make no assumptions about the
noise statistics. We study the minimax performance level, de-
fined as the gain from disturbances to point-wise estimation
error, and are concerned with bounding the optimal (smallest
achievable) performance level. See Fig. 1 for an illustration
of our problem.

A. Contributions

This author, and Rantzer, recently proposed an estimator
that achieves the optimal performance level but the per-
formance level itself was not characterized [1]. The main
contribution of this article is to extend the framework in
[1] with a method to compute upper and lower bounds of

*This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
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the optimal performance level. These bounds are computed
offline, a priori, and depend on the pairwise interaction
between candidate models.

B. Background

The idea of using multiple models to reduce uncertainty
is prevalent in many fields. It has been used in adaptive esti-
mation since the ’60s [2], where it is called multiple-model
estimation and in feedback control since the ’70s [3], where it
is called multiple-model adaptive control [4], or supervisory
control [5]. The concept has been known in machine learning
at least since Dasarty and Sheela introduced the “Composite
classifier system” in 1979 [6], and is commonly referred to
as ensemble learning [7]. In the field of economics, the idea
of multiple models is known as model averaging [8], and
was popularized by the work of Bates and Granger [9].

The task usually falls into one of two categories: model
selection, where the goal is to find the best performing
model, or model averaging, where the goal is to use all the
models to generate an estimate of some common quantity. In
this article, the focus is on predicting the state in dynamical
systems, which falls into the latter category.

When the model is known, the Kalman filter is the realiza-
tion of many reasonable estimation strategies. The minimum
variance estimate, the maximum-likelihood estimate, and the
conditional expectation under white-noise assumptions [10]
all coincide with the estimate generated by the Kalman filter.
The filter also has appealing deterministic interpretations
as the minimum energy estimate [11], [12], and as Krener
showed [13], it constitutes a minimax optimal estimate.

Interestingly, a minimax optimal estimate can be derived
and computed without explicit knowledge of its minimax
performance level, a property not shared with the H∞-
optimal estimate [14] and controller [15], which require
knowledge of their performance levels. Tamer Başar showed
that the optimal performance level can be obtained from the
finite escape times of some related Riccati recursions [16].

In the case of multiple fixed models, the different estima-
tion strategies give rise to different estimates1. The stochastic
multiple-model approach to adaptive estimation was intro-
duced in the ’60s [2], [17] for linear systems with fixed,
but unknown parameters, and has numerous applications in
fault detection, state estimation and target tracking [18]. This
estimation algorithm applies the Bayes rule recursively under

1Except the maximum likelihood estimate under white-noise assumptions
and a uniform prior over M coinciding with the minimum-energy estimate.
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Fig. 1: An illustration of the multiple-model estimation problem.

white-noise assumptions on (w, v) and is well described in
many textbooks like [19], [20], [10]. The book [10] also
contains a convergence result, stating that given a certain
distinguishability condition2, the conditional probability for
the active model generating the data converges to 1 as time
goes to infinity. Vahid et al., [22], proposed a minimum-
energy condition for multiple-model estimation and proved
a convergence result given a persistency-of-excitation-like
criterion.

Multiple-model estimation has also been extended to the
case with changing parameters, the case when i in Fig. 1
evolves on a Markov chain. One can, in principle, solve
exactly for the Baysian average, but this is computation-
ally intractable as the number of feasible trajectories grow
exponentially with time. Instead, there exist sub-optimal
algorithms that cleverly combine estimates at each time-step,
compressing the feasible trajectories, like Blom’s Interacting-
Multiple-Model algorithm, [23]. This idea was further gen-
eralized by Li and Bar-Shalom to the case when the model
set varies with time, [24].

The work in this article is inspired by recent progress in
minimax adaptive control [25], [26], [27], and in a broader
sense, the search for performance guarantees in learning-
based control and identification [28], [29].

C. Outline

The rest of this paper is organized as follows. We establish
notation in Section II. Section III contains the problem
formulation and solution. Illustrative examples are in Sec-
tion IV. We give conclusions and final remarks in Section V.
The proofs of the main results and supporting Lemmata are
contained in the appendix.

II. NOTATION

The set of n × m-dimensional matrices with real coef-
ficients is denoted Rn×m. The transpose of a matrix A is
denoted AT. For a symmetric matrix A ∈ Rn×n, we write
A ≻ (⪰)0 to say that A is positive (semi)definite. The
n × n-dimensional identity matrix is denoted In, and the
n × m-dimensional zero matrix is denoted 0n×m. Given
x ∈ Rn and A ∈ Rn×n, |x|2A := xTAx. For a vector
xt ∈ Rn we denote the sequence of such vectors up to time

2Silvestre et al., [21], recently reexamined the distinguishability require-
ments from a multiple-model adaptive control perspective.

t by x[0:t] := (xk)
t
k=0. For a sequence of square matrices

(Ai)
M
i=1, we denote the corresponding block-diagonal matrix

as BDiag(Ai)
M
i=1.

III. MINIMAX PERFORMANCE LIMITS

A. Problem statement

In this article, we consider strictly causal3 state estimation
for uncertain linear systems of the form

xt+1 = Fxt + wt, (F,H) ∈ M
yt = Hxt + vt, 0 ≤ t ≤ N − 1,

(1)

where xt ∈ Rn, and yt ∈ Rm are the states and the measured
output at time t. wt ∈ Rn and vt ∈ Rm are unmeasured
process disturbance and measurement noise. We employ a
deterministic framework and make no assumptions on the
distributions of wt and vt. Instead, they are adversarially
chosen to maximize the objective of a related minimax
problem that we will define shortly. The model, (F,H) ∈
Rn×n×Rm×n is unknown but fixed, belonging to a (known)
finite set

M = {(F1, H1), . . . , (FM , HM )}.
The state estimate at time N , x̂N , is generated by a causal

estimator, µ, that depends on previous measurements but is
unaware of the model, (F,H), and noise, (w, v), realizations,

x̂N = µ(yN−1, . . . , y0).

We are interested in describing the smallest γN , denoted
γ⋆
N , such that the below expression has finite value.

J⋆
N (x̂0) := inf

µ
sup

x0,w[0:N−1],v[0:N−1],i

{
|xN − x̂N |2

− γ2
N

(
|x0 − x̂0,i|2P0,i

+

N−1∑
t=0

[
|wt|2Q−1

i

+ |vt|2R−1
i

])}
, (2)

where the trajectory x[0:N ] in (2) is generated according to
(1) with (Fi, Hi) ∈ M. The problem set-up is a two-player
game where the adversary picks the disturbance sequences
w[0:N−1] and v[0:N−1], the initial state x0, and the active
model i = 1, . . . ,M . The minimizing player picks the

3The ideas in this paper extend to other information structures like
filtering, k-step prediction, and smoothing, but they require some extra steps.
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estimation policy µ. The matrices Qi ∈ Rn×n and Ri ∈
Rm×m are positive definite matrices that weights the norms
on w and v. The matrices P0,i ∈ Rn×n are positive definite
and quantify the uncertainty in the estimates of the initial
states x̂0,i.

B. Forward Recursions

The forward recursions describe the worst-case distur-
bances consistent with the dynamics and an observed trajec-
tory. They are also fundamental in constructing a minimax-
optimal estimator µ⋆. The recursions are equivalent to those
of a Kalman filter of a system driven by zero-mean inde-
pendent white noise sequences wt and vt with covariance
matrices Qi and Ri respectively,

Kt,i = FiPt,iH
T
i (Ri +HiPt,iH

T
i )

−1,

Pt+1,i = Qi + FiPt,iFi−Kt,i(Ri +HiPt,iH
T
i )K

T
t,i.

(3)

The relation between the stochastic interpretation and our
deterministic framework lies in that the least-squares esti-
mate coincedes with the maximum-likelihood estimate under
white-noise assumptions.

Remark 1. P0,i is a regularization term that penalizes
deviations from an initial state estimate x̂0,i and can be
interpreted as the covariance of the initial estimate x̂0,i. It
is practical to choose P0,i as the stationary solution to (3),
and we will do so in the sequel to simplify the notation by
removing the time index. The results in this section are valid
for any positive semi-definite choice of P0,i. However, the
resulting observer dynamics will be time-varying. We leave
it to the reader to reintroduce the dependence on t.

The solution, Pi, to the Riccati equation (3) quantifies the
uncertainty of the state estimate given the observations y0:t
and the model i and bounds the smallest achievable gain
from below if the model is known. This is formalized in the
following proposition, whose proof is in the Appendix.

Proposition 1. γN ≥ γ⋆
N only if Pi ⪯ γ2

NI for all i =
1, . . . ,M .

In our previous work, [1], we show how to construct
the minimizing argument µ⋆ of (2) in the case of output-
prediction. The estimator uses the forward recursions (3)
and requires a γN that fulfills Proposition 1. The following
proposition shows how to construct a state predictor that is
optimal for (2).

Proposition 2 (Minimax multiple-model estimator). Given
matrices Fi ∈ Rn×n and Hi ∈ Rm×n, positive definite
Qi, P0,i ∈ Rn×n and Ri ∈ Rm×m for i = 1, . . . ,M . With
P0,i, Pi and Ki as the stationary solutions to (3),

R̃i = Ri +HiPiH
T
i , (4)

a quantity γN such that γ2
NI ≻ Pi, the below estimate

achieves the infimum in (2):

x̂⋆
N = min

x̂N

max
i

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1 − γ2

NcN,i

}
,

where x̆N,i ∈ Rn and cN,i ∈ R are generated according to

x̆0,i = x0, c0,i = 0, (5a)
x̆t+1,i = Fix̆t,i +Ki(yt −Hix̆t,i), (5b)

ct+1,i = |Hix̆t,i − yt|2R̃−1
i

+ ct,i. (5c)

Proof. The proof is identical to that of Theorem 1 in [1]
but with the following modifications: P0,i is replaced by
the stationary solution to (3) leading to Kt,i and Pt,i being
replaced by Ki and Pi, the term ŷN −HixN is replaced by
x̂N − xN .

C. Backward Recursions

The backward recursions are similar to those of the linear-
quadratic regulator and relate to the worst-case trajectories,
in contrast to the forward recursions, which relate to the
worst-case disturbances consistent with any given trajectory.
They play no role in constructing the optimal estimator, µ⋆,
once a performance level γ has been found, but form the
basis for a priori analysis of the optimal performance level
γ⋆
N that holds for any realization. Let

F ij =

[
Fi −KiHi 0n×n

0n×n Fj −KjHj

]
, Kij =

[
Ki

Kj

]
.

F ij
t corresponds to the closed-loop of a pair (i, j) of Kalman

filters with filter gains Ki and Kj as in (3). We will express
the necessary and sufficient conditions using the following
Riccati recursions. Given some symmetric matrix T ij

N ∈
R2n×2n and t = N − 1, . . . , 0,

Xij
t = (Kij)TT ij

t+1K
ij + (R̃−1

i + R̃−1
j ),

Lij
t = (Xij

t )−1
(
(Kij)TT ij

t+1F
ij −

[
R̃−1

i Hi R̃−1
j Hj

])
,

T ij
t = (F ij)TT ij

t+1F
ij − (Lij

t )
TXij

t Lij
t

+

[
HT

i R̃
−1
i Hi

HT
j R̃

−1
j Hj

]
.

(6)

For these recursions to be well-defined, the matrix Xij
t must

be invertible. The conditions for bounding γ⋆
N are related

to the positive definiteness of Xij
t and are summarized

in Theorems 1 and 2 below. The first concerns sufficient
conditions and can be used to obtain upper bounds.

Theorem 1 (Sufficient Condition). Given matrices Fi ∈
Rn×n and Hi ∈ Rm×n, positive definite Qi ∈ Rn×n and
Ri ∈ Rm×m for i = 1, . . . ,M . Further, let P0,i = Pi and
Ki be the stationary solutions to (3), and consider a quantity
γN such that γ2

NI ≻ Pi. Let Q ∈ Rn×n be a positive definite
matrix such that Q ⪯ I − γ−2

N Pi for all i = 1, . . . ,M and
initialize the backward recursions (6) with the terminal state

T ij
N = −

[
Q−1 −Q−1

−Q−1 Q−1

]
/γ2

N .

Assume that Xij
t in (6) is negative definite for all i, j. Then

γ⋆
N ≤ γN and

J⋆
N (x̂0) ≤

1

2
max
i,j

{
−γ2

N

[
x̂0,i

x̂0,j

]T
T ij
0

[
x̂0,i

x̂0,j

]}
.
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TABLE I: Parameters for the systems in Fig. 2a–2d. In all
cases Q1 = Q2 = R1 = R2 = 1 and P0,i is the stationary
solution to (3).

System F1 F2 H1 H2 P1 P2

2a 1.1 1.1 1 -1 1.77 1.77
2b 0.9 0.9 1 -1 1.48 1.48
2c 0.7 0.9 1.5 1 1.16 1.48
2d 2 1 1 16 4.23 1.00

The second theorem concerns necessary conditions and
helps obtaining lower bounds.

Theorem 2 (Necessary Condition). Given matrices Fi ∈
Rn×n and Hi ∈ Rm×n, positive definite Qi ∈ Rn×n and
Ri ∈ Rm×m for i = 1, . . . ,M . Further, let P0,i = Pi and
Ki be the stationary solutions to (3), and consider a quantity
γN such that γ2

NI ≻ Pi. Initialize the backward recursion
(6) with the terminal state

T ij
N = −

[
Qij −Qij

−Qij Qij

]
/γ2

N ,

Qij = (2I − γ−2
N (PN,i + PN,j))

−1.

If Xij
t ̸⪯ 0 for some pair i, j and 0 ≤ t ≤ N − 1, then

γ⋆
N > γN . If Xij

t ≻ 0, for all t = 0, . . . , N − 1 then

J⋆
N (x̂0) ≥

1

2
max
ij

{
−γ2

N

[
x̂0,i

x̂0,j

]T
T ij
0

[
x̂0,i

x̂0,j

]}
.

Remark 2. Theorems 1 and 2 give upper and lower bounds
on J⋆

n that can be translated upper and lower bounds on γ⋆
N

by bisecting over γN .

IV. EXAMPLES

Figures 2a–2d show γ⋆
N along with upper bounds, γN , and

lower bounds, γ
N

for four different pairs of scalar systems,
defined in Table I. The optimal performance level, γ⋆

N , was
computed using the construction in Appendix B, gridding
the probability simplex {(θ, 1 − θ) : θ = 0, 10−3, . . . , 1 −
10−3, 1} and the bounds were computed using Theorem 1
and 2, bisecting over γ to an accuracy of ±10−3. The
systems in Fig. 2a are unstable and indistinguishable, and the
resulting optimal performance level γ⋆

N grows exponentially
in N . Fig. 2b is also indistinguishable, but here both systems
are stable. The optimal performance level γ⋆

N is bounded and
is equal to the lower bound γ

N
. This is because the systems

are BIBO stable, so picking x̂N = 0 results in an estimation
error bounded by the disturbance’s norm. Fig. 2c contains
two stable systems that are distinguishable. The performance
level γ⋆ is similar to the case where the system is known, and
the bounds are close. γ⋆

N is smaller than the other examples.
Fig. 2d contains two unstable distinguishable systems. Here
γ⋆
N is bounded and approaches the upper bound γN .

V. CONCLUSIONS

This article proposed a method to compute upper and
lower bounds for the optimal minimax performance level
for uncertain linear systems, where the uncertainty belongs

to a finite set. The bounds are computed by evaluating
the positive-definiteness of matrices appearing in coupled
Riccati recursions. The performance level refines the notion
of distinguishability in a priori analysis of the problem set-
up for multiple-model estimation, and answers the question
“To what extent can I guarantee the performance multiple-
model estimation applied to my problem?”. Our experiments
indicate that if similar output trajectories come from similar
state trajectories, the gain is small. This agrees with the
intution that such systems generate similar estimates, and that
in order for these estimates to be poor, the disturbances must
be large. However, if similar output trajectories come from
different state trajectories, the state estimates will be different
even for small disturbances, and as the optimal estimate is
an interpolation of the estimates from the different models,
the term x − x̂N will be large even for small distrubances.
The provided examples show that there are systems where
the optimal performance level is equal to its lower bound,
approaches its upper bound, and where neither bound is ever
tight.

As with H∞-control and estimation, the results are valid
for any disturbance realization but are conservative if good
disturbance statistics are available.

A. Future Work

The numerical examples show that the bounds are tight
for some systems, but not for others. The difference between
the upper and lower bounds trivially bounds the conserva-
tiveness, but obtaining general conditions, and classifying
systems where the bounds are tight, would enhance the
practical utility of the results.

In this work, the system parameters Fi and Hi are assumed
to be fixed. The extension to time-varying parameters is
straightforward, but the extension to jump-linear systems
is not. The reason is that the number of feasible param-
eter trajectories grows exponentially with time. There are
heuristic ways of combining the Kalman filter estimates from
different models, such as Blom’s interacting-multiple-model
estimator, [30].

The worst-case history can be losslessly compressed to
quadratic functions, but the number of functions will grow
exponentially in time. However, it is possible to upper bound
the time-evolution of the worst-case data-consistent param-
eter realization by updating a constant number of quadratic
functions, similar to how we combine many Kalman-filter
estimates into one estimate in this paper. It would be interest-
ing to exploit this bound to extend the results to jump-linear
systems.
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Fig. 2: Numerically evaluated optimal performance levels, upper and lower bounds for the four system pairs considered
in Section IV. Only stable and or distinguishable systems have bounded performance levels. In two pairs γ⋆

N achieves the
lower bound, and in Fig 2d it approaches the upper bound.

APPENDIX

A. Proofs

This section proves Theorems 1 and 2. In doing so
we obtain an expression that can be used to evaluate the
value (2), but is computationally intractable for problems
with uncertainties belonging to moderately-sized sets.

1) Proof strategy: We reparameterize the disturbance tra-
jectory (w[0:N−1], v[0:N−1]) in the state-output trajectory and
the active model (x[0:N−1], y[0:N−1], i). This reparameteriza-
tion allows us to partially switch the order of the minimiza-
tion and the maximization, as µ is a function of y[0:N−1],
yielding a problem of the form maxy[0:N−1]

minµ maxi,x[0:N]
.

Previous work, [1], shows how to maximize over x[0:N ] using
forward dynamic programming, resulting in the forward
Riccati recursions (3).

We then reformulate the maximization over the feasible
set to maximizing over its convex hull. This reformulation
allows us to switch the order of minimizing with respect to
µ and maximizing with respect to the model. The catch is
that while the value is unchanged, the maximizing θ is not
necessarily the same. As we are interested in the value, we
can ignore this issue.

The inner minimization problem is unconstrained and
convex-quadratic in the estimate x̂N , which has a closed-
form solution. The maximization over the convex hull of the
model set is then bounded from above and from below by
a maximum over a finite number of functions that linear-
quadratic regulator costs in y[0:N−1], which has a solution
expressed by the backward Riccati recursion, (6).

2) Reparameterization: The disturbance wt is uniquely
determined by F = Fi and (xt+1, xt), and vt is uniquelly
determined by H = Hi, yt and xt. As the maximizing player
is aware of the dynamics, i, we can substitute wt = xt+1 −
Fixt and vt = yt −Hixt into (2),

J⋆
N (x̂0) = inf

µ
sup

x[0:N],y[0:N−1],i

{
|xN−x̂N |2−γ2|x0−x̂0,i|2P0,i

− γ2
N−1∑
t=0

[
|xt+1 − Fixt|2Q−1

i

+ |yt −Hixt|2R−1
i

]}
. (7)

Furthermore, as µ is a function of y[0:N−1], we can move
the maximization over output trajectories outside of the
minimization and minimize directly over the estimate x̂N ∈
Rn. Consider the inner maximization over state trajectories,
which is a function of the observations and estimates,

J inner
N (y[0:N−1], x̂N , x̂0) =

sup
x[0:N],i

{
|xN − x̂N |2 − γ2

N |x0 − x̂0,i|2P0,i

− γ2
N−1∑
t=0

[
|xt+1 − Fixt|2Q−1

i

+ |yt −Hixt|2R−1
i

]}
. (8)

Then (7) can be written as

J⋆
N (x̂0) = sup

y[0:N−1]

inf
x̂N

J inner
N (y[0:N−1], x̂N , x̂0). (9)

3) Foward recursion: Following the proof of Theorem 1
in [1], with P0,i as the stationary solution to (3), we see that
the value inner optimization problem (8) is equal to

sup
i,xN

{
|x̂N − xN |2 − γ2

(
|xN − x̆N,i|2P−1

i

+ cN,i

)}
= max

i

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1 − γ2cN,i

}
, (10)

if I ≻ γ−2P−1
i for all i. The value is unbounded if

I ⪰̸ γ−2P−1
i for some i, which proves Proposition 1.

Proposition 2 shows how to compute x̆N,i, Pi and cN,i in
(10)

B. Exact computations of J⋆
N

By substituting (10), we see that the value of (9) is equal
to

sup
y[0:N−1]

min
x̂N

max
i

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1 −γ2cN,i

}
. (11)

Maximizing over the finite set M in (11) is equivalent
to optimizing for convex combinations over the probability
simplex Θ = {θ ∈ Rn : 0 ≤ θi ≤ 1,

∑M
i=1 θi = 1}. The

equivalence is because the optimal value of a linear program
over a simplex is located on a vertix. As (11) is convex
in x̂, the minimizing x̂ can be bounded in terms of x̆N,i.
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The convex combination is affine in θ, so Von Neumann’s
minmax theorem applies and the value (11) is equal to

sup
θ∈Θ

min
x̂

{
M∑
i=1

θi

(
|x̂− x̆N,i|2QN,i

− γ2cN,i

)}
,

where QN,i = (I − γ−2Pi)
−1. Applying Lemma 3 to the

inner minimization problem means that the value (11) is
equal to

sup
y[0:N−1],θ

{
M∑
i=1

θi

(
|x̆i,i|2QN,i

− γ2cN,i

)
−
∣∣∣ M∑
i=1

θiQN,ix̆N,i

∣∣∣2
(
∑

θiQN,i)−1

}
. (12)

For a fixed θ, this is a sequential quadratic optimization
problem in y that can be solved using dynamic programming.
In fact this can be reformulated into a standard linear-
quadratic regulator problem, except that the terminal penalty
is indefinite. This indefinite term will, for small values of
γN , lead to a loss of concavity in y[0:N−1]. This means that
the value is unbounded, and γN < γ⋆

N . Larger values of γN
will compensate for the indefinite term and ensure concavity
in y[0:N−1]. Testing for concavity amounts to evaluating
whether Xt in (16) is positive definite for all t. If concavity
in y[0:N−1] holds for all θ ∈ Θ, then the value is finite and
γN ≥ γ⋆

N . Define

F
def
= BDiag

(
{Fi −KiHi}Mi=1

)
x̆t

def
=

[
x̆Tt,1 · · · x̆Tt,M

]T
, K

def
=

[
KT

1 · · · KT
M

]T
.

Then, the multi-observer update (5b) becomes,

x̆t+1 = Fx̆t +Kyt.

Further, let

QN
def
= BDiag{θiQN,i}Mi=1

−

 θ1QN,1

...
θMQN,M

(
(
∑

θiQN,i)
−1

)−1

 θ1QN,1

...
θMQN,M


T

,

(13)[
Q NT

N R

]
def
=

[
BDiag

(
{−HT

i }Mi=1

)
I · · · I

]
× BDiag

(
{θiR̃−1

i }Mi=1

)[
BDiag

(
{−HT

i }Mi=1

)
I · · · I

]T
,

(14)

where × denotes standard matrix product. With l(θ, x̆t, yt) =
γ2
N

(
|x̆t|2Q − 2yTt Nx̆t + |yt|2R

)
, (9) becomes

J⋆
N (x̂0) = − inf

θ
inf

y[0:N−1]

{
|x̆t|2QN

+

N−1∑
t=0

l(θ, x̆t, yt)

}
︸ ︷︷ ︸

def
=JN (θ,x̂0)

.

(15)

It is apparent that l is strictly convex in yt. However, the
terminal penalty matrix, QN , is indefinite, which may cause
(15) to lose convexity and become unbounded.

Remark 3. The stage cost is a convex combination of the
Kalman filter residuals l(θ, x̆t, yt) = γ2

N

∑M
i=1 (θict,i).

The Riccati recursions corresponding to the linear-
quadratic regulator are well described in many textbooks, for
instance in [31, Chapter 11.2], and can be used to compute
the value provided that θ ∈ Θ fixed:

Xt = KTTtK+R, Lt = X−1
t (KTTtF−N)

Tt−1 = FTTtF+Q− LT
tXtLt.

(16)

The relationship between the solution to the above Riccati
equations and the value of the game are summarized in the
below lemma.

Lemma 1. Consider the backward Riccati equations above
with terminal condition TN = −QN/γ2

N . Let J⋆
N (x0) be the

value of the game (2) and JN (θ, x0) be value of the inner,
sequantial, optimization problem in (15). If Xt ̸⪯ 0 for some
θ ∈ Θ, then J⋆

N (x0) is unbounded. If Xt ≻ 0 for all θ ∈ Θ
then JN (θ, x̂0) = −γ2

N |x̆0|2T0
, and

J⋆
N (x̂0) = max

θ
(JN (θ, x̂0)) .

C. Upper- and Lower bounds of J⋆
N

This section develops upper and lower bounds on the
objective, (2). As the maximum is greater than the average
of any two points, we have that

J⋆
N (x̂0) ≥ sup

i,j,y[0:N−1]

min
x̂N

1

2

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1

− γ2cN,i + |x̂N − x̆N,j |2(I−γ−2Pj)−1 − γ2cN,j

}
= sup

i,j,y[0:N−1]

1

2

{
|x̆N,i − x̆N,j |2(2I−γ−2Pi−γ−2Pj)−1

− γ2cN,i − γ2cN,j

}
def
= max

i,j
J ij
N (x̂0). (17)

Thus γN < γ⋆
N only if J ij

N (x̂0) is bounded for all pairs
(i, j). Towards finding a sufficient condition, let S ∈ Rn×n

be a positive definite matrix such that S ⪯ I−γ−2Pi for all
i = 1, . . . ,M . Then, applying Lemma 2 to (12), we have

J⋆
N (x̂0) ≤

max
y,θ

{ M∑
i,j

θiθj |x̆N,i − x̆N,j |2S−1/2− γ2
N

∑
i

θicN,i

}
≤ max

i,j
max

y

1

2

{
|x̆N,i − x̆N,j |2S−1 − γ2(cN,i + cN,j)

}
︸ ︷︷ ︸

J
ij
N (x̂0)

.

(18)

Thus, if J
ij

N (x̂0) is bounded for all pairs (i, j), then γ⋆
N ≤

γN . The only difference between the expressions of J
ij
(x̂0)

and J ij(x̂0) is the penalty of the term |x̆N,i − x̆N,j |2∗.
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Theorems 1 and 2 follow from applying Lemma 1 to the
upper bound J

ij

N (x̂0) in (18) and the lower bound J ij
N (x̂0)

in (17) with θi = θj =
1
2 .

D. Lemmata
Lemma 2. Let Xi ≻ 0 and θi ∈ (0, 1) for i = 1, . . . ,M
and that

∑M
i=1 θi = 1. Let S =

∑
θMi=1X

−1
i , then

min
v

{∑
θi|v − xi|2X−1

i

}
=

M∑
i=1

θi

(
|X−1

i xi|2Xi−S−1

+
1

2

M∑
j=1

θj
(
|X−1

i xi −X−1
j xj |2S−1

) )
.

Proof. As Xi ≻ 0, we have that
∑

θiX
−1
i ≻ 0 and the

(unique) minimum is a stationary point. We have

min
v

{∑
θi|v − xi|2X−1

i

}
=

M∑
i=1

θi|xi|2X−1
i

− |
M∑
i=1

θiX
−1
i xi|2(∑M

1 θiX
−1
i )−1

With S := (
∑M

1 θiX
−1
i ), we have that

− |
M∑
i=1

θiX
−1
i xi|2S = −

M∑
i=1

M∑
j=1

θiθjx
⊤
i X

−⊤
i SX−1

j xj

=
1

2

M∑
i=1

M∑
j=1

θiθj
(
|X−1

i xi −X−1
j xj |2S

)
−

M∑
i=1

θi|X−1
i xi|2S .

Lemma 3 (Interpolation). Let zk ∈ Rn and Zk ∈ Rn×n be
matrices such that

∑K
k=1 Zk ≻ 0 for k = 1, . . . ,K. Then,

min
x

{
K∑

k=1

|x− zk|2Zk

}
=

K∑
k=0

|zk|2Zk
−
∣∣∣∣∣

K∑
k=1

Zkzk

∣∣∣∣∣
2

(
∑K

k=1 Zk)−1

.

Proof. The problem is unconstrained and strictly convex—
the minimizing solution is given by the stationary point.
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