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Nonlinear Data-Driven Moment Matching
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Abstract— The continuously increasing amount of noisy data
demands the development of accurate and efficient models for
analysis, modeling, and control. In this article, we propose a
novel data-driven moment matching method which employs
Tikhonov regularization in the Reproducing Kernel Hilbert
Spaces (RKHSs). Specifically, considering a realistic scenario in
which the system’s plant is unknown and only noisy measured
data are available, we provide an estimation of the moment
of the unknown plant by solving a regularized optimization
problem on RKHS. For, we first demonstrate that the estimation
of the moment can be improved via tuning the regularization
term, and further, we show under which condition the effect
of the transient improves the performance of the estimation.
Then, we construct a parameterized model characterized by a
kernel-based output mapping. Finally, the proposed data-driven
approach is validated and discussed by means of a DC-to-DC
Cuk converter driven by a Van der Pol oscillator.

Index Terms— Model reduction, Data-driven moment match-
ing, Kernel-based modeling, Nonlinear system identification.

I. INTRODUCTION

Due to the continuously increasing data volumes from sim-
ulation, control, and experimental measurements the study
of large-scale systems became a prominent research area in
systems and control theory [1]. Large-scale systems are dy-
namical systems described by numerous ordinary differential
equations, which arise from various sources such as inter-
connected systems [2], [3], spatial discretization of partial
differential equations [4], [5], or inherent system complex-
ity [6], [7]. Computational challenges persist in integrating
such systems that involve large quantities of data and massive
datasets. Hence, to reduce the computational complexity of
numerical simulations and facilitate the design of controllers,
interpolatory model reduction methods aim to construct a
reduced-order model that interpolates the transfer function
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of the large-scale model at selected interpolation points.
Moment matching techniques, which fall under the category
of interpolatory methods, are numerically reliable as they
can be simply implemented by means of Krylov projectors
to achieve interpolation without the need to explicitly eval-
uate the transfer function. This technique involves matching
the moments of an underlying system with an interpolant,
potentially of lower order. The breakthrough in extending
moment matching to nonlinear dynamical systems came from
the intuition that computing moments of a linear system
is equivalent to solving a certain Sylvester equation [8].
Building on this insight, the notion of moment matching has
been redefined in the time domain for linear and nonlinear
systems [9]-[11]. In the time-domain analysis, assuming
that a steady-state response exists, the concept of moment
involves studying the output response of the underlying
system driven by a signal generator defined by the desired
interpolation points. However, with the increasing availability
of high-dimensional data and advancements in computational
power, data-driven model reduction has gained significant
attention in recent years [10], [12]-[15]. In the moment
matching framework, the problem of estimating the moment
of an unknown system from input-output data was earlier
considered in [10] employing the ordinary least squares
approach. Yet, ordinary least-squares arguments undergo ill-
conditioned optimization problems. Specifically, when the
number of variables exceeds the number of observations the
problem eventually leads to an infinite number of solutions.
Further, the presence of noisy data in datasets may also im-
pact the estimation of a meaningful moment of the unknown
system. See [16, Sec 3.3] for a detailed discussion.
Contribution: In this paper the problem of estimat-
ing the moment of a nonlinear Multi-Input Multi-Output
(MIMO) system with feedthrough is considered. Specifically,
given noisy data obtained by measuring the output of a
certain system we construct a data-driven moment match-
ing method which employs Tikhonov regularization in the
Reproducing Kernel Hilbert Spaces (RKHSs), see [16]-[20].
We estimate the moment function from a Hilbert space
according to a data adherence criterion expressed using a
regularized optimization problem composed of two terms:
the empirical cost risk and a regularization term. Hence,
taking advantage of the regularized term the optimization
problem introduces further constraints which render the
solution always uniquely determined. The advantage of em-
ploying RKHS is that the kernel method maps the input space
of the data to a higher dimensional feature space, in which
low-complexity models can be trained, resulting in efficient,
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low-bias, low-variance models. Leveraging on this property
and on a preliminary analysis of the measured system, we
first show that the estimation of the moment on RKHSs can
be improved by properly tuning the regularization term re-
gardless of the choice of the kernel, and then we demonstrate
how and under which condition the output transient impacts
the performance of the performance of the estimation. Then,
we propose a new parameterized model defined by a proper
kernel-based output mapping. Furthermore, we provide an
easily verifiable necessary condition on the RKHS in order
to contain only functions that are suitable to be a moment
of the system.

Organization: In Section II we recall the notion of
moment matching for nonlinear systems. In Section III we
make a preliminary analysis of the measured system. In
Section IV we present our data-driven moment matching
on RKHSs. Specifically, we first compute the moment es-
timation by employing Tikhonov regularization on RKHSs
and then construct a parametrized model whose output is a
function of the RKHS. In Section V, we analyze the effect
of the transient in the estimation. In Section VI, we provide
an easily verifiable needed condition for the RKHS to be
suitable for this application. In Section VII we apply the
proposed method to the estimation problem of the moment
of the DC-to-DC Cuk converter driven by a Van der Pol
oscillator. Finally, Section VIII concludes the paper.

Notation.: We denote by R and N the fields of real and
natural numbers, respectively (0 € N). The set of vectors
having n rows with real-valued entries is denoted by R",
and the set of matrices having n rows and m columns with
real-valued entries is denoted by R™*™. Given n € N and
a vector x € R”, |z| is the Euclidean norm of z. Given
n,m € N, I, € R"" is the identity matrix, 1, x,, €
R™>"™ is the matrix where every entry is equal to one, and
O0,xm € R™ ™ is the matrix where every entry is equal
to zero. For compactness, when clear from the context, we
denote with O the zero matrix of appropriate dimension.
Given a symmetric matrix S, Amax[S] and Amin[S] denote
the largest and smallest eigenvalue of .S, respectively. Given
a matrix S, |S|, denotes the induced 2-norm of S, ie.

ISy = v/ Amax[SST]. All mappings are assumed smooth,
if not otherwise stated.

II. MOMENT MATCHING FOR NONLINEAR SYSTEMS

Consider a MIMO continuous-time nonlinear dynamical
system of order ny, € N with n, € N inputs and n, € N
outputs described by equations of the form
x(0) = xo, (la)
(1b)

with z(t) € R™, u(t) € R™, y(t) € R™, zo € R™ and
smooth mappings f : R™ x R™ — R™ and h : R™ X
R™ — R™ such that f(0,0) = 0 and h(0,0) = 0. To
define the notion of moment for system (1) we consider a

signal generator described by equations of the form

w(t) = s(w(t), (2a)
u(t) = £(w(?)), (2b)

in which w(t) € Q and u(t) € R™, with Q@ C R"™ a
sufficiently small open, connected, invariant neighborhood
containing the origin, whereas the smooth mappings s :
Q — R"™ and ¢ : Q — R™ are such that s(0) = 0 and
£(0) = 0, respectively. The notion of time-domain moment
for nonlinear systems has been defined in [9] in terms of
the steady-state response of the cascade interconnection of
system (1) with the signal generator (2), that is

w(0) = wo,

w(t) = s(w(t)), w(0) =wo,  (3a)
2(t) = f(z(t), ((w(?))), z(0) =xo,  (3b)
y(t) = h(z(t), L(w(?))), (30)

Before introducing the notion of moment for nonlinear
systems, we make the following assumptions.

Assumption 1. The system (1) is minimal', i.e. locally
observable and locally accessible at the origin. The origin
of ©(t) = f(x(t),0) is locally exponentially stable.

Assumption 2. The signal generator (2) is locally observ-
able and neutrally stable?.

Assumption 3. There exists a mapping 7w : 0 — R™ with
m(0) = 0, locally defined in ), which is the unique analytic
solution of the partial differential equation

on

O (w) s(w) = f (n(w), (). @)
Definition 1 (Moment). Consider system (1) and the signal
generator (2). The moment of system (1) at (s,/) is defined
as h(n(-),€(-)) where T is the unique solution of the partial
differential equation (4).

Owing to the center manifold theorem [24], the standing
assumptions have been used in [9] to give a description of the
notion of moment in terms of steady-state output response.

Theorem 1 (See [9]). Consider system (1) and the signal
generator (2). Suppose Assumptions 1, 2, and 3 hold. Then
the moment of system (1) at (s,?) is in a one-to-one relation
with the steady-state response of the output y of system (3).

Definition 2 (Moment Matching). A system described by
equations

£(t) = F(E),ult)), (5a)
y(t) = h(£(t), u(t)), (5b)

with £(t) € R™ and §(t) € R"™ is called model of (1) at
(s, £) if (5) has the same moment at (s,¢) as (1). In this case,
system () is said to achieve moment matching at (s, ().

£(0) = &o,

IFor the notion of local observability and local accessibility we refer
to [21, Definition 2.10] and [21, Definition 2.11], respectively. For additional
details we refer to [22, Chapter 3].

2The equilibrium w = 0 is a stable equilibrium (in the sense of Lyapunov)
and each initial state wo is stable in the sense of Poisson, see [23, Chapter 1].
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IIT. ANALYSIS ON THE MEASURED SYSTEM

The definition of moment we have recalled relies upon
the availability of the state-space model of the underlying
system (1). In practice, solving the partial differential equa-
tion (4) can be computationally challenging even when the
structure of the mapping f is perfectly known. However, the
model of the system is usually uncertain, or even unknown,
and the measurements collected by the output are generally
noisy. Hence, in the remainder of this article we focus on
the case in which the state-space model is unknown and only
noisy measurements of the form

VieR, z(t) =y(t) +e(t) e R™ (6)

are available, where y(¢) € R™ is the output (3¢) and e(t) €
R™ is an additive white noise. The noisy measurements of
the system (3) can be equivalently rewritten as

z(t) = h(m(w(t)), L(w(t))) + 7(t) + e(t)
where, for all ¢ € R, the function 7 : R — R"™ is such that

7(t) = h(z(t), £(w(?))) — h(r(w(t)), Lw(?)) (D
describes the output transient response.

Assumption 4. The white noise e(t) € R"™ with variance
¥ € R™*" is such that Ele(t)] = 0, x1 for every t € R.
Moreover, for every ti,to € R, e is such that

T )y if t1 = 1o,

E{e(tl)e(tg) } a {Onyxny otherwise. ®

The following statements are corollaries of Theorem 1

and are preliminary results which will be instrumental for

characterizing the moment at (s, ¢) of nonlinear systems of

the form (1) from the measurement (6). In particular, Corol-

lary 1.1 shows how the transient output response vanishes

exponentially whereas Corollary 1.2 unveils the asymptotic
behavior of the noisy measured output.

Corollary 1.1. For some o > 0 and 6 > 0, the output
transient response (7) yields

VteR, |7(t)| < e |x(0) — 7(w(0))]. )

Corollary 1.2. Suppose Assumption 4 holds. Then the noisy
measurements (6) yield

Jim E [z(t)} ~ h(m(w(t)), Lw(t))) = 0.

The main objective of this article is to devise an al-
gorithm that, given the signal generator (2), constructs an
approximation of a system that achieves moment matching
at (s,¢) using measurements of the output z obtained from
an experiment on the interconnected system (3). In particular,
we assume that the mappings f, h, 7, and 7 are unknown.
Therefore, we define the dataset

(10)

D= {(fy @5, 7)o CRXQXR™ xR™  (11)

where N € N is the amount of data collected, for all
it € {l,...,N}, t; is the i-th sampling time, &; = w(¢;),

u; = u(t;), and z; = z(%;). For simplicity, we assume
that the sampling times are ordered, i.e. #; < #;.1 for all
i€{1,...,N}, and define g; = (&;, ;) € Q == Q x R,

Remark 1. If the signal generator (2) is known, then w; and
u; can be easily retrieved using the knowledge of (s, ().

IV. DATA-DRIVEN MOMENT MATCHING

In this section, we explain the methodology to obtain the
approximation of a model that achieves moment matching
using the dataset D. In particular, the proposed proce-
dure is divided into two phases: (i) firstly, we derive a
method that derives an approximation /i of the function
plw,u) = h(r(w),u), for all (w,u) € Q; (ii) then, we
propose a parametric model that matches the moment /.

A. Kernel-Based Estimation of Moments

The objective of this section is to approximate the moment
at (s, £) of (1) employing regularized estimation methods and
using only the measured dataset D. We propose a data-driven
moment matching resorting to the theory of RKHSs [17].

Definition 3 (See [18]). A Hilbert space H of functions 1 :
Q — RR™ s said to be a Reproducing Kernel Hilbert Space
(RKHS) if and only if the functional that maps p € H into
2" p(a) € R is continuous for any z € R™ and a € Q.

Let the estimator of the moment, /i, be obtained by solving
the optimization problem

N
[1 == argmin E
neH 4

2 2
zi— w(@)| + pluly (12)

where H is a RKHS containing functions that map Q to
R™, |-|,, is the norm on H, and p > 0 is a parameter to be
tuned. Since the functions that belong in H are vector-valued
function, H is a vector-valued RKHS. The cost function
describing the optimization problem (12) is constructed by
summing two terms. The first term is the empirical cost risk
which fosters a good fit of the data by minimizing the error
between the estimated moment and the measurement output
as in [10]. Instead, the second term is a regularization term
in the form of an operator which is used to penalize more
complex functions, where the complexity is defined using
the norm of the selected RKHS. The parameter p regulates
the relation between the first and the second term. To solve
the optimization problem (12), it is necessary to review the
properties of the vector-valued RKHS.

Definition 4. A function k : Q x Q — R™*™ s called
reproducing kernel if and only if: (i) given a,b € Q,
k(a,b) = k(b,a)T; (i) given a € Q, k(a,a) is positive
semi-definite; (iii) given w € N, {a; : 1 < j <w} C Q
and {c; : 1 <j<w}CR™,

iicjk(amaj)cj > 0.
i=1 j=1
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Theorem 2 (See [18]). There exist a unique reproducing
kernel k such that

VzeR™ Yac QVueH, =z ula)= (kaz, 1)y

where k, : RP — H is a linear function such that

VzeRP,Vb € Q,  k(a,b)z = (kqz)(D). (13)

Theorem 2 is a generalization of the Moore-Aronszajn
Theorem [17] for vector-valued RKHS. This theorem pro-
vides a way to define an RKHS by finding a function &
that satisfies Definition 4. However, H may be an infinite-
dimensional space, so if the regularization expression cannot
be solved explicitly, it is impossible to search the entire
space for a solution. Instead, the Representer theorem tells us
that the solution of (12) lies in finite-dimensional subspaces
spanned by a finite amount of elements of 7.

Theorem 3 (Representer Theorem, see [18], [19]). The
solution [i of (12) is unique, and we have

N
p= Z kg, ci
=1

where kg, are as defined in Theorem 2 and c¢; € R™
are vectors such that ¢ = (K + pINny)_12 where ¢ =
[c1,.. . en] € RNz = [z ... zy] € RVN™ XL gnd
K € RN™W>Nny s the block matrix whose (i, j)-th block is
k(@zvq‘?) € R™ My,

(14)

The reproducing kernel k& whereas characterizing the entire
space H also completely defines the estimator i € H which
exploits the RKHS norm as a regularization term. Thus, the
choice of the reproducing kernel % has a crucial impact on
the quality of the estimation of future output data. The most
popular reproducing kernels can be found, e.g., in [16, Sec.
6.6]. Nevertheless, for any reproducing kernel k£ : Q x Q —
R™ *™  Theorem 3 equipped with (13) provides a way to
evaluate the estimated moment /i € H. In particular, we have

N

N
i) = (kge)a) = k(@ q)ei,
=1

i=1

Vg e Q,

and more compactly,

Vge Q, fi(g) = S"(9)z, (15)

where

K*(q) = [k(@,a), -+ k(av,q)| € RN,
§*(@) = E* (@)K + plya,) " € RV,

B. Kernel-Based Parameterized Models

With the estimated moment function at hand, we need to
construct a suitable parameterized model achieving moment
matching. A model of minimum order of the system (1)
achieving moment matching at (s,¢) that is when ng = n,,
has been originally proposed in [9], and later considering

feedthrough terms in [11]. In particular, the model is obtained
by defining in (5) the following mappings

F(& u) = s(€) = m(LE) + m (&),
h(€,u) = h(m(€), €(€)) — n2(§)E(€) + n2(&)u,

where h : R™ x R™ — R" is the output mapping of
system (1) satisfying £(0,0) =0, s: Q — R™ and £ : Q —
n, are given by the signal generator (2), 7 : R"¢ — R™* is
the solution of the partial differential equation (4), and the
mappings 71 : R™ — R"*™ and gy : R" — R™>™
are parameters of the family of reduced order models which
can be used to assign prescribed properties. Yet, since the
mapping h and 7 are unavailable for designing we let the
parameterized model be defined by a kernel-based output
mapping of the form

h(g,u) = f1(&, £(€)) — n2((S) +n2(8)u,

where /i is the unique solution of the optimization prob-
lem (12) as provided by Theorem 3.

(16a)
(16b)

V. EFFECT OF THE TRANSIENT

The presence of the output transient (7) may generally
affect the quality of the estimation of the moment /. In
particular, in this case, z; — u(q;) = 7(¢;) # 0, for all
i € {1,..., N}. Therefore, the first term of cost function (12)
forces [i to be similar to 1 + 7 instead of the moment .
Thus, to quantify the effect of the output transient on the
estimation, we analyze the expected value of the squared
deviation of /i(q) from the ideal estimator, fi(q), that is

OEOI

where [i(q) is the estimator which rules out the effect of the
output transient, i.e. fi(q) = S*(¢q)(z — T) for each ¢ € Q.

Vge Q, e(q) = ]E{

7)

Theorem 4. For any given dataset D as in (11) and for all
q € Q, the expected value £(q) in (17) is bounded, i.e.

2

30,0 >0, e(q) <|K*(q) g %e_htl. (18)

The condition (18) yields a bound to the quantity (17)
and trivially implies that the larger is ¢; the better is the
estimation of the moment as in the standard Least Square
Estimation, see [10].

Now, to evaluate the effect of the output transient (7) on
the estimation of [i(¢q), we analyze the expected value of the
difference between the squared deviation of fi(g) from u(q)
and the squared deviation of ji(q) from pu(q). In particular,
we define for all ¢ € Q

&q) =E||al0) —u@’ ] &) =E[]ila) - nla)|’]:

where ¢ is the estimation error of the real estimator, [, and
¢ is the estimation error of the ideal estimator the estimation
error of the real estimator, fi. The following result can be
proved.
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Proposition 1. For all q € Q, £(q) < &(q) if and only if

.
elq) < Q(M(Q) - S*(q)ﬂ) S*(q)7.

The inequality é(q) < €(¢q) implies that the effect of the
output transient (7) improves the estimation (g). In this
respect, (19) establishes a necessary and sufficient condition
to be verified in the estimation process.

19)

VI. REPRODUCTING KERNEL SELECTION

The methodology presented in Section III stands for every
reproducing kernel and corresponding RKHS. However, not
all reproducing kernels are suitable for this application, as
explained in the following Proposition.

Proposition 2. Given Assumption 3, the RKHS H contains
only valid moment functions only if k(0,0) = 0y, xp,.

Therefore, when ny = 1, a suitable reproducing kernel is
the polynomial kernel with degree d € N defined as k(a, b) =
(aTb)d, for all a,b € Q. Other examples can be found by
exploiting the property that the multiplication of two kernels
is a valid reproducing kernel [25, Prop. 13.2]. Hence, a
valid reproducing kernel can be constructed by multiplying
a suitable kernel with a generic kernel. For the non-scalar
case, i.e. ny > 1, a commonly used strategy to design the
reproducing kernel is to use a separable kernel [19, Sec. 4].
In particular, if &k : @ x Q@ — R is a valid scalar reproducing
kernel that satisfies the condition of Proposition 2, we define
the vector-valued reproducing kernel as

Va,be Q, k(a,b) = ky(a,b)Ba,

where « € [0,1] is a parameter to be tuned, and B, =
aly, sn, + (1— a)Iny. More detail on this type of separable
reproducing kernel can be found in [19, Sec. 4.1].

Remark 2. In this application, the domain Q of the functions
inside the RKHS is composed of two easily separable parts
because Q = 1 x R"™. Therefore, if the unknown model is
known to not have a feedforward contribution to the output, it
is possible to use a reproducing kernel k : Q x Q — R >y
such that there exists k : € x Q — R™ X" with

\V/wa,CUb € Q7ua7ub € Rn“7 k(Q(qu) = E(wla“@)a

where G, = (Wa,ua) and g, = (Wp, up).

Given wg,wp € Q and ug,up, € R™, we define ¢, =
(Wa,Uug) € Q, and qp := (wp, up) € Q. Then, as an example,
we define the reproducing kernel

k(QaaQb) = kp(Qme)kg(QaaQb)Baa (20)

where kp,(qq,qp) is the polynomial kernel defined as
kp(Qas @) = (Tww, wa + Tuu;—ua)d, where 7, > 0, 7, > 0
and d € N are parameters to be tuned. Whereas k4(qq, gs) is
the Gaussian Kernel defined as k4 (qa, q») = exp(—7e ‘wa —
wb‘2 — ’yu|ua — ub‘2), where 7, > 0 and v, > 0 are
parameters to be tuned. The parameters 7, and ~,, regulate
the effect of w whereas 7, and =, regulate the effect v on
the estimated moment.

VII. NUMERICAL EXAMPLE

In this section, we validate the proposed methodology
by estimating the moment of an unknown DC-to-DC Cuk
converter from some noisy measured data. The DC-to-DC
Cuk converter, as considered in [26], is described by the
differential equations

di d
L1£:U'L)27’UQ+E, Cg%:ilfuil +Ui3,
di3 d1}4 .
=8 =y — Cyi—2 = i3 — Guy,
30t Uv2 — Uy, 4 dt 3 Vg

where i1(t) € R>¢ and i3(t) € R<( are electrical currents,
va(t) € Rxg and v4(t) € R<q are voltages, Ly, Co, Lg,
Cy, E, and G are positive parameters, and u(t) € (0,1)
is a continuous signal which represents the slew rate of a
PWM circuit. We assume that the model is unknown and
only uniform noisy samples of the voltages v, and vy can
be measured. We let the signal u be generated by a Van
der Pol oscillator of the form (2) with states w;(t) € R and
wo(t) € R, and mappings

@)=y

W2 — WijWw2 — W1

) , A(w) =0.1wy +0.3.

Following the previous discussions, we construct a param-
eterized model of the form (16) with states &;(¢) € R and
&2(t) € R, and mappings

3 §2
f&u)= (—62 — €4+ 3€2 + 20u — 1062u — 6) !
ey o _ (Aa(&, ()
i = i) = (e 1e))
where [i1 (£, 4(€)) and fi2(&, £(€)) identify the estimated mo-
ment of the DC-to-DC Cuk converter obtained implementing
the reproducing kernel (20).

We collected N = 801 data points of uniformly sampled
noisy measurements of the voltages with sampling time
tr = 314 :0.01, for all € {0,...,N — 1}. Following
Theorem 4, we start to sample at 31 s to decrease the effect
of the transient on the noise. The identification procedure is
carried out for 1001 Monte Carlo experiments to statistically
validate the results. In each experiment, the parameters of the
DC-to-DC Cuk converter are set according to [26] whereas
the initial conditions x(0) = (i1(0), v2(0),i3(0), v4(0)) are
chosen randomly from a normal distribution with expected
value (0.5,10, —1, —12) and variance 21,. The noise affect-
ing the measurements of the voltages are sampled from a
normal distribution with 05y 1-mean and variance 4.[5. Both
the Van der Pol oscillator used as signal generator and
the parameterized model are initialized at (0.5,0.5). The
identification is carried out using the reproducing kernel (20)
with 7, = v, = 0 as the considered system is strictly proper.
Since T, = 0, we set 7,, = 1 without loss of generality. For
simplicity, we also set d = 1. Instead, the hyperparameters
Tw, @ and p, i.e. the regularization parameter of the cost
function (12), are set using the data available using the
empirical Bayes procedure [27, Sec. 5.4.1]. After the hy-
perparameters are selected the identified model is optimized
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y1, i (8,4(8))

Y2, f2(8,4(S))

15 20 25 30 35
t (seconds)

Fig. 1. Time history of the ideal moment (dashed line, black) of the DC-
to-DC Cuk converter, estimated moment of the estimation with the median
performance of the Monte Carlo experiment (solid line, red) and the range
of all the Monte Carlo experiments (light red area).

using the approach presented in [28] which boosts sparsity
and performance of the estimated model.

The good fit of the data obtained by the proposed param-
eterized model and the outcomes of all the experiments are
depicted in Figures 1. Specifically, Figure 1 compares the
(ideal) values of the voltages vy (t) and vy(t) for ¢ € [0, 35]
with the estimated moments obtained from 1001 experiments
and evaluated on the trajectories &;(t) and & (¢t) of the
parameterized model.

VIII. CONCLUSIONS

In this paper, we addressed the problem of estimating the
moment of an unknown system from given noisy data. In this
regard, we proposed a novel data-driven moment matching
method resorting to the theory of RKHS. Data-driven mo-
ment matching in the RKHSs provides a promising approach
for the estimation of moments in several practical scenarios,
such as noisy data in the dataset, and has the advantage
of identifying smoother moments from a given dataset. By
incorporating Tikhonov regularization and RKHSs, we were
able to overcome the limitations of ordinary least squares ap-
proaches, which can suffer from ill-conditioned optimization
problems. We explored the conditions under which the effect
of the output transient improves the performance of the mo-
ment estimation. We further introduced a new parameterized
model and constructed a suitable reproducing kernel for the
moment matching problem. Finally, the proposed approach
is validated and illustrated on a DC-to-DC Cuk converter
driven by a Van der Pol oscillator.
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