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Abstract— In this paper, we introduce the difference structure
to pre- and post-switch systems, to propose a new switching
L2 gain for evaluating the fluctuations around an output of a
specified transfer property after a system switch. Moreover,
we apply it to the initial state design of a newly-activated
controller designed by model matching to establish its potential
practicality as a design index.

I. INTRODUCTION

A control system switch is not a rare event. A typical
example is a controller switch from an existing one to a
more desirable one has been widely performed for letting a
control system adjust to a failure in a control device, such
as an actuator. It is so-called “active fault-tolerance.” Here,
it is needless to say that we should reduce the undesirable
effects of a system switch. Concretely speaking, we should
suppress the fluctuations in transient responses caused by a
switch.

Many studies have addressed the issue of evaluating the
magnitude of the fluctuations in transient responses caused
by a system switch by using bumpless transfer [1] and other
concepts. In [2], a theoretical procedure for evaluating the
effects of a system switch by using the L2 gain of a Hankel-
like operator was proposed. In [3], the L2 performance was
first discussed as an important property over a long time
interval including successive system switches. In [4], the
performance was formulated as a switching L2 gain with
doubly infinite time support for a single and unpredictable
switch. In [5], a switching L2 gain based only on transient
responses after a switch was proposed, whose value is
not affected by the output before a switch. By using the
switching L2 gain, we can evaluate the magnitude of the
fluctuations in transient responses in the output. In [6], it
was extended to a switching L2 gain for evaluating the
smoothness of transient responses after a system switch by
including the evaluation of their differential.

There are many cases where the shape of transient re-
sponses, as well as the magnitude of their fluctuations, is
important. For example, in [7], as a support technology for
safely performing preventive maintenance of LTI control
systems, a safe shutdown process for a maintenance-object
subsystem was proposed. The proposed process is based on
the “fail-soft” concept that the subsystem gradually makes
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its way toward a complete stoppage and the overall control
system is lead to a safe situation by using the remaining
function in the overall system including the subsystem. The
safety of such operating-state transitions can be guaranteed
by suppressing the magnitude of the fluctuations in transient
responses. In addition, by suppressing the difference with a
desirable trajectory, we can improve the safety of the tran-
sitions. However, no studies have addressed the evaluation
of the fluctuations in transient responses around a specified
trajectory.

In this paper, we introduce the difference structure to pre-
and post-switch systems to propose a new switching L2 gain
for evaluating the fluctuations around an output of a specified
transfer property after a system switch. Moreover, we applied
it to the initial state design of a newly-activated controller
designed by model matching to establish its potential prac-
ticality as a design index.

As the structure of pre- and post-switch systems, we
consider the difference between a specified and fixed transfer
property and a switched transfer property. Here, an output
of the specified and fixed transfer property has a desirable
shape. That is, we indirectly consider it as a desirable trajec-
tory. Then, by considering the switching L2 gain presented
in [5], we propose a new switching L2 gain for evaluating
the fluctuations around an output of the specified transfer
property after a system switch.

For example, a practical technique for reducing the un-
desirable effect of a controller switch is to appropriately
initialize a newly-activated controller. In [1], [8], [9], [10],
and [11], the initial state was obtained by making the output
after a controller switch close to the virtual output in the case
where the switch does not occur. In [12] and [13], the initial
state was obtained by minimizing the L2 norm of the error
between the output and reference signal. In [5], a switching
L2 gain was minimized for obtaining the optimal switching
matrix that determines the initial state of a newly-activated
controller. In these preceding studies, the initial state of a
newly-activated controller was designed for suppressing the
magnitude of the fluctuations in transient responses after a
controller switch.

Conversely, in this paper, by minimizing the proposed
switching L2 gain, we can find the optimal switching matrix
for suppressing the fluctuations of transient responses around
an output of the specified transfer property as a desirable
trajectory after the controller switch. That is, the proposed
switching L2 gain provides a new viewpoint, the desirable
shape of transient responses after a system switch, to the
research area of the initial state design.
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Notations. I : an identity matrix of appropriate dimensions,
O : a zero matrix of appropriate dimensions, A � B : a
square Hermitian matrix A− B is positive definite, σ̄(M) :
the maximum singular value of a matrix M , ‖G‖∞ : the
H∞ norm of a transfer function matrix G, L2(a, b) : the
Lebesgue space of all square-integrable and vector-valued
functions defined on an interval (a, b), i.e., L2(a, b) ={
x(t)

∣∣ ‖x(t)‖2 (a, b) < ∞}
, where ‖x(t)‖2 (a, b) denotes the

L2 norm.

II. SWITCHING L2 GAIN AROUND A SPECIFIED TRANSFER

PROPERTY

A. Switch to be analyzed

Suppose that a linear time-invariant (LTI) system switches
to another LTI system with a state transition at a switching
time t = t0.

1) Pre-switch system: The pre-switch syatem Hp is shown
as Fig. 1(a). Here, Gref is a specified and fixed transfer
property described by

Gref :

{
ẋref(t) = Arefxref(t) +Brefw(t)
yref(t) = Crefxref(t) +Drefw(t).

(1)

On the other hand, Gp described by

Gp :

{
ẋgp(t) = Agpxgp(t) +Bgpw(t)
y(t) = Cgpxgp(t) +Dgpw(t),

t ≤ t0 (2)

is switched to Gf at the switching time t = t0. Then, defining

xp(t) =

[
xref(t)
xgp(t)

]
, t ≤ t0, (3)

we can describe the overall pre-switch system Hp as follows:

Hp :

{
ẋp(t) = Apxp(t) +Bpw(t)
z(t) = Cpxp(t) +Dpw(t),

t ≤ t0, (4)

where

Ap =

[
Aref O
O Agp

]
, Bp =

[
Bref

Bgp

]
,

Cp =
[ −Cref Cgp

]
, Dp = −Dref +Dgp . (5)

Strictly speaking, the output equation in (4) is not necessary,
because we focus only on transient responses after a switch
in this paper. We assume that Ap is stable, (Ap, Bp) is
controllable, and (Cp, Ap) is observable.
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Fig. 1. (a) Pre- and (b) post-switch systems.

2) Post-switch system: The pre-switch syatem Hf is
shown as Fig. 1(b). Here, Gf is described by

Gf :

{
ẋgf (t) = Agfxgf (t) +Bgfw(t)
y(t) = Cgfxgf (t) +Dgfw(t),

t > t0. (6)

Then, defining

xf (t) =

[
xref(t)
xgf (t)

]
, t > t0, (7)

we can describe the overall pre-switch system Hp as follows:

Hf :

{
ẋf (t) = Afxf (t) +Bfw(t)
z(t) = Cfxf (t) +Dfw(t),

t > t0, (8)

where

Af =

[
Aref O
O Agf

]
, Bf =

[
Bref

Bgf

]
,

Cf =
[ −Cref Cgf

]
, Df = −Dref +Dgf . (9)

We assume that Af is stable, (Af , Bf ) is controllable, and
(Cf , Af ) is observable.

3) State transition at the switching time: Suppose that the
following state transition occurs at the switching time t = t0:

xgf (t0+) = S0xgp(t0), (10)

where t = t0+ denotes an infinitesimal time increment of
t = t0, and S0 is a real constant switching matrix. Then,

xf (t0+) = Sxp(t0), (11)

where

S =

[
I O
O S0

]
. (12)

B. Definition

In [5], the following switching L2 gain was proposed
for analyzing the fluctuations in transient responses after an
unpredictable system switch:

γ̂tr = sup
w(t)∈L2(−∞,∞)\{0}

‖z(t)‖2 (t0,∞)

‖w(t)‖2 (−∞,∞)
. (13)

Although this definition includes the switching time t0, it
does not affect the value of γ̂tr, which depends on the fixed
transfer property Gref , pre-switch part Gp, post-switch part
Gf , and switching matrix S0, as shown in [5]. That is,

γ̂tr = γ̂tr(Gref , Gp, Gf , S0) = γ̂tr(Hp, Hf , S). (14)

By using this switching L2 gain, we can evaluate the
fluctuations in transient responses after the system switch
around an output yref of the specified transfer property Gref .
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C. L2 gain condition

1) Equation-based L2 gain condition: The following the-
orem that presents an equation-based L2 gain condition. It
implies that the switching time does not affect the value of
the augmented switching L2 gain.

Theorem 2.1: For a given γ > 0, the switching L2 gain
γ̂tr in (14) satisfies γ̂tr < γ if and only if the following
conditions are satisfied.
(a) It holds that σ̄(Df ) < γ.
(b) There exists the stabilizing solution Xf � O to the
Riccati equation

XfAf +AT
f Xf + CT

f Cf

+ (XfBf + CT
f Df )(γ

2I −DT
f Df )

−1

× (XfBf + CT
f Df )

T = O. (15)

(c) It holds that

γ2X−1
p − STXfS � 0, (16)

where Xp � O is the unique solution to the Lyapunov
equation:

ApXp +XpA
T
p +BpB

T
p = O. (17)

In (b), using the stabilizing solution Xf , we have that
Af +BfKf is stable, where

Kf = (γ2I −DT
f Df )

−1(XfBf + CT
f Df )

T. (18)

In (c), there exists the unique solution Xp � O to the
Lyapunov equation (17), because Ap is stable and (Ap, Bp)
is controllable. Thus, there also exists X−1

p � O. Proof:
Using the relationship (14) and Theorem 3.1 in [5], we can
prove this theorem.
An input providing the switching L2 gain γ̂tr can be de-
scribed explicitly in the following corollary to Theorem 2.1.

Corollary 2.2: Suppose that for a given γ > 0, Conditions
(a) and (b) in Theorem 2.1 are satisfied, and the matrix
γ2X−1

p −STXfS is positive semidefinite with a zero eigen-
value. Then, the switching L2 gain γ̂tr in (14) is given by
γ̂tr = γ. Furthermore, the input providing the value of γ̂tr is
given by

ŵ(t) =

{
BT

p e
−AT

p (t−t0)X−1
p v, t ≤ t0

Kfe
(Af+BfKf ) (t−t0)Sv, t > t0,

(19)

where v is an eigenvector v corresponding to the zero
eigenvalue.

Proof: See the proof of Corollary 3.1 in [5].
2) LMI-based L2 gain condition: The gain condition

using LMIs in the following theorem has the advantage that
we can compute more efficiently the value of the switching
L2 gain γ̂tr in (14). It also implies that the switching time
does not affect the value of the switching L2 gain γ̂tr. We
will use it for designing the switching matrix for obtaining
the initial state of a newly-activated controller in Section III.

Theorem 2.3: For a given γ > 0, the switching L2 gain
γ̂tr in (14) satisfies γ̂tr < γ if and only if there exist X̃p � O
and X̃f � O satisfying the following conditions:[

X̃pAp +AT
p X̃p X̃pBp

BT
p X̃p −γI

]
≺ O (20)

⎡
⎣ X̃fA

T
f +Af X̃f Bf X̃fC

T
f

BT
f −γI DT

f

Cf X̃f Df −γI

⎤
⎦ ≺ O (21)

[
X̃p ST

S X̃f

]
� O. (22)

Proof: Using the relationship (14) and Proposition 5.2
in [5], we can prove this theorem.

Consider the H∞ norm of the post-switch system:

γf = ‖Hf‖∞. (23)

Then, we have the following corollary from Theorem 2.3.
Corollary 2.4: The switching L2 gain γ̂tr in (14) satisfies

γf ≤ γ̂tr. (24)

Proof: For a given γ > 0, γf < γ if and only if there
exists X̃f � O satisfying (21).

III. INITIAL STATE DESIGN OF A NEWLY-ACTIVATED

CONTROLLER DESIGNED BY MODEL MATCHING

A. Problem statement

1) Situation: Consider the pre- and post-switch systems
as shown in Fig. 2. In the both systems, P is the plant, and
Gref is the model-matching target. Then, the model matching
performance is evaluated by ‖Hp‖∞ and ‖Hf‖∞.

Consider the situation where due to the failure in a control
device, change in the surrounding circumstances, and so on,
the plant P varied from a previous property to the current
property. We suppose that the pre-switch controller Kp is
designed for the previous property of P , thus the model
matching performance deteriorated. Therefore, we should the
controller to Kf designed for the current property, which can
achieve a more desirable performance. For example, we can
obtain Kf via the optimization

minimize
Kf

‖Hf‖∞. (25)

Due to (24), the optimization (25) is important for the initial
state design by using γtr.

2) Pre-switch system: In Fig. 2(a), let xref(t), xplant(t),
xint(t), and xkp

(t) denote the state-variable vectors of the
model-matching target Gref , integrators, plant P , and pre-
switch controller Kp, respectively. Then, by using

xp(t) =

⎡
⎢⎢⎣

xref(t)
xplant(t)
xint(t)
xkp

(t)

⎤
⎥⎥⎦ , t ≤ t0, (26)

for the given Gref , P , and Kp, we can obtain the following
description of the pre-switch system:

Hp :

{
ẋp(t) = Apxp(t) +Bpw(t)
z(t) = Cpxp(t) +Dpw(t),

t ≤ t0. (27)
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Fig. 2. (a) Pre- and (b) post-switch systems for model matching.

3) Post-switch system: In Fig. 2(b), let xref(t), xplant(t),
xint(t), and xkf

(t) denote the state-variable vectors of the
model-matching target Gref , integrators, plant P , and post-
switch controller Kf , respectively. Then, by using

xf (t) =

⎡
⎢⎢⎣

xref(t)
xplant(t)
xint(t)
xkf

(t)

⎤
⎥⎥⎦ , t > t0, (28)

for the given Gref , P , and Kf , we can obtain the following
description of the post-switch system:

Hf :

{
ẋf (t) = Afxf (t) +Bfw(t)
z(t) = Cfxf (t) +Dfw(t),

t > t0. (29)

4) State transition at the switching time: Suppose that the
following state transition occurs at the switching time t = t0:

xkf
(t0+) = Sk

⎡
⎣ xplant(t0)

xint(t0)
xkp

(t0)

⎤
⎦ , (30)

where Sk is a real constant switching matrix. This is the
initial state of the newly-activated controller Kf . Then, as
the transition of the overall state-variable vectors of the pre-
and post-switch systems,

xf (t0+) = Sxp(t0), (31)

where

S =

⎡
⎢⎢⎣

I O O O
O I O O
O O I O
O

[
Sk

]
⎤
⎥⎥⎦ . (32)

5) Initial state design via the switching matrix: At the
controller switch from Kp to Kf , we should assign the initial
state of Kf , xf (t0+). In this paper, we consider the following
problem via the switching matrix.

Problem 3.1: For the given Gref , P , Kp, and Kf , find the
optimal Sk in (31) that minimizes the switching L2 gain γ̂tr
in (14).
By assigning the initial state of the newly-activated controller
Kf by using the optimal switching matrix Sk, the fluctua-
tions in transient responses around the desirable output yref
of the model-matching target Gref after the switch can be
suppressed.

B. Design procedure

By considering

S1 =

⎡
⎢⎢⎣

O O O O
O O O O
O O O O
O

[
Sk

]
⎤
⎥⎥⎦ (33)

S2 =

⎡
⎢⎢⎣

I O O O
O I O O
O O I O
O O O O

⎤
⎥⎥⎦ , (34)

we can decompose S in (32) as

S = S1 + S2. (35)

Thus, the LMI (22) is equivalent to[
X̃p ST

1 + ST
2

S1 + S2 X̃f

]
� O. (36)

Therefore, by solving the LMI problem under the constraint
conditions (20), (21), and (36) to minimize γ by using the
variables X̃p, X̃f , and S1, we can obtain the optimal Sk in
S1.

Consequently, the procedure for designing Sk is summa-
rized as follows.

Algorithm 3.2:

Step 1: From the given Gref , P , Kp, and Kf , obtain Hp

in (27) and Hf in (29), i.e., (Ap, Bp, Cp, Dp) and
(Af , Bf , Cf , Df ).

Step 2: Solve the LMI problem consisting of (20), (21),
and (36) with the variable the variables X̃p, X̃f ,
and S1 to obtain the optimal Sk in S1.

C. Example

The plant is given by

P :

[ −1 1 0
0 −2 1
1 0 0

]
. (37)

The model-matching target is

Gref(s) =
1

0.03s4 + 0.15s3 + 0.5s2 + s+ 1
. (38)
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This transfer function is known for its desirable response
against a unit step input (see yref in Fig. 3). The pre- and
post-switch controllers are as follows:

Kp :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2.5 −0.5 −6.3 6.6
0.5 −3.0 4.2 −1.7
2.1 2.8 −5.4 −1.0
0.9 1.0 −1.4 −3.6

−2.2 −0.8 2.2 5.0
−4.9 −4.1 7.8 4.8
1.1 2.3 −3.8 −1.0

−0.3 0.1 −7.6 6.2

−11.5 −19.0 −40.1 1.8
4.2 6.0 16.3 2.6
0.1 1.5 −9.4 −5.8

−4.5 −18.6 19.5 −2.5
−19.5 −79.4 25.0 3.9
−22.3 −97.1 33.7 10.8

8.5 32.4 −39.3 −3.8

−11.7 −18.7 −44.2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(39)

Kf :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−58.9 1589.9 192.9 133.6
90.9 −1563.2 −189.0 −129.8

−179.1 −295.4 −37.9 −27.3
10.1 −178.6 −20.6 −15.9
85.6 −1839.9 −222.8 −153.8
41.3 −1209.8 −146.8 −101.6
−7.8 −13.8 −1.8 −1.1

−192.6 −10.3 −1.4 −3.5

655.6 22.7 33.0 1736.9
−631.7 18.3 −366.9 −1703.6
−103.6 −274.0 4365.5 −311.1
−72.7 1.9 −50.3 −194.8

−753.1 −2.2 −339.8 −2008.2
−497.6 −23.1 72.9 −1321.0

−4.8 −11.0 −180.4 −14.6

12.2 −273.5 4395.0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

TABLE I shows the model matching performance values of
the L2 gain. Consider the situation where due to the failure
in a control device, change in the surrounding circumstances,
and so on, the plant P varied to (37) from a slightly different
property. We suppose that the pre-switch controller Kp is
designed for the previous property of P , thus the perfor-
mance index value with the current (37) is not good. On the
other hand, the post-switch controller Kf is designed for the
current (37), thus it can achieve the desirable performance
index value as shown in TABLE I. That is, the controller
switch from Kp to Kf is for improving the model matching
performance.

TABLE I

PERFORMANCE INDEX.

H∞ norm

Hp 0.0763

Hf 0.0027

In order to obtain the initial state xkf
(t0+) of the post-

switch controller Kf , we consider the following two switch-
ing matrix designs (i) and (ii).

(i) Switching matrix design by using γ̂tr. By using Algo-

rithm 3.2, we obtain

Sk =

⎡
⎢⎢⎢⎢⎢⎣

−29.5 −124.5 0.3 118.5 −16.1
24.5 103.8 −0.4 −99.1 13.0
0.2 1.9 −0.2 −0.9 0.1
7.4 27.2 0.0 −26.0 3.5

31.4 133.2 −0.4 −126.9 17.2
22.4 94.7 −0.3 −90.1 12.3
2.9 12.1 0.0 −11.5 1.5⎡
⎢⎢⎢⎢⎢⎣

33.5 −17.6 −4.7 −46.3 −161.9
−26.8 13.8 4.4 39.9 139.8
−0.3 0.3 −0.1 0.5 1.4
−7.0 3.6 1.2 10.3 36.1

−35.1 18.3 5.5 50.2 176.4
−25.4 13.4 3.6 35.4 123.9
−3.2 1.6 0.5 4.3 15.3

⎤
⎥⎥⎥⎥⎥⎦. (41)

(ii) Zero initial state. The following switching matrix sets
the zero initial state of the post-switch controller Kf , i.e.,
xkf

(t0+) = 0:
Sk = O. (42)

TABLE II

DESIGN RESULTS.

γ̂tr

( i ) Proposed design 0.0117

(ii) Zero initial state 0.8776

TABLE II shows the design results. The switching matrix
design (i) minimizes γ̂tf to obtain the value 0.0117. On the
other hand, in the zero initial state case (ii), the value of γ̂tf
is extremely worse.

We now present the simulation results. The controller
switch occurs at t = 3. The model matching performance
of the pre-switch system deteriorated, thus the difference
between y and yref grows large before the switch, i.e.,
0 ≤ t ≤ 3.

After the switch with the switching matrix (41), the pro-
posed design, the fluctuations in transient responses around
the desirable output yref of the model-matching target Gref

can be well suppressed.
On the other hand, in the case of the zero initial state,

there is violent fluctuation around yref . This implies that
the importance of the initial state design of newly-activated
controller in active fault torelance.

IV. CONCLUSIONS

By introducing the difference structure to the pre- and
post-switch systems, we proposed a new switching L2 gain
for evaluating the fluctuations around an output of a specified
transfer property after a system switch. Moreover, we applied
it to the initial state design of a newly-activated controller
designed by model matching to establish its potential prac-
ticality as a design index.

There are many practical situations where a desirable
shape of transient responses in physical values is required
due to safety aspects and equipment protection, such as
the operating-state transitions considered in [7]. In such a
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Fig. 3. Responses against a unit step input.

situation, we can use the proposed switching L2 gain by
specifying a transfer property with its desirable output. The
result obtained in this paper is the first and significant step
of theoretical challenges to a desirable shape of transient
responses in control theory.
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