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Abstract— This paper presents a decision support system
for marine vehicle collision avoidance that utilizes agent-based
modelling. It generates waypoints, consecutive strategies of
heading changes, and if necessary, speed changes to avoid risky
collision situations in multi-vessel encounters. The global colli-
sion risk metric is defined as a weighted sum of cost functions,
which are computed for each target vessel based on factors
such as distance and relative velocity. An evolutionary game
theory algorithm based on the replicator dynamics concept is
applied to determine the best strategy using competitive agents.
The proposed method aims to optimize vessel trajectories
considering the risk of collision and deviated path length. The
feasibility of the approach is demonstrated using simulation
in the NetLogo modelling tool and provides insights into how
to define an appropriate model for a scalable agent-based
application for vessel guidance algorithm verification.

I. INTRODUCTION

The decision support system (DSS) can be part of a vessel
guidance system that generates rerouting in the shape of
heading or speed setpoints, as a reference trajectory, or in
the shape of waypoints for the vessel to follow. International
Maritime Organisation (IMO) defines the DSS within the first
degree of autonomy [1]. Since 2018, IMO has been defin-
ing an S-Mode concept, developed under the e-Navigation
initiative, which attempts to standardize vessel bridge de-
sign across different vendors [2]. This implies a complete
redesign of the human-machine interfaces onboard or at the
remote operating centres (e.g. see [3] and [4]). An integrated
navigation system is meant to unify the information from an
electronic chart display and information collection system,
automatic radar plotting aid, and a situational awareness
system. Justifying and conveying the autonomous system
information to humans is an open research question.

A system that can be considered as decision support could
provide an explainable and computable trajectory or a path
for the crew on board or in a remote operating centre. The
given advice is generally a function of states of situational
awareness, The International Regulations for Preventing Col-
lisions at Sea 1972 (COLREGs) [5], various risk factors,
and more. Here, we focus on one of the subsystems, namely
collision avoidance. The ideas described in this paper can
also be applied to the design of higher levels of autonomy
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algorithms for collision avoidance (e.g. see [6]). Authors of
recent work in [7] and [8], gave a comprehensive review and
analysis of such algorithms.

Algorithms for collision avoidance based on model predic-
tive control (MPC) are widely considered the most promising
solution. One example is research in [9], with the anticipation
of the inclusion of the route exchange in an automatic
identification system. A variation of scenario-based MPC
was studied in [10], where the collision probability was
obtained by integrating the probability distribution function
of the states of the target vessel (TV) that intersect the
circular safety zone of the own vessel (OV).

Collision avoidance from a differential game perspective
has been solved for two vessel encounters, considering
minimal turning ability for both the TV and the OV, such
that vessels do not violate their safety zones [11].

The velocity obstacle algorithm (e.g., see [12]) finds a
collision-free velocity, such that the relative velocity vector
is tangential to a desired circular safety zone. It computes
admissible velocity sets and generates a tree of solutions,
where the nodes with branches of velocities are recomputed
each time horizon. Apart from a tunable time horizon, this
method allows a provisional cost function for optimizing the
consecutive paths. Some improvements of the algorithm that
are designed for proactive dynamic obstacles are reciprocal
velocity obstacle and hybrid velocity obstacle, introduced by
[13] and [14], respectively. Since any speed increase causes
quadratic growth of power needed to achieve it, it may be
beneficial to have heading and speed strategies (phenotypes)
separated. An approach using clean strategies and making a
game matrix from heading and speed changes of OV and
TVs has been shown in [15].

The DSS presented in this paper finds a set of strategies,
decomposed in velocity magnitude and heading, and avoids
risky collision situations. The base for the strategy evaluation
is the choice of the global collision risk metric. Here, we
design it to be a weighted sum of individual cost functions,
each corresponding to one instance of the OV, whose func-
tion value depends on the number of TVs it has to involve
in situational awareness. These cost functions are used to
construct a payoff matrix, a concept from game theory and
an analogy to the episodic return in a reinforcement learning
context. Using a variation of an algorithm based on replicator
dynamics (e.g. see [16] and [17]), the OV’s best strategy for
a given situation is found from the predetermined set.

Replicator dynamics has been used in the comparison of
velocity obstacle methods, where each method represents
a competitive strategy in a finite population [18]. This
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evolutionary game theory algorithm has also been shown
to match the dynamics of several reinforcement learning
algorithms [17]. Paths resulting from the reinforcement learn-
ing algorithms may suffer from high curvature, so here we
take the opposite approach, by minimizing the number of
waypoints that match the number of targets.

The platform for developing and validating the DSS is
the NetLogo modelling tool [19]. It has been used in re-
lated research on the safety assessment of marine traffic in
channels [20], where the authors used the standard protocol
for describing the agent-based models [21]. The software
has also been used in cluster computing for distributed path
search [22].

A. Contributions of this paper

The authors’ main contributions are twofold. First, we
introduce the concept of a global collision risk metric that
is defined as a payoff matrix for an evolutionary algorithm,
which in turn is used for separately and subsequently finding
suboptimal heading change and speed change strategies.
The goal is to find the minimal heading change strategy
before reducing speed, which is more energy-consuming.
A related example of a global risk factor for multi-vessel
encounters can be found in [23] but here we are using
a rather different design to construct a multidimensional
spatiotemporal game environment. The DSS designed in this
paper could be adapted by human-machine interface experts
and communicated to human operators visually. However,
this is outside of the intended scope.

Second, we reformulate a known kinematic model and
make it suitable for guidance algorithm verification using
multi-agent modelling. The proposed ideal particle model
simply captures the transient response of a change of velocity
vector in a North-East-Down (NED) frame of reference,
using time constants related to the vessel dimensions. A
similar model is found in [11] where the modelled change
in speed depends on actuator thrust and drag coefficient.
Thus, it includes an assumption on dynamics in the kinematic
model. It is worth emphasising that the rudder effect in
Nomoto’s model (e.g. see [24]) serves as a means to obtain
sway motion. Here, we bypass such modelling in a BODY
frame of reference by considering closed-loop autopilots.

B. Paper structure and methodology overview

In section II we describe the kinematic model of an ideal
particle following a path. Any change of a velocity magni-
tude or heading has a transient response. The methodology
employed in this paper is visually outlined in Fig. 1 and
involves a sequence of key steps to enhance decision-making
in dynamic maritime scenarios. To commence, the OV first
acquires essential information, its own current states and the
states of the TVs, upon which various knowledge arrays are
built. With this information at hand, the OV proceeds to
generate a range of possible scenarios, each corresponding to
different path angles. Each of these path angles is associated
with an agent, representing a potential course of action
that the OV could take. These agents inherit and maintain

knowledge arrays that are used for the computation of the
expected return value of the particular strategy. In sections
III and IV, we delve into the assessment of the time-varying
global collision risk metric and the construction of a payoff
matrix. This risk metric provides insights into the likelihood
of collisions associated with each scenario. For every strategy
change, a specific point in time, denoted as Tk, marks the
initiation of reward collection. During this period, the agents
accumulate rewards based on their chosen course of action.
These rewards may encompass various factors, such as safety
considerations or efficiency gains. After the reward collection
phase concludes at Tk+1, the payoff matrix is constructed,
which is then used to select the bounded optimal strategy
from the chosen set [41]. In section V we show some results
from the simulation of a scenario with two TVs, where the
DSS produce two imputed waypoints in between the initial
path. Remarks on performance requirements, future work and
an intuitive way forward are summarized in section VI.

Fig. 1. Methodology block diagram.

II. VESSEL KINEMATICS

The vessel kinematics are designed to be as simple as
possible but complex enough to capture the maximum turn-
ing ability and speed transient response. Similar models are
control system reference models inspired by mass-spring-
damper systems and they are used frequently due to their
simplicity [24]. These models refer to the desired dynamics
in the frame of reference attached to the rigid body, the
BODY frame of reference. Recent research in [25] and refer-
ences therein have the description of a range of models often
used for collision avoidance. The most relevant reason for
taking this modelling approach is a reduction in computation
time. This becomes particularly important when we have
multiple instances of the OV, and each has to compute future
position, path following error and the collision probability
metrics.

A. Speed and heading kinematics

Each OV model has two degrees of freedom, speed and
heading kinematics, and a path-following algorithm. TV
models are simply constant velocity obstacles. We model
the speed (1) and heading kinematics (2) as decoupled,
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inhomogeneous linear differential equations with constant
coefficients. The speed transient response is captured by a
first order system and the heading with a critically damped
second order system. The rate of turn transient response
generally has the same degree as the step response in speed
[24].

τu U̇ + U = Us (1)

τ2ψ ψ̈ + 2ζτψψ̇ + ψ = ψs (2)

Control inputs are step signals in the NED frame of reference,
namely the velocity magnitude U and heading angle ψ, re-
spectively. They represent two separate closed-loop systems.
Speed U and heading ψ reach desired setpoints, Us and
ψs. An assumption can be made that the vessel autopilots
generally have negligible overshoots, so the damping factor
ζ is set to one. Therefore, the only tuning factors are the
time constants τψ and τu, which can be estimated using the
vessel’s turning radius and required stopping distance.

The turning cycle test is performed at a maximum rudder
angle for the given test speed. IMO defines tactical radius,
a result of the turning cycle test, to be at most 5 vessel
lengths and advance no more than 4.5 vessel lengths, whilst
the stopping criterion is set to be no longer than 15 vessel
lengths [26]. An example of a relation between Nomoto’s
model time constant and gain, and the turning ability of a
vessel, via the Norrbin’s number (P), is elaborated in [27].

The weather influence is considered as incorporated within
the autopilot models by assuming it does not cause a steady
state error nor significantly prolongs the time to reach the
steady state but merely increases the control effort. We
consider this to be out of scope for verification of guidance
algorithms based on multi-agent modelling.

The North-East velocities magnitudes vN and vE are
components of the velocity vector with magnitude U (3).
In practice, we obtain them by differentiating the latitude
and longitude positions.[

vN
vE

]
=

[
cos(ψ)
sin(ψ)

]
U (3)

B. Path following

Generated waypoints from the DSS constitute a path to
follow for our model. The saturated proportional control law,
the line of sight (LOS) algorithm (e.g. see [28] and [29]),
requires the current NED coordinates of the OV (x, y), the
heading (ψ) and the coordinates of the starting and ending
waypoints (xwp1, ywp1) and (xwp2, ywp2), subsequently. The
output of the algorithm is the heading setpoint ψs (4) for the
heading autopilot model (2), which is the sum of the path
angle χ (5) and the desired heading angle ψd ∈ (−π, π].

ψs = χ+ ψd (4)

Considering that the vessel has a planar motion, the path
angle can be computed using (5).

χ = atan2((ywp2 − ywp1), (xwp2 − xwp1)) (5)

Fig. 2. Visualization of the important symbols used throughout the paper.

The function atan2 computes χ ∈ (−π, π], just like four
quadrants arctan. The desired heading angle ψd (8) follows
the arctan function, which depends on the cross-track error
e and a look-ahead distance d. Here, we introduce a new
frame of reference called PATH, which has an origin at the
starting waypoint (xwp1, ywp1) whose x-axis xp has been
rotated by the path angle χ [24]. The cross-track error e
(6) is the distance between a vessel’s position (x, y) and its
projection on the x-axis in PATH. The look-ahead distance d
(7) is the distance between the projection and an intersection
of a circle centred at (x, y) with a radius r that has to be
bigger than e (Fig. 2). The point that we need lies on the x-
axis of the PATH closer to the waypoint (xwp2, ywp2). The
choice for radius r depends entirely on the designer who,
naturally, balances between performance and efficiency. In
other words, by taking the distance smaller, the control law
(8) becomes more aggressive. This radius is usually taken to
be an integer multiple of the vessel’s length and it can be
adaptively tuned to reduce the energy consumption.

e = (y − ywp1) cos(χ)− (x− xwp1) sin(χ) (6)

d =
√
r2 − e2 (7)

ψd = arctan

(
−e
d

)
(8)

The path angle χ has to be updated in a switching manner
after the vessel approaches the next waypoint at a distance
closer than the threshold [30]. Function ssa (9), used in (4)
and (2), wraps the angle α to (−180, 180], as in [24].

ssa(α) = (α+ 180) mod (360)− 180 (9)

III. COLLISION RISK METRIC
In this section, we present a method of environment design

for competitive agents.
The metric presented here has some resemblance with

object future states probability fields that are used for col-
lision risk assessment in [31]. Modelling rewards (positive
or negative) for future states or constraints with a convex
function can also be found in literature describing control
barrier functions [32], artificial potential field functions [33]
and risk assessment functions (e.g. see [34] and [35]).
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A. Preliminaries

We assume that the OV wants to consider a strategy
change if any of the TVs is in the Dw range. The distance
Dw is taken provisionally as the radius in which estimates
of TVs’ positions and velocities are made and represents
the sufficient distance to start rerouting if the speeds are not
exceeding some maximum value. It is a tunable parameter
that influences the global collision risk metric and it can
be kept at 5nmi (nautical miles). The bigger the radius, the
higher the uncertainties in estimates, so the trade-off has to
be made not to increase the computational cost. In section
III-C, we elaborate on the appropriate scaling of the global
collision risk metric.

A risk of collision with one TV is represented as one con-
vex cost function with a maximum located at the coordinates
of the OV when the time to closest point of approach (CPA)
is equal to zero. The coordinates of the OV at that time are
denoted as (xf , yf ), and the ones from TV as (xcpa, ycpa). To
obtain those coordinates we assume that the TV, located at
(xt, yt), and OV have constant velocities. The TV’s velocity
components are vNt and vEt. It is located at the distance
D from the OV. We can compute the relative velocity angle
using (10). The location of the TV when the time to CPA
(tcpa) is zero, can be computed with (11) and (12).

γr = atan2((vNt − vN ), (vEt − vE)) (10)

xcpa = xt + (ycpa − yt) tan(γr) (11)

ycpa =
x− xt + yt tan(γr)− y tan(γr − π/2)

tan(γr)− tan(γr − π/2)
(12)

Next, we compute the distance to the CPA (dcpa) using (13).
Assuming at least one speed to be nonzero, the tcpa could
be computed using (14).

dcpa =
√
(ycpa − y)2 + (xcpa − x)2 (13)

tcpa =

√∣∣∣∣ d2cpa −D2

U2 + U2
t − 2(vNtvN + vEtvE)

∣∣∣∣ (14)

Finally, the estimates of coordinates of the OV are then
computed using (15) and (16). Those are the coordinates
of individual cost function maxima.

yf = y + vEtcpa (15)
xf = x+ vN tcpa (16)

B. Individual cost function

In the rest of the paper, we add a subscript j ∈ N+, j ≤ m
to OV agents and i ∈ N+, i ≤ n to TVs.

Along the OV agents’ path, n cost functions are generated,
each belonging to one TV in the range Dw and approaching
in distance. An individual cost function fi depends on the
coordinates and velocities of OV and the TV, as stated in
(17).

fi = si · exp
(
− (px − xf )

2 + (py − yf )
2

s4i

)
(17)

Fig. 3. Global cost functions for three equiangular OV’s strategies
encountering two targets each.

The NetLogo environment is made of square patches with
coordinates of the centre (px, py). It should be noted that the
coordinates of the patches’ centres and the coordinates of a
vessel are taken as unitless values. We define scalar si, with
(18).

si = c

(
1− dcpa

Dw

)
(18)

The scaler si will linearly increase up to a maximum value
of c, as the dcpa shrinks. Constant c defines an individual
function’s maximum value. It will influence the total reward
individual agents collect but changing it will not modify the
outcome of the strategy competition.

As an illustrative example, a snapshot of time-varying cost
functions for three strategies (turn port, turn starboard and
stay on the course) encountering two TVs can be depicted
in Fig. 3.

The cost for approaching static obstacles would take
the shape that follows the diffusion or continuity equation.
Authors in [6] and [36] used piecewise linear land contours
as bounds in optimization. The diffusive cost could drop in
a direction perpendicular to an individual piecewise-linear
approximation of the obstacle.

C. Mixture of cost functions

The total cost function of an individual OV agent j is a
weighted sum of individual cost functions (18).

Fj =

n∑
i=0

wifi (19)

For the sake of clarity, these weights might be denoted by
both subscripts since they depend on the states of both OV
and the TVs. The weighting factors wi for constructing the
global cost function Fi represents how important a particular
TV is to a given OV, in cost function reduction. They are
defined by factors such as distance Di between OV and
TVs, time tcpa, the ratio between OVs and TVs’ length and
mass, environmental influence on the controllability of a
vessel and situational awareness. An alternative could be
simply to estimate wi as a multiplication of normalized
relative bearing and normalized distance to TVs. Recent
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research in [37] uses fuzzy sets for similar tasks and related
to COLREGs interpretation. To conclude, with this we
create a spatiotemporal environment for each agent.

IV. WAYPOINTS GENERATION

Suppose we generate m OV agents that inherit all the
states and properties of the original OV model. A predeter-
mined set of m strategies is made of the desired headings
{h1, h2, ..., hm}. Those strategies are equiangular lines that
intersect at the coordinates of the OV. Angle in between
strategies is a tunable parameter. This set should not be
symmetric with respect to the OV heading at the time the
agents are generated. It is custom to classify the TVs into
four groups based on zone entry criteria for COLREGs
13-17: crossing give-away, crossing stand-on, overtaking
and head-on [38]. Having this in mind, the set should be
generated such that the desired strategies fall into one of the
zones.

Each generated agent is assigned a path to follow, which
has path angle χ (5). Agents follow the strategies using LOS
(20).

χ = hj (20)

A. Payoff matrix for competitive agents

An individual agent collects rewards by summing values
stored in patches. Each patch stores those values for every
agent separately, determined by their global cost function,
and changes them dynamically. So, each patch stores and
maintains a list of global cost functions, whose length
depends on the number of agents.

We propose that the total accumulated reward for an
individual agent takes into account the global cost functions
of other agents as well. In other words, each agent integrates
all of the global cost functions in parallel as it moves over
the patches and maintains an array of their values, whose
length depends on the number of agents.

We can denote enumerated patch as p, with a known
square edge length and center coordinates, to be a part of
the set P that is made of patches which are intersected by
the agent’s path.

With (21) and (22), we define a payoff that agent j,
playing strategy hj , gets by competing against agent m,
playing strategy hm, and vice versa. Rewards accumulation is
periodical, and on its end, the strategy competition is played.
The kth reward accumulation lasts over one time period ∆
of simulation starting at Tk and ending at Tk+1.

Rjm =
∑
p∈P

bjFm(p) (21)

Rmj =
∑
p∈P

bmFj(p) (22)

Weights b are designed to keep the vessel on the original
path so that imputed waypoints are not far from the original
track. They are further elaborated in subsection IV-C.

We propose that ∆ depends on the largest tcpa that is
calculated for each TV at times T1, T2, T3 etc, the time
agents’ strategies are determined. In this way, we increase
the number of TVs that define the individual agent’s payoff,
therefore the winning strategy for that time period ∆. This
has the downside of having large values of ∆ since it
depends on how large is the Dw. For example, the solution
might simply be to let the agents collect the rewards from
patches for half an hour (not simulation time), because this is
usually the time upper bound for relatively accurate trajectory
estimates of large and slow maritime vehicles.

An example of the total payoff matrix for strategies com-
peting against each other can be depicted in Table 1 In Fig.

TABLE I
TIME-VARYING PAYOFF MATRIX

OV1 OV2 OVj OVm

OV1 R1 R12, R21 R1j , Rj1 R1m, Rm1

OV2 R21, R12 R2 R2j , Rj2 R2m, Rm2

OVj Rj1, R1j Rj2, R2j Rj Rjm, Rmj

OVm Rm1, R1m Rm2, R2m Rmj , Rjm Rm

4, an example situation is presented. After the decision to
evaluate heading change has been initiated, the TVs’ position
is estimated by considering constant velocity, movement of
the OV is frozen at T0, and 10 agents have taken different
strategies. Each agent embeds the global cost functions into
patches sequentially at every environment refresh rate δ.
Small circles with a dot in the middle represent waypoints
along the agents’ paths for better visualization. Only one
function, F4, is plotted along the position of the three CPAs,
marked as red dots, and three dcpa circles.

B. Strategy selection using replicator dynamics
Each strategy j is a member of a finite population of

size N , which every playing cycle t stays constant. One
playing cycle lasts until all the agents have played against
the rest, in a round-robin fashion. We start with a provisional
but equal number of agents that play one of the strategies
from the predefined set. The number of agents playing a
particular strategy j in the next cycle aj(t + 1) (25) is
determined by the growth function g (24). This function
value depends simply on the payoff matrix and a fraction of
agents playing other strategies. Since this type of replication
does not have the counterforce to stabilize the population
number, we normalize the population size N (23) at the end
of each cycle. The strategy that plays the one-shot game with
all the rest is chosen sequentially.

N =

m∑
j=1

aj (23)

gj(t) =
a1(t)

N
Rj1 +

a2(t)

N
Rj2 + ...+

am(t)

N
Rjm (24)

aj(t+ 1) = aj(t)(1 + gj(t)) (25)

It is important to emphasise this algorithm does not depend
on the time used in the simulation but converges rather

1128



Fig. 4. 10 strategies in a vicinity of 3 TVs.

quickly to a Nash equilibrium in a finite number of cycles
marked as t in (24) and (25).

C. Consecutive strategies

The chosen strategy will be the one with the biggest
population after the competition is terminated. The relatively
short convergence time depends on the number of strategies
and the payoff matrix entries. After the jth strategy has
been chosen, the environment is reset and the agents are
eliminated. We resume the simulation such that OV has a new
waypoint to reach, which is generated at the coordinates of
the mean of the closest individual cost function fi, computed
after time period ∆. Those would be the coordinates of the
winning agent when the first tcpa, in the list it maintained,
reached zero. When the OV approaches the waypoint closer
than the threshold, new time Tk+1 is recorded and a new
∆ is computed or set. The procedure is repeated until there
are no COLREGs-applicable situations to resolve or static
obstacles along the path.

Since there is no guarantee that OV will pass on a safe
distance from the TVs, it is mandatory to check if the
winning agent’s dcpa of the closest TV is smaller than the
safety distance. More precisely, if an agent, following a
particular strategy, encounters the closest TV with a miss
distance (dcpa) that is smaller than the safety zone, that
strategy should be removed from the game as a candidate.
Afterwards, we repeat the game with a truncated payoff
matrix.

Moreover, in order to keep the generated waypoints not too
far from the original path we propose to use a simple spring
mechanism to penalize strategies that give greater relative
bearing towards the original waypoint before imputing the
intermediate ones. Adding additional weights b in each cost
function from (21) and (22), such that the sum is always
one, should serve the purpose. In Fig. 5, five strategies
are generated from the starboard and five from the port,
while the initial desired waypoint lies towards the starboard.
The weight distribution is a skewed binomial. In this case,
we increase the cost function of the strategies that are not
deviating from the original plan.

If there is no heading change strategy that does not
violate TVs’ safety zones, the same procedure could be

Fig. 5. Weights b for 11 strategies, where the h2 has the minimal relative
bearing towards the original waypoint.

run for a velocity magnitude U increase or reduction strategy.

V. PRELIMINARY RESULTS

In this section, we show a simple scenario with two TVs.
After the targets approached closer than Dw, we generated
9 agents that inherited all the states and properties from
the OV. The offset between equiangular paths was 5◦. The
reward collection time period ∆ was chosen to be constant.
In Fig. 6, only the global cost function associated with agent
3 is plotted, along with two dcpa circles associated with the
two TVs. The first chosen strategy was the one from agent 6.
At this point, we eliminated all the agents and set the patch
values to zero. The simulation continued by imputing the
new intermediate waypoint for the OV, having coordinates
of the mean (xf , yf ) of the first fi on the agent’s 6 path. TVs
continued with constant velocities. After the OV reached this
waypoint, as it can be seen in Fig. 7, nine new agents were
generated and the game was played again in which agent 34
prevailed. Since there were no more targets after the second
imputed waypoint was reached, OV continued to its original
goal. The resulting OV trajectory and the two additional
imputed waypoints, can be depicted in Fig. 8. We noticed that
the winning strategy tends to traverse the TV from the aft in
the crossing situations. This could be explained by depicting
the location of fi functions’ maxima for the closer TV, as
they form an arch made of red dots falling from left to right
in Fig. 6. OV agents that are traversing the TV from the fore
are collecting more rewards from the other agents that are
traversing the TV from the aft. The kinematic equations were
solved numerically using backward Euler approximation.

VI. CONCLUSIONS

We have presented a method that simplifies potentially
complex multi-vessel encounters to a multidimensional spa-
tiotemporal environment that could serve as a base for
intelligent agents’ learning, competition or cooperation. In
this case, we used a game theory algorithm for strategy
competition. COLREGs compliance level could be improved
by generating strategies that are inside one of the four
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Fig. 6. Situation before the first strategy was
chosen.

Fig. 7. Agents were generated again to deal with
the second target.

Fig. 8. OV has two imputed waypoints from
agent 6 and 34, subsequently.

permissible groups, as mentioned in section III.

A. Implementation and preformance

To get an idea about the requirements for practical im-
plementation we have to consider recomputation time (δ) of
the global collision risk metric (environment refresh rate),
well-filtered estimates of TVs’ and OV’s velocity vectors and
environment patch size. The environment refresh rate should
depend on the biggest speed of TV that is considered, i.e.
closer than Dwp. Since the time frame between computations
of the multidimensional spatiotemporal environment (δ) de-
termines the payoff matrix, it is important to balance between
computation cost and the desired accuracy. Computations in
section III require good estimates of the vessel’s position,
speed and heading. For example, research in [39] describes
how to obtain speed and course over ground using only
global navigation satellite system receiver. The major issue
remains in reducing uncertainty for the trajectory estimates
of the vessels using intentions probability network models
(e.g., see [40]) or using destination (or future waypoints)
knowledge. For Python implementation, environment patches
could be hexagons of provisionally fine resolution.

B. Future work

We plan to use Netlogo’s behavior space feature to
generate scenarios with a provisional number of TVs with
different weights wi, headings, and speeds. The goal is to
analyze the results after generating a provisional number
of equiangular OV strategies and changing the heading
differences in between. The natural way of analysis would
be using the simplex method for n strategies to study the
dynamics of the game with a payoff matrix that depends on
a traffic situation. To increase the computational reducibility,
the collected cost after following the initial path can be
approximated by the explicit integral of the global cost
function along the path, if we assume NetLogo patches in
limit shrink to points. Bounds of integration would depend
on reward collection time frame ∆. Extending the game
such that TVs are also players would lead to a similar
methodology of constructing the payoff matrix. In that

case, strategies are turned to available actions and the
obtained Nash equilibrium for the local traffic situation
would be computed centrally in the Vessel Traffic Service
station and advised to individual vessels. Moreover, we plan
to collaborate with the human-machine interface experts
and conceptualize the prototype for collision avoidance
assistance that utilizes knowledge arrays and easily
visualisable global collision risk metrics and knowledge
arrays.
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