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Abstract— This work proposes mid-course trajectory recon-
figurations for humans escaping hazardous environments in
indoor surroundings as part of disaster management in civil
infrastructures. Hazardous environments are interpreted as
spatial fields such as carbon monoxide concentrations, and
have accumulated effects on escaping humans within indoor
environments. When the spatial field is known and available
to an evacuee then a level-set based guidance can provide
an optimal trajectory to an escape exit that corresponds to
the smallest accumulated amount of hazardous material in the
evacuee’s lungs. However, when the spatial field is unknown to
an evacuee, an integrated estimation and trajectory planning
scheme is warranted. This paper combines the asymptotic
embedding approach for state estimation of spatially distributed
processes via mobile sensor with a modified level-set trajectory
generation scheme. Incorporating realism due to computing
and planning time, a trajectory cycle is decomposed into a
planning stage in which a mobile agent (human) is immobile
and uses the most recent state estimate to generate viable
escape trajectories, and the travel stage in which the mobile
agent is executing the trajectory computed during the planning
stage. As new process state information is updated, the escape
trajectories are recalculated thereby leading to continuous
escape trajectory reconfiguration. In both stages of a given
cycle the mobile agent is continuously estimating the spatially
distributed process but only using the most recent snapshot
of the spatial process estimate for trajectory recalculation.
Extensive numerical studies are included to shed light on
the detrimental effects of accumulated amounts of hazardous
environments on the escape trajectories of humans during
indoor evacuation.

I. INTRODUCTION

The problem of trajectory generation in indoor environ-
ments is significantly more difficult when one has to take into
account the accumulated effects of a hazardous environment,
such as carbon monoxide, on an evacuee’s ability to move
and complete a path to safety. Safety is interpreted as
reaching an emergency exit and hence access to breathable
air free of carbon monoxide.

Following the earlier work [1], [2] in which the ac-
cumulated and instantaneous effects of a hazardous field
inhaled by an evacuee significantly influenced the escape
trajectory from the interior of an indoor environment such as
music/concert halls, stations, and terminals, this work adds
another level of complexity in the generation of viable escape
trajectories. The earlier works presented a level-set escape
trajectory as a means to reach the optimal escape exit that
also ensured the levels of the accumulated amount of carbon
monoxide present in the human lungs were as far below as

M. A. Demetriou is with WPI, Aerospace Engineering Dept, Worcester,
MA 01609, USA, mdemetri@wpi.edu. The author gratefully acknowl-
edges financial support from ONR Grant N00174-22-1-0004.

possible from a critical threshold. Exceeding such a threshold
in the lungs means the human is incapacitated and unable
to complete the trajectory to safety. Such a level-set based
human guidance required the full knowledge of the species
concentration (carbon monoxide concentration) throughout
the indoor environment. This meant that the human must
have complete knowledge of the concentration for each spa-
tial point in the indoor environment. The evacuation guidance
proposed in the earlier work [1], [2] was also assumed to
be executed over a single cycle meaning that an evacuee
had to find the optimal trajectory for each of the available
escape exits at the beginning of the escape flight and select
the escape trajectory that yielded the smallest accumulated
amount of the hazardous substance inhaled. It should be
noted that the level-set guidance used in [1], [2] was an
extension of earlier works on level-sets for human navigation
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
having the added element of minimizing the accumulated
amount present in the lungs over a selected trajectory.

In this work, the assumption of the knowledge of the
spatial field representing the concentration of the hazardous
substance is removed with the evacuee having to estimate
the concentration in real-time in order to continuously re-
evaluate the escape trajectory. This means that as an up-
dated estimate of the spatial field is accessed, the escape
trajectory is recalculated on-the-fly. This knowledge of the
environment, via a state estimate, is available to the agent
at discrete time instances (snapshots). The unknown spatial
field is assumed to be described by a Poisson-type PDE
(elliptic PDE) that is time invariant [15]; that is, constant-
in-time, but varying-in-space. To provide an estimate of the
state using the measured concentration at the current location
of an evacuee (i.e., mobile sensor), we consider asymptotic
embedding methods to set-up a state observer with mobile
sensors [16]. It should be emphasized that while the true
environment is spatially varying, its on-line estimate is spa-
tiotemporally varying. The state estimate is made available
to the escaping agent at discrete time instances.

The mathematical formulation of the various components
of a hazardous environment in an indoor setting is presented
in Section II. A level-set guidance modified for on-line
estimated snapshots of a spatially varying field is presented
in Section III. Extensive numerical results are discussed in
Section IV with conclusions following in Section V.

II. MATHEMATICAL FORMULATION

The various modeling aspects of a hazardous environment
in which an evacuee is traveling through are detailed.
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A. Hazardous field over rectangular indoor domain

The spatial field that is assumed to have accumulated
effects on an evacuating agent, is modelled by a Poisson-type
PDE over a rectangular domain Ω = [0,Lξ]× [0,Lζ]. This of
course represents the steady-state equation of an unsteady
advection-diffusion PDE. The solution to the elliptic PDE is
denoted by c(ξ,ζ) and is the solution to

0 = ∇ · (D∇c)−∇ · (uc)+ f , (1)

where f = f (ξ,ζ) denotes the (negative of the) source terms,
and is furnished with the appropriate boundary conditions.
For part of the boundary ∂Ω, Dirichlet conditions are im-
posed and for the remainder, Neumann conditions are used
with ΓD∪ΓN = ∂Ω.

The spatial field with concentration c(ξ,ζ) is not available
to the evacuee for each spatial coordinate (ξ,ζ)∈Ω. Instead,
it is assumed that the amount of the hazardous field inhaled
by the evacuee at a given coordinate position (x1(t),x2(t))
within the domain Ω is given as a function of the “measured”
quantity. This is given by

y(t) =
∫

Ω
δ(ξ− x1(t))δ(ζ− x2(t))c(ξ,ζ)dζdξ,

where δ(·) denotes the Dirac delta function. The simplified
expression for the “measured” field, as inhaled by the evac-
uee is given by

y(t) = c(x1(t),x2(t)), (2)

and which assigns to the measured output the value of
the unknown concentration evaluated at the current evacuee
position (x1(t),x2(t)). It is noted that while the concentration
c(ξ,ζ) is time-invariant, the measured quantity y(t) is time
varying because of the motion of the evacuee.

B. Evacuee equations of motion

A simple kinematic model is assumed to model the motion
of the evacuee in the spatial domain Ω. This simplified
version was proposed in the earlier work [1], [2], and is
described by the kinematic equations of a mobile robot

ẋ1(t) = υ(t)cos(θ),

ẋ2(t) = υ(t)sin(θ),
(x1(0),x2(0)) = (x10,x20), (3)

where (x1(t),x2(t)) ∈ Ω are the evacuee’s coordinates in
Ω, υ(t) is the evacuee (linear) speed and θ is the angle
between the direction of motion and the horizontal axis ξ.
While elaborate models include both the above kinematics
and the dynamics (angular velocity as the control signal plus
Newton’s translational motion and Euler’s rotational motion,
[17]), we have opted for the simplified equations of motion
due to the low values of human speeds. In the above model,
the angle θ(t) is taken to be the control variable.

C. Inhalation model

The accumulated amount of the hazardous substance up
to the current time t in the evacuee’s lungs is obtained from
the line integral of the concentration c(ξ,ζ) along the path
towards an escape exit. Using the derivation in [1], [2],

we summarize the trajectory-dependent amount due to the
inhale-exhale cycle via the cost

J(θ) =
1
2

∫
θ(t)
c(r)ds,

where r(t) = (x1(t),x2(t)). The factor 1/2 in front of the
integral represents the ratio between the time of inhalation
and the total time for a breath cycle, see [1].

Using the fact that the concentration at each spatial coordi-
nate is denoted by c(x1(t),x2(t)), then use of the line integral
equation [18] yields ds= υ(t)dt which then produces

J(0, t,θ(t)) =
1
2

∫ t

0
υ(τ)c(x1(τ),x2(τ))dτ. (4)

When the speed υ is constant and the evacuee moves along
a level curve (isoline) of the concentration Lm(c) = {(ξ,ζ) :
c(ξ,ζ) = m}, then the accumulated amount (4) simplifies to
J(0, t,θ(t)) = υmt/2.

The accumulated amount can be explicitly expressed in
terms of the measured signal y(t) for a constant speed via

J(0, t,θ(t)) =
υ
2

∫ t

0
y(τ)dτ.

D. Observer based estimation of time-invariant fields

Since the concentration field is unknown, then it must be
estimated using the available measured signal y(t) given by
(2). One way to find the time-varying estimate of c(ξ,ζ)
is to use asymptotic embedding methods presented in [19],
[16]. The idea behind this is to express (1) as the steady-
state equation of the evolution equation corresponding to the
unsteady advection-diffusion PDE. Using x = c(·, ·) as the
state, we have that (1) is abstractly given as

0 = Ax+ f , (5)

where A is the elliptic operator Aϕ = ∇ · (D∇ϕ)−∇ · (uϕ),
for ϕ∈H1

0 (Ω). The measurement (2) can be written in terms
of the output operator

y(t) = C (t)x, (6)

where, for ϕ ∈ H1
0 (Ω), C (·) ∈ H−1(Ω) is given by

C (t)ϕ =
∫

Ω
δ(ξ− x1(t))δ(ζ− x2(t))ϕ(ξ,ζ)dζdξ.

Using (5), (6), the associated filter is given by
˙̂x(t) = A x̂(t)−L(t)

(
y(t)−C x̂(t)

)
, (7)

where x̂(t) denotes the state estimate of x, in other words,
it is the estimate of c(ξ,ζ). In terms of the PDE setting, the
estimator (7) is

∂ĉ(t,ξ,ζ)
∂t

= ∇ · (D∇ĉ(t,ξ,ζ))−∇ · (uĉ(t,ξ,ζ))

−ℓ(t,ξ,ζ)
(
c(x1(t),x2(t))− ĉ(t,x1(t),x2(t))

)
,

where ℓ(t,ξ,ζ) is the kernel of the adjoint of the filter
operator L(t) in (7). As presented in [16], when the filter
operator is decoupled to the sensor guidance and is selected
as the adjoint of the output operator, one has that (7)
simplifies to a Luenberger observer

˙̂x(t) = A x̂(t)− γC
∗(t)(y(t)−C x̂(t)) , (8)
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where γ > 0 is a user-defined Luenberger observer gain. In
terms of the PDE setting, the Luenberger observer is

∂ĉ(t,ξ,ζ)
∂t

= ∇ · (D∇ĉ(t,ξ,ζ))−∇ · (u ĉ(t,ξ,ζ))

−γδ(ξ− x1(t))δ(ζ− x2(t))×(
c(x1(t),x2(t))− ĉ(t,x1(t),x2(t))

)
.

(9)

Summarizing, the state estimator for the hazardous field
concentration c(ξ,ζ) using the mobile measurement (2) is
given by (8). The guidance of the mobile sensor (i.e., the
evacuee) is given by the appropriate selection of the control
angle θ(t) in the equation of motion (3) that minimizes (4).

E. The planning and travelling stages in a guidance cycle

The assumption here is that the evacuee’s guidance is
completed over multiple cycles which contain a planning
stage and a travel stage. During the planning stage the
evacuee is stationary (does not move) and simply uses this
time interval to compute a viable escape trajectory. The
evacuee in this stage uses the estimate of the concentration
field evaluated at the beginning of the planning stage (the
snapshot of the estimated field) ĉ(tk,ξ,ζ), ∀(ξ,ζ) ∈ Ω to
generate the escape trajectory that predicts the smallest
accumulated amount of the hazardous substance in the lungs.
The state observer (8) provides the estimate ĉ(t,ξ,ζ) for
all time but the agent is using the snapshot ĉ(tk,ξ,ζ) to
find the optimal escape trajectory. The snapshots of the
estimated concentration field are available only at the discrete
time instances tk, k = 1,2, . . .. These instances tk signal the
beginning of the guidance cycles.

During the travel stage of a given cycle, the agent executes
the escape guidance that was computed during the planning
stage. At the completion of a given travel stage, the agent
halts and a new cycle is initiated. The duration of a single
guidance cycle is denoted by τcycle with τplan and τtravel
denoting the planning and traveling stages, respectively.
Thus, we have

τcycle = τplan+ τtravel . (10)

Since the time instance tesc wherein the agent reaches any
of the escape exits is unknown, one cannot a priori define the
interval [0, tesc] or its decompositions that yield the duration
of a given cycle. Instead, one defines the duration τcycle of
a cycle and the duration of either the planning stage or
the travel stage. When the length of the subintervals is a
priori defined, then the time instances tk corresponding to
the beginnings of a new guidance cycle are easily defined as

tk = (k−1)τcycle, k = 1,2, . . . ,N. (11)

One observes that the planning stage occurs for t ∈ [tk, tk+
τplan) and the learning stage in t ∈ [tk+ τplan, tk+ τcycle).

In summary, one has the stages of a given guidance cycle

i) Planning stage: For each t ∈ [tk, tk+ τplan), the evacuee
is stationary but is searching for the optimal escape
trajectory for each escape exit. When the optimal tra-
jectories corresponding to the smallest predicted accu-
mulated amount inhaled are calculated, it selects the

trajectory for the travel stage. In this case, it generates
the trajectory θ(t; tk,∞) for [tk+ τplan, tk+ τcycle).

ii) Travel stage: For each t ∈ [tk+τplan, tk+τcycle), the evac-
uee implements the trajectory θ(t; tk,∞) obtained during
the planning stage, but terminates it at t = tk+τcycle, in
other words it executes θ(t; tk, tk+ τcycle).

III. LEVEL-SET GUIDANCE USING SNAPSHOTS ĉ(tk,ξ,ζ)
OF FILTER ESTIMATES OF A STEADY FIELD c(ξ,ζ)

The spatial field c(ξ,ζ) is unknown and a state observer
is employed to provide an estimate ĉ(t,ξ,ζ). The model
of the state observer is given in (8). While the estimate is
generated continuously, only a snapshot is available to the
agent during a given planning stage in order to compute the
escape trajectory needed for the corresponding travel stage.

The level-set guidance presented in [1], [2] is modified
in order to account for the use of an estimated spatial field
and also the intermittent availability of such an estimate. The
modifications to the level-set guidance are as follows:

i) Throughout the planning stage t ∈ [tk, tk + τplan), the
agent is not moving and is using the spatially varying
function ĉ(tk,ξ,ζ) to compute the escape trajectory that
yields the smallest amount of accumulated substance.
While the guidance is only using ĉ(tk,ξ,ζ), the state
observer (8) continues to generate the state estimate
using the arrested measurements

∂ĉ(t,ξ,ζ)
∂t

= ∇ · (D∇ĉ(t,ξ,ζ))−∇ · (uĉ(t,ξ,ζ))

−γδ(ξ− x1(tk))δ(ζ− x2(tk))×
(
c(x1(tk),x2(tk))− ĉ(t,x1(tk),x2(tk))

)
,

(12)

for all t ∈ [tk, tk+τplan). The state observer in (12) uses
an arrested learning that was first presented [20], since
it uses the frozen-in-time concentration measurement
c(x1(tk),x2(tk)) which is the sensor measurement at the
fixed location (x1(tk),x2(tk)). Since the actual process
is time invariant and the sensor is immobile, then this
measurement is constant for t ∈ [tk, tk + τplan). How-
ever, the estimated concentration at the sensor location
is ĉ(t,x1(tk),x2(tk)) which is time-varying for all t ∈
[tk, tk + τplan). The observer kernel δ(ξ− x1(tk))δ(ζ−
x2(tk)) is constant in time since the delta functions are
evaluated at a fixed position within the spatial domain
Ω. Thus, the estimated state in (12) will continue to vary
with time for all t ∈ [tk, tk+ τplan).
The associated optimal trajectory θopt(t; tk,∞) corre-
sponds to the optimization of the accumulated cost J
for the interval t ∈ [tk + τplan,∞), which means that
the agent is attempting to find the optimal trajectory
θopt(t; tk,∞) that corresponds to an escape exit with
the smallest accumulated J. Additionally, the level-set
guidance proposed in [1], [2] must be modified since
the maximum value of the true field needed for the
derivation of the level-set guidance is not available. In its
place, one uses the estimated value ĉ(tk,ξ,ζ) to generate
the level-set guidance.
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ii) For all times t ∈ [tk + τplan, tk + τcycle) in the travel
stage, the evacuee executes the guidance associated with
the optimal trajectory θopt(t; tk,∞) but terminates it at
the time instance t = tk + τcycle which designates the
end of the current guidance cycle. At the next cycle
the next updated information is ĉ(tk+1,ξ,ζ). During the
current travel stage the agent is using the following state
observer

∂ĉ(t,ξ,ζ)
∂t

= ∇ · (D∇ĉ(t,ξ,ζ))−∇ · (uĉ(t,ξ,ζ))

−γδ(ξ− x1(t))δ(ζ− x2(t))×
(
c(x1(t),x2(t))− ĉ(t,x1(t),x2(t))

)
,

(13)

for all t ∈ [tk+ tplan, tk+ τcycle).
The details of the level-set guidance using the snapshots of
the estimated field are presented in Algorithm 1.

IV. NUMERICAL STUDIES

We consider a rectangular domain in 2D, given by Ω =
[0,Lξ]× [0,Lζ] = [0,100]× [0,30]m having three escape ex-
its at its boundary with coordinates (ξd1 ,ζ

d
1) = (100,10)m,

(ξd2 ,ζ
d
2) = (100,20)m and (ξd3 ,ζ

d
3) = (90,30)m.

The selected cycle duration is τcycle = 6s with τplan = 2s,
meaning that the escapee agent does not move for 2 seconds
while planning and moves at the remaining 4 seconds till
completion of the current cycle. While the state estimator is
running continuously even when the agent is not moving, the
trajectory planning scheme receives the state estimate every
6 seconds in the form of ĉ(tk,ξ,ζ).

The true spatial field is governed by the elliptic PDE

0 = ∇2c(ξ,ζ)+ f (ξ,ζ)

having Dirichlet boundary conditions with ∇2 = ∆ denoting
the Laplacian operator in 2D

∇2c(ξ,ζ) =
∂2c
∂ξ2 +

∂2c
∂ζ2 ,

and f (ξ,ζ) denotes the negative of the unknown source. The
solution to the above PDE is

c(ξ,ζ) = 4100exp
(−(ξ−µξ)

2

2σ2
ξ

)
exp

(−(ζ−µζ)
2

2σ2
ζ

)

where µξ = 0.7Lξ, σξ = 0.1Lξ, µζ = 0.75Lζ and σζ =
√
Lζ.

The associated state operator A in (7) is

〈Aϕ,ψ〉=
∫

Ω

(∂2ϕ(ξ,ζ)
∂ξ2 +

∂2ϕ(ξ,ζ)
∂ζ2

)
ψ(ξ,ζ)dζdξ,

for all ϕ,ψ ∈ H1
0 (Ω) and the source term given by the

negative of the Laplacian of the selected solution. The
measurement model is given by

y(t) =
∫ Lξ

0

∫ Lζ

0
δ(ξ− x1(t))δ(ζ− x2(t))c(ξ,ζ)dζdξ

= c(x1(t),x2(t)).

The agent starts at the position x1(0) = Lξ/3, x2(0) = Lζ/3, and
travels inside Ω with a constant speed of υ = 7m/s.

The agent assumes the unknown spatial field is given by

Algorithm 1 Arrested estimation-based evacuation guidance
over [tk, tk+ τcycle) using discrete time estimated field infor-
mation ĉ(tk,ξ,ζ) with on-the-fly trajectory recalculation

1: initialize: Using sampling constraints, define the in-
stances tk in (11) and define the cycle duration τcycle =
tk+1 − tk. Using individual agent capacity, select the
planning stage τplan and travel stage τtravel durations in
τcycle = τplan+ τtravel . Use an initial state estimate x̂(0)
for the observer in (12). Using initial (x1(t0),x2(t0)) and
desired locations (escape exits) (ξdj ,ζdj ), j= 1, . . . ,nexits,
determine the first trajectory planning θ(t, t1) for t ∈
[τplan,∞), but implement in t ∈ [τplan,τplan + τtravel).
Obtain sensor measurements in both t ∈ [t0, t0 + τplan)
and t ∈ [t0 + τplan, t0 + τplan + τtravel) and use them to
implement the observer (12), (13).

2: iterate: k = 2
3: loop
4: Define next cycle [tk, tk+τcycle) with tk = (k−1)τcycle.

For each time t ∈ [tk, tk + τcycle) continue to obtain
sensor measurements and implement the arrested es-
timation (12) regardless of the agent motion.

5: In the kth planning stage of duration τplan with t ∈
[tk, tk+τplan), use the most recent arrested estimate of
the field ĉ(tk,ξ,ζ) to plan the trajectory for t ∈ [tk+
τplan, tk+ τcycle) using the level-set based guidance in
[1], [2]. Continue the nominal estimation (13).

6: for j = 1 to nexits do
7: from current position (x1(tk),x2(tk)), compute the

level-set trajectory to each jth exit in [tk+ τplan,∞)
8: compute anticipated accumulated amount

J j(tk,∞,θ(t, tk)) for each exit and truncate to
J j(tk, tk+ τcycle,θ(t, tk))

9: select optimal trajectory θoptk (t) using

θoptk (t) = argmin
j
J j(tk, tk+ τcycle,θ(t, tk)) (14)

10: end for
11: In the kth travel stage of duration τtravel with t ∈ [tk+

τplan, tk + τcycle), implement the level-set based path
planning developed at the most recent planning stage.

12: At the end of the kth cycle tk+1 = tk+τcycle, propagate
the state estimate of the spatial field using (13).

13: if
√

(x1(tk+1)−ξdj )2 +(x2(tk+1)−ζdj )2 > 0 then
14: k← k+1
15: goto 2
16: else
17: terminate-success: reached a safety exit!
18: end if
19: end loop

the initial guess

ĉ(0,ξ,ζ) = 4100exp
(−(ξ−µξ)

2

2σ2
ξ

)
exp

(−(ζ−µζ)
2

2σ2
ζ

)

with µξ = Lξ/2, σξ = Lξ/5, µζ = Lζ/3 and σζ = Lζ/4.
When the agent has full access to the spatial field and

implements the level-set guidance presented in [1], [2], the
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trajectory selected is for exit #1 and provides a minimum
accumulated exposure to the hazardous field. Figure 1 depicts
the optimal trajectory and the contours of the hazardous field.
As expected, the agent essentially moves in a slightly curved
path to minimize the accumulated exposure and marches
towards the nearest exit that would predict the smallest
accumulated amount. Exits #2 and #3 would have a path
passing through the higher concentrations of the spatial field
and thus are deemed unsuitable trajectories.

However, when the spatial field is not known to the
agent, the selected path may go through the highest values
of the hazardous field. The escapee trajectory is presented
in Figure 2 with the intermediate escape exit selections in
each cycle. In all three cycles, exit #3 was selected as the
viable exit with the smallest accumulated amount predicted.
While exit #3 was always selected, the path generated was
not given by a straight line from (x1(0),x2(0)) to (ξd3 ,ζ

d
3).

This of course ensured that the accumulated amount at the
instance of reaching exit #3 was the smallest possible. Table I
summarizes the results for three different cases: the first one
uses the proposed guidance that uses the on-line estimate
of the spatial field to implement the level-set guidance with
trajectory reconfiguration. The second case is that of a field-
agnostic agent who is not aware of the presence of the
hazardous field and selects a path to escape using line-of-
sight to escape to the exit with the shortest distance. The
third case is that of an agent that is aware of the presence and
effects of the hazardous field and essentially implements the
level-set guidance proposed in [1], [2]. As expected, the field-
agnostic agent traverses the distance to exit #3 in the shortest
time possible of 8.6 seconds. The agent using the proposed
level-set guidance with trajectory reconfiguration based on
the estimate of the spatial field takes 20.2 seconds to reach
safety. The agent that uses the knowledge of the spatial field
without any trajectory reconfiguration requires 14.8 seconds
to reach safety. However, when the accumulated amount of
the harmful substance inhaled are taken into account, the
field-agnostic agent has J= 45,260ppm while the field-aware
agent has a lower level at J= 9,533ppm. When the agent has
full knowledge of the spatial field and does not implement
a trajectory reconfiguration, it reaches safety with a lower
value at J = 254ppm, see also Figure 1. As expected, when
the agent has knowledge of the field and completes the trajec-
tory without any reconfiguration, it has a better performance,
both in terms of time-to-escape and accumulated amount,
than the agent that has to estimate the spatial field in order
to generate the trajectories with reconfiguration. The case of
a field-agnostic agent demonstrates the detrimental effects
on an evacuee’s health when the effects of the accumulated
amount are not taken into account in the trajectory planning.

The viable trajectories of the field-agnostic agent based
on simple time-to-escape (line of sight) paths are depicted
in Figure 3. Purely using time (or distance with constant
speed) as an escape selection is not the correct criterion when
hazardous substances in the indoor domain are present.

The effects of the field on trajectory selection are seen
in Figure 4. While the true and unknown field is shown in

case time to exit (sec) J at exit
field-aware 20.19 9,533
field-agnostic 8.58 45,260
nominal case 10.50 254

TABLE I: Escape times and accumulated J for the trajectory-
reconfiguration guidance and the field-agnostic agent.

Fig. 1: Trajectory using full access to spatial field.

Figure 4b, the agent unaware of the true field, is using its
own estimate ĉ(t,ξ,ζ) in Figure 4a for trajectory selection.

V. CONCLUSIONS

This paper described a modification to level-set based
evacuation guidance over hazardous indoor environments.
The modification introduced a planning period, in which
the agent was computing viable escape trajectories using
snapshots of the estimated spatial field , along with a travel
period in which the agent was implementing the optimal
trajectory over a given time cycle. Earlier works on asymp-
totic embedding methods for the state estimation of spatial

0 10 20 30 40 50 60 70 80 90 100
0
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15
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30

Fig. 2: Trajectory defined over different cycles with in-
termediate trajectory recalculations; dotted lines represent
trajectories computed in each planning stage that were not
selected in the travel stage.
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Fig. 3: Viable trajectories of field-agnostic agent using line-
of-sight path planning. Shortest escape path leads to exit #3
in 8.6 seconds with an accumulated amount of 45,260ppm.

(a) On-line estimated spatial field.

(b) True spatial field.

Fig. 4: Evacuation guidance based on snapshots of on-line
estimated spatial field; (a) estimated field, (b) true field.

fields with mobile sensor were incorporated in the level-
set trajectory generation in order to generate viable escape
trajectories with guaranteed accumulated amounts below
life-threatening thresholds. Numerical studies presented the
modifications using snapshots of the estimated spatial field
and pointed to the improvements of the modified level-set
guidance with partial field information.
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