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Abstract—The objective of this research is to identify optimal
control formulations or similar problems, that can be solved
by practising inference on probabilistic graph models instead
of solving temporal nonlinear optimization problems. This is
an active research topic in the Reinforcement Learning and
control community that is better known as Control as Inference.
Inference on probabilistic graph models is a computational
process that is easily automated for example using message
passing. In this contribution we show that Partially Observable
Markov Decision Problems with multiplicative reward structure
can be represented by an equivalent Maximum Likelihood
Estimation problem. Subsequently the estimation problem can
be treated by means of the Expectation-Maximization algorithm.
We show that maximization of the Evidence Lower Bound can
be reinterpreted as a probabilistic control problem which is
itself a density matching interpretation of Control as Inference.
The associated probabilistic policy can be represented as a
conditional density and can be calculated by message passing on
the probabilistic graph model. These results provide a unified
account of probabilistic control and control as inference with
multiplicative reward structures under partial observability.

I. INTRODUCTION

The Reinforcement Learning (RL) and control community
at large is occupied with the problem of automated decision
making. Therefore it relies on the computational framework
of Markov Decision Processes (MDPs). Formally, MDPs are
defined by a probabilistic graph model (PGM), describing
the underlying dynamical system, augmented with an external
notion of reward that quantifies the value of every behavioural
pattern described by the PGM. The solution of an MDP is
given by an optimal decision-making strategy or so called
policy. An agent – tasked with controlling the system or
navigating the environment – wielding the optimal policy,
is expected to execute its task with maximum reward.

To circumvent the computational challenges associated
with solving MDPs, there have been various attempts to
encode the notion of reward directly into the PGM used to
describe the dynamical model. That way, optimal decision
making could be formalized as an inference problem on
the extended PGM rather than as a temporal nonlinear
optimization problem. These endeavours lead to a research
program that we may refer to as probabilistic control [1, 2]
or, the more common, Control as Inference (CaI) [3].

One interpretation of CaI is to encode value in the PGM
through an auxiliary set of exogenous binary observation
variables. The variables their (future) values are assumed
to be known and true and indicate that an optimal decision
has been made. Thence, the control system is inferred by
calculating the probability of making a decision at present
time assuming (future) optimally has been achieved.
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By a specific choice of the auxiliary emission model,
the framework resumes close analogies with the theory of
optimal control [4, 5, 6]. Recent work established an explicit
connection between CaI and MDPs through the lense of prob-
abilistic control [6]. Probabilistic control formulates CaI as a
density matching problem. Depending on the measure used to
quantify the density matching condition, a connection exists
with MDPs with an additive or a multiplicative reward struc-
ture. Furthermore, for MDPs with a multiplicative reward
structure, there exist an equivalent Maximum Likelihood
estimation (MLE) problem [6, 7]. The associated Evidence
Lower Bound (ELBO) corresponds with the probabilistic
control problem with multiplicative reward. Finally, it can
be shown that the associated probabilistic control policy can
be calculated by conditioning the present action on the state
and the known future auxiliary observation variables [6].

To the best of our knowledge, there are no references
that address CaI or probabilistic control under the restriction
of partial observability with the exception of a preliminary
result given in [8]. We assume this to be a result of the
technicality of the subject and ensuing practical challenges.
Such a treatment is however highly desirable since the
POMDP framework treats a variety of real-world applications
for which the MDP framework is simply inadequate.

In the present paper we establish such a treatment by
extending the results from [6]. The present study is limited
to (PO)MDPs with multiplicative reward structure or so
called risk-sensitive optimal control [9, 10]. Partially because
the result of [8] stands for POMDPs with additive reward
but mostly because the multiplicative setting alone renders
policies that can be evaluated by inference on a PGM.

The ambition of this paper is then simply to provide an
overview of the general theory and ideas for both MDPs
as well as POMDPs and to highlight connections with the
existing body of work. As such we provide a unified account
of probabilistic control and CaI associated to multiplicative
reward structure that extends to a partially observable setting.

II. RELATED WORK

The historical development leading to our present under-
standing of probabilistic control and CaI has been lengthy and
interesting with contributions coming from various research
communities. Among the first works to uncover a connection
between optimal control and inference on PGMs were given
by Kappen and Todorov [11, 12]. Both authors identified a
class of stochastic optimal control problems where inference
emerges naturally. Meaning that the optimal policy could be
calculated by evaluating the expected value of an exponential
cost-to-go where the expectation was defined under some
prior policy. Toussaint, amongst others, explored the idea to
encode the notion of value directly into the PGM using an
auxiliary set of binary optimality variables and to associate
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the conditional trajectory with an optimal trajectory [4, 13,
14, 15]. Taking the work of Toussaint, Rawlik et al. proposed
a density matching approach, minimizing the relative entropy
between the closed-loop model and the extended joint model
[5]. This naturally lead to a treatment of MDPs with additive
reward structure augmented with an entropy regularization
term. Interestingly, a similar or at least closely related idea
to the density matching approach of Rawlik, was described
much earlier by Kárný [1, 2], coined probabilistic control.

Several ideas from CaI were rediscovered by the RL com-
munity and developed into maximum entropy RL [16, 17]
and Maximum a Posteriori RL [18]. Other studies attempted
to leverage the theory to establish sample based trajectory
optimizers with application in MPC [19, 20, 21]. Several
of these works were motivated by the silent presumption
that CaI has an efficacy to incite purposeful exploration,
explaining why it is of great interest to learning paradigms
such as RL. Such has been empirically verified, though thus
far no explicit relation with the underlying MDP was given.

As noted in the introduction, it was shown recently that
probabilistic control problems majorize MDPs with an addi-
tive and multiplicative reward structure [6]. It is implied that
we can maintain a sequence of probabilistic policies whose
stationary point coincides with the optimal policy. This result
establishes an explicit connection in the MDP setting. A first
extension to POMDPs was attempted in [8]. A non-veridical
prescriptive model decomposition was wielded, intending to
render the Bayesian belief a sufficient statistic [10]. Although
practical by design, the result is not exact.

In conclusion we mention another interesting connection
with the framework of Active Inference (AIF) which was
independently developed. AIF is an emerging brain theory
in theoretical neuroscience which proposes a unified account
of perception, action and learning by the brain [22, 23, 24].
AIF hypothesises that agents maintain a prescriptive model
of their environment and act to reduce the (expected) free
energy, which roughly means they minimize their subjective
experience of surprise. The framework is supported by em-
pirical evidence and has a degree of biological plausibility.
An earlier comparison between CaI and AIF pointed out
the main similarities and some differences [25]. Any belief
held by the AIF agent is modelled by a variational density.
The agent can thus choose a variational density that leads
to simplified calculations, often a mean-field approximation.
More fundamentally, there is no explicit encoding of the
notion of reward. Rather, reward is encoded through a non-
veridical prescriptive model that is biased towards desired
observations. Agents act to align their sensory inputs with
biased predictions. As a result, exploration in the context
of AIF is said to be goal directed, maximizing an expected
information gain. Note that this also implies that the observa-
tion model is hijacked, rendering the perception ambiguous.
More recent treatments of the theory, especially in the context
of AIF with predictive horizon, have proposed alternative
ways to encode value that align more closely with CaI and
probabilistic control [26, 27]. Further research is required
to fully understand their relationship. Extending CaI to a
partially observable setting will proof useful to that end.

Finally, one could argue, in the spirit of Bayesian brain
theories such as AIF, that the prescriptive model in [8] is
the variational model wielded by the brain. Though, from a
control perspective, such a justification is unsatisfactory.

III. PRELIMINARIES

A. Notation
We refer to the leading or trailing part of a time dependent

process with xt = {x0, . . . , xt}, and, xt = {xt, . . . , xT }.
The index, t, refers to the final or initial time instance of
the corresponding subsequence. We silently assume that a
complete sequence starts at time t = 0 and ends at time
t = T except for control sequences (uT−1, see later) that
start at time t = 0 but end at time t = T −1. Throughout we
refer to the set of all feasible probability density functions
with P . We will rely on the context to imply the arguments
and properties of the corresponding function class.

B. Agent, prescriptive model and information pattern
Adopting terminology from RL and AIF, we refer to the

entity tasked with the decision process, ergo with making
policy, as the agent. The agent may materialize as an embed-
ded controller or as a biological controller such as the brain.
We assume that the agent make sense of its environment by
means of a veridical prescriptive model. In particular here
we adopt a controlled Hidden Markov Model (HMM) (see
Fig. 1). The process xt represents the state of the system and
cannot be observed. The process yt is measured and is called
the observation process. The agent can act on its environment
by determining and applying controls or decisions, ut.

The information we grant the agent access to determine
a control, is referred to as the information pattern, wt. We
consider the following information patterns.

• The agent receives the observation, yt, and has access
to a memory that stores the system’s observable history,
y
t−1

and ut−1. This information pattern is also referred
to as partially observable.

• When wt = xt, the information pattern is referred to as
fully observable.

We further assume that the agent has access to the follow-
ing prescriptive model components

• the initial state, x0, has density p(x0)
• the transition dynamic satisfies the Markov property and

is modelled as p(xt+1|xt, ut)
• the observation satisfies the Markov property, is inde-

pendent of the control and is modelled as p(yt|xt)
• in general the agent’s policy may be uncertain and is

modelled as the feedback density, πt(ut|wt)

These allow the agent to express the following joint model.

pπ(xT , uT−1, yT ) = p(x0)p(y0|x0)

×
∏T−1

t=0
p(xt+1|xt, ut)πt(ut|wt)p(yt+1|xt+1)

(1)

We emphasize that the joint model is parametrised by the
policy sequence, πT−1, using subscript, π. Therefore we also
refer to this joint model as closed-loop since the control
process is governed by a feedback policy sequence.

C. Utility theory and decision criteria
According to the principles of normative decision theory

and expected utility theory [28], a rational agent makes
policy based on the maximization of the expectation of some
measure of reward (or the minimisation of the expectation of
some measure of cost). There exist two reward measures that
produce a rich mathematical theory.
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x0 x1 xt xt+1 xT

y0 y1 yt yt+1 yT

u0 ut−1 ut uT−1

Fig. 1: Probabilistic graph model of a Controlled Hidden Markov Chain.
White nodes are observable, grey nodes are hidden.

First we have the classical additive reward, A

A = cT =
∑T−1

t=0
ct(xt, ut) + cT (xT ) (2)

Alternatively one can consider the multiplicative measure
of reward, M , which is defined as the exponential of the
additive reward, A. This is the standard risk-sensitive control
objective [9, 10, 29, 30]. In terms of utility theory this means
that higher rewards are more valuable to the agent than A
leads to suspect. The subjective value of an objective reward
measure can be quantified by means of a utility function
[31]. If the utility is concave then the agent always prefers a
certain return. The agent is said to be risk averse. When the
utility is convex, the opposite is true, and the agent attributes
disproportional value to higher rewards. The agent is said
to be risk seeking. The exponential utility has the advantage
that an additive structures translates to a multiplicative one.

M = exp(A) = exp(cT ) (3)

D. Probabilistic Control
The probabilistic control framework proposes that an agent

acts to find feedback control policy, πT−1, so that the joint
closed-loop density model, pπ , is as close as possible to some
desired density, p∗. This simple concept can be broken down
into two critical questions that must be addressed in order to
develop it into a quantifiable and useful theory.

• How does one define a productive desired density?
• How does one define the proximity of densities?
The answer to the first question will be treated in the

following two sections. To answer the second question we
rely on information projection theory. As proposed by [1,
2, 5], one can use the information-projection where D [· ∥ ·]
denotes the relative entropy or KL-divergence. Noting that
the KL-divergence can be expressed as the expectation of
the logarithm of the ratio between the modelled and desired
joint density, this approach is closely related to utility theory.

min
π∈P

D [pπ ∥ p∗] (4)

Proximity can also be expressed by means of the reciprocal
moment-projection as was pointed out by [6]. This second
proximity measure will enjoy our interest henceforth in the
context of the multiplicative control objective, M . For a
detailed comparison between either proximity measure in the
MDP setting, we refer the reader to [6].

min
π∈P

D [p∗ ∥ pπ] (5)

Next we set as our goal to establish an explicit connection
between probabilistic control and optimal control theory. We
further like to emphasize that results in probabilistic control
have been restricted to a fully observable setting.

IV. PROBABILISTIC TREATMENT OF MDPS

Utility theory states that a rational agent’s makes policy
by solving the following optimal control problem. The prob-
lem combines the agent’s prescriptive model, pπ , with its
(subjective) multiplicative reward measure, M . Depending
on the information pattern the agent is granted access to this
problem corresponds with either an MDP (full observability)
or POMDP (partial observability) with multiplicative cost or
so called risk-sensitive MDPs or POMDPs.

max
πT−1∈P

Epπ
[M ] (6)

Starting from the problem above, in this section and the
following, we develop a probabilistic treatment of MDPs and
POMDPs with multiplicative reward. Although we categorize
our results under the probabilistic control framework, arguing
that the probabilistic control interpretation is more fundamen-
tal, we first establish a connection with Bayesian estimation.

In this section, our treatment is restricted to MDPs. There-
fore we can neglect the measurement process, y

T
, altogether.

In the next section, results are generalised to POMDPs.

A. Equivalent Bayesian estimation problem
First let us show that the problem in (6) is equivalent to a

Maximum Likelihood Estimation (MLE) problem.
To that end we may introduce an auxiliary set of fictitious

binary optimality variables, zT , to encode the external notion
of reward [3, 4, 5]. The optimality variables manifest as
the measurement variables in the controlled HMM (Fig. 1).
Further recall that under the assumption of full observability,
the state is also observed. The resulting graph model is given
in Fig. 2. For brevity we note zt when we mean zt = true.
To establish a connection with optimal control the following
emission model is proposed when the variables, zt, are true

p(zt|xt, ut) = exp(ct(xt, ut)) (7)

with the exception of p(zT |xT ) = exp(cT (xT )).
The reader may now verify that, assuming all optimality

variables have adopted the given values zT , problem (6) and
the following MLE problem are equivalent

max
πT−1∈P

pπ(zT ) (8)

where
pπ(zT ) = Epπ [p(zT |xT , uT−1)] (9)

In the MDP setting, this result was established indepen-
dently in the following works [6, 7].

B. Expectation-Maximization of the MLE
MLE problems such as problem (8) can be treated by

means of the Expectation-Maximization (EM) algorithm. For
a detailed exhibition we refer to appendix A. The EM algo-
rithm treats MLE problems recursively. Instead of solving
the problem directly, a sequence of approximate problems is
solved instead. The approximate problems require maximi-
sation of the Evidence Lower Bound (ELBO). In the present
setting the ELBO is given by

arg max
πT−1∈P

∫
pρ(xT , uT−1|zT )

× log pπ(xT , uT−1, zT )dxT duT−1

(10)

where pρ refers to the closed-loop joint density parametrised
by some prior policy sequence, ρ

T−1
.
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x0 x1 xt xt+1 xT

z0 z1 zt zt+1 zT

u0 ut−1 ut uT−1

Fig. 2: Probabilistic graph model of extended Controlled Markov Chain.
White nodes are observable, grey nodes are hidden.

The solution of problem (10) is given by the following
conditional probability. This has been shown by [6].

πt(ut|xt) =
pρ(xt, ut|zT )
pρ(xt|zT )

= pρ(ut|xt, zT ) (11)

We emphasize that (11) does not solve (6) but (10), which
is a lower bound on (6) by construction. However, we also
note that (10) singles out a step from the EM algorithm. This
means we can solve problem (8) substituting πT−1 for ρ

T−1
.

This will result into a new policy sequence which can be
substituted again and so forth. By merit of the EM algorithm,
this procedure will converge to the deterministic MDP policy.

C. Equivalent probabilistic control problem
At this point, we can address the open question from

section III-D. To that end, we first acknowledge that problem
(10) can be reinterpreted as the minimization of the moment
projection between the posterior, pρ(xT , uT−1|zT ), and the
joint model, pπ(xT , uT−1, zT ). Second, we note that the
resulting problem is equivalent to the moment-projection of
the posterior, pρ(xT , uT−1|zT ), and, the closed-loop density
pπ(xT , uT−1). It follows that

(10) ≡ arg min
πT∈P

D
[
pρ(xT , uT−1|zT ) ∥ pπ(xT , uT−1, zT )

]
≡ arg min

πT−1∈P
D
[
pρ(xT , uT−1|zT ) ∥ pπ(xT , uT−1)

]
(12)

The second problem can be interpreted as a probabilistic
control problem with desired closed-loop density

p∗(xT , uT−1) = pρ(xT , uT−1|zT = trueT ) (13)

This observation establishes an equivalence between vari-
ous probabilistic treatments of optimal control theory.

D. Dynamic programming and message passing on graphs
Finally, we note that (11) can be evaluated using dynamic

programming. We refer to [6] for further details. In the next
section we will explicitly detail the procedure for POMDPs.

πt(ut|xt) = ρt(ut|xt)
pρ(zt|xt, ut)

pρ(zt|xt)
(14)

The densities pρ(zt|xt, ut) and pρ(zt|xt) are governed by
a backward message passing procedure. Let us define

Q•
t (xt, ut) = pρ(zt|xt, ut)

V •
t (xt) = pρ(zt|xt)

(15)

Then it can be shown that [6]
Q•

t (xt, ut) = p(zt|xt, ut)

×
∫

p(xt+1|xt, ut)V
•
t+1(xt+1)dxt+1

(16)

and
V •
t (xt) =

∫
ρt(ut|xt)Q

•
t (xt, ut)dut (17)

x0 x1 xt xt+1 xT

y0 y1 yt yt+1 yT

z0 z1 zt zt+1 zT

u0 ut−1 ut uT−1

Fig. 3: Probabilistic graph model of extended Controlled Hidden Markov
Chain under veridical probability measure, pπ . White nodes are observable,
grey nodes are hidden.

V. PROBABILISTIC TREATMENT OF POMDPS

The goal of this section is to reiterate the probabilistic
treatment of problem (6) under the restriction of partial
observability, ergo a probabilistic treatment of POMDPs.

To that end we will make use of the concept of the
reference measure, see [10] and references therein. The use of
a reference measure involves changing the probability density
from pπ to qπ so that the measurement process is decoupled
from the state process. This is accounted for by changing
the reward measure. It is easily verified that the following
optimal control problem is equivalent to (6) (again see [10])

max
πT−1∈P

Eqπ [exp(cT + lT )] (18)

where
qπ(xT , uT−1, yT ) = p(x0)q(y0)

×
∏T−1

t=0
p(xt+1|xt, ut)πt(ut|wt)q(yt+1)

(19)

and
lT = log

pπ
qπ

(20)

so that
lt(xt, yt) = log

p(yt|xt)

q(yt)
(21)

We emphasize the use of a reference measure by changing
the expression for any density affected by it from p to q.

A. Equivalent Bayesian estimation problem
Again, first we show that problem (18) is equivalent to a

Maximum Likelihood Estimation (MLE) problem. Here also
we introduce an auxiliary set of fictitious binary optimality
variables, zT , with

q(zt|xt, ut, yt) = exp(ct(xt, ut) + lt(xt, yt)) (22)

except for q(zT |xT , yT ) = exp(cT (xT )+ lT (xT , yT )).Under
the veridical probability measure, pπ , this results into the
graph model from Fig. 3. The corresponding graph model
under the reference measure, qπ , is given in Fig. 4.

The reader may then verify that the following MLE is
indeed equivalent to problem (18)

max
πT−1∈P

qπ(zT ) (23)

where
qπ(zT ) = Eqπ [q(zT |xT , uT−1, yT )] (24)
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x0 x1 xt xt+1 xT

y0 y1 yt yt+1 yT

z0 z1 zt zt+1 zT

u0 ut−1 ut uT−1

Fig. 4: Probabilistic graph model of extended Controlled Hidden Markov
Chain under reference probability measure, qπ . White nodes are observable,
grey nodes are hidden.

B. Expectation-Maximization of the MLE
Again let us treat the MLE in (23) with the EM algorithm.

This generates the following ELBO

arg max
πT−1∈P

∫
qρ(xT , uT−1, yT |zT )

× log qπ(xT , uT−1, yT , zT )dxT duT−1dy
T

(25)

The solution of this problem is given by the following
conditional probability. This is easily verified noting that the
expectation in (25) decomposes in T separate optimization
problems. Then, since by construction, πt depends on ut and
wt all other variables are marginalized out. Finally, taking
the normalization condition into account one verifies that

πt(ut|wt) =
qρ(ut, yt|zT )

qρ(ut−1, yt|zT )
= qρ(ut|wt, zT )

(26)

This result is as simple as it is intriguing. It directly follows
that (26) can be evaluated by applying inference on the graph
model in Fig. 4. Though it will be shown (sec. V-D) that the
resulting message passing procedure is of higher complexity
than the message passing procedure in sec. IV-D. This is a
result of the structural complexity of the graph, in Fig. 4.

Further note that the same remarks apply to the policy
in (26) and the MLE or POMDP problems in (23) or (18),
as were given in section IV-B for MDPs. This observation
implies that application of the EM procedure will eventually
produce the deterministic POMDP policy.

C. Equivalent probabilistic control problem
At this point we are equipped to address the question from

section III-D under the restriction of partial observability.
To that end first acknowledge that problem (25) can be
reinterpreted as the minimization of the moment projection
between the posterior, pρ(xT , uT−1, yT |zT ), and the joint
model, pπ(xT , uT−1, yT , zT ). Further note that the resulting
problem is equivalent to the moment projection of the pos-
terior, pρ(xT , uT−1, , yT , zT ), and, the closed-loop density
pπ(xT , uT−1, yT ). It follows that

(25) ≡ arg min
πT−1∈P

D
[
qρ(xT , uT−1, yT |zT ) ∥ qπ(xT , uT−1, yT , zT )

]
≡ arg min

πT−1∈P

D
[
qρ(xT , uT−1, yT |zT ) ∥ qπ(xT , uT−1, yT )

]
(27)

Again we may interpret the second problem as a proba-
bilistic control problem with desired closed-loop density

q∗(xT , uT−1, yT ) = qρ(xT , uT−1, yT |zT = trueT ) (28)

This observation now generalizes the equivalence between
various probabilistic treatments of optimal control theory
under the restriction of partial observability.

D. Dynamic programming and message passing on graphs
We finish the probabilistic treatment of POMDPs with a

discussion on the use of the principle of dynamic program-
ming, inspired by [10]. First note that (26) is equivalent to

πt(ut|wt) =
qρ(ut, yt, zT )

qρ(ut−1, yt, zT )
(29)

To reveal the corresponding message passing procedure we
can focus on the probability qρ(ut, yt, zT ). This density can
be decomposed as

qρ(ut, yt, zT ) =

∫
qρ(xt, ut, yt, zT )dxt

=

∫
qρ(xt, wt, zt−1)qρ(ut, zt|xt, wt)dxt

(30)
Next we focus on the density qρ(ut, zt|xt, wt). We have that

qρ(ut, zt|xt, wt) = ρt(ut|wt)qρ(zt|xt, wt, ut) (31)

Then one can verify that

πt(ut|wt) = ρt(ut|wt)

∫
σt(xt)Q

⋆
t (xt, wt, ut)dxt∫

σt(xt)V
⋆
t (xt, wt)dxt

(32)

where
σt(xt) = qρ(xt, wt, zt−1)

Q⋆
t (xt, wt, ut) = qρ(zt|xt, wt, ut)

V ⋆
t (xt, wt) = qρ(zt|xt, wt)

(33)

It follows that (26) can be evaluated by means of a
forward-backward message passing procedure. One easily
verifies that the forward message, σt, satisfies the recursion

σt(xt) = ρt(ut−1|wt−1)q(yt)

∫
p(xt|xt−1, ut−1)

× q(zt−1|xt−1, ut−1, yt−1)σt−1(xt−1)dxt−1

(34)

Further, the backward messages satisfy a similar recursions
as in (16) and (17)

Q⋆
t (xt, wt, ut) = q(zt|xt, ut, yt)

∫
p(xt+1|xt, ut)

× q(yt+1)V
⋆
t+1(xt+1, wt+1)dxt+1dyt+1

(35)

and
V ⋆
t (xt, wt) =

∫
ρt(ut|wt)Q

⋆
t (xt, wt)dut (36)

The result in (32) clearly generalizes the solution in (14)
where the forward message becomes irrelevant on account of
the full observability.

These results also rectify the result in [8] where a non-
veridical joint density decomposition was entertained. By
construction, there the posterior, qρ(xt|wt), constituted a
sufficient statistic. However, as is well-known in the context
of POMPDs, this posterior is not a sufficient statistic when
a veridical joint density decomposition is used [10].
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VI. DISCUSSION

In conclusion we give here some final remarks that we
deem useful to gain further insight in the main results
documented in this article. Further we aim to comment on the
potential of the theory to solve practical control applications.

First we make a technical note considering the reward
structure of ct. Our results require that p(zt|xt, ut) ≤ 1.
Since also p(zt|xt, ut) = exp(ct(xt, ut)) it is implied that
ct ≤ 0,∀t. It is said that ct has a positive reward structure.
This is not a restrictive condition provided that ct is bounded
from above which poses a very reasonable assumption in
practical applications. Further, provided that the exponential
is convex the agent will be risk seeking. We appeal to section
III-C for the utility theory interpretation of risk averse and
risk seeking behaviour. It is emphasized that the present
theory does not lend itself to encode risk averse behaviour.

The comment above can be brought into connection with
the discussion on information-theoretic projections used in
the probabilistic control framework, recall section III-D. The
information- and moment projection are known to be mode
seeking and mode covering [32, 33]. E.g. when the projec-
tions are used to approximate a heterogeneous Gaussian using
a homogeneous Gaussian, the information-projected result
will focus on the smallest eigenvalue of the heterogeneous
covariance matrix whereas the moment-projected result will
focus on the largest eigenvalue. As was shown in sections
IV-C and V-C, the agents studied in this work are related
to the moment projection. Put differently, the risk seeking
agent attempts to cover the modes of the desired density. This
behaviour can be avoided by considering the information-
projection. Then the agent will be risk neutral and the
probabilistic control framework will generate the maximum
entropy RL objective. Unfortunately, then the agent can also
no longer be determined by applying inference on a PGM.

We further argue that the main advantage of probabilistic
control formulations is to be found in its mathematical
and computational tractability. CaI and probabilistic control
problems have often be praised for their efficacy to incite
explorative behavioural tendencies [3, 7]. However, as noted
by Millidge [25], the explorative behavioural tendencies
obtained through CaI on MDPs boils down to entropy maxi-
mization of the policy. Rather the results in section IV-B and
V-B, demonstrate that the problems treated in these earlier
works isolate a problem from an iterative sequence that would
converge to the optimal policy eventually.

Goal-directed exploration, as pursued by the dual control
framework [34, 35], where an agent is learning its environ-
ment (i.e. identifying a veridical prescriptive model) while
simultaneously attempting to execute a task, is an imminent
feature of the POMDP framework when the learning dynam-
ics are made explicit in the transition density. Computational
challenges related to the solution of POMDPs have prevented
further development and a wider spread reception of these
endeavours. The fact that the solution of POMDPs can be
approximated, or achieved iteratively, by solving an inference
problem on a PGM could lead to new results in this area.

This leads us to provide some insights in the potential util-
ity of our results related to practical algorithmic development.
Already some ideas have been put forth in [6]. There the
emphasis was on the (deterministic) trajectory optimization
problem that could be solved by practising numerical tools

from Bayesian estimation such as e.g. the extended Kalman
smoother [36]. On the other hand, the majorisation property
and the implication it has on the resulting policy sequence
has important consequences for existing algorithms such as
described in [18]. Further we acknowledge that it will remain
challenging to forge the presented results into methods with
practical utility in a partially observable setting. Though we
may add here that inference problems on probabilistic graph
models are easily automated, e.g. through message passing
on factor graphs [37, 38].

Finally, the idea of maintaining a sequence of probabilistic
policies that ultimately converges to an exact solution of an
(PO)MDP also has an interesting biological interpretation. An
agent maintains a PGM to keep track of its environment, then
when a new task presents itself, the agent makes decisions by
applying inference. The prior policy sequence, ρ

T−1
, encodes

previous experience or any previously held beliefs to solve
the task. The agent may then encode its new experience
into the updated policy sequence, πT−1. In light of these
final comment, we like to reiterate the surprising connection
with AIF. One is lead to suspect that there are interesting
contributions to be made by the control community to modern
brain theories, possibly merging existing frameworks into a
better unified understanding of human decision making.
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APPENDIX A
THE EXPECTATION-MAXIMIZATION ALGORITHM

Consider a probabilistic model with hidden and observed
variables, x and z. Further suppose that the probabilistic
model,M, is characterised by a set of variables θ, so that the
joint density is given by, pθ(z, x). One can then determine a
Maximum Likelihood Estimation (MLE) of the parameters,
θ, by maximizing the likelihood of the observations, z

max
θ

log

∫
pθ(z|x)pθ(x)dx (37)

It is well-known that it is difficult to treat this objective
in a general setting. To circumvent the intractable inference,
an auxiliary inference density, q(x), can be introduced. The
inference distribution allows to decompose the objective into
a surrogate objective, L, the so called evidence lower bound
(ELBO), and, a relative entropy error term.

log pθ(z)

=

∫
q(x) log

pθ(z, x)

q(x)
dx+

∫
q(x) log

q(x)

pθ(x|z)
dx

= L[q(x)|z, θ] + D [q(x)||pθ(x|z)] ≥ L[q(x)|z, θ]

(38)

Since the KL-divergence is positive semi-definite, with
equality only if q(x) ≡ p(x|z; θ), the ELBO minorizes the log
likelihood. Because of this property, the ELBO can be used
to establish a Minorisation Maximization (MM) procedure.
The MM principle denotes a general strategy to convert
hard optimization problems into sequences of simple ones.
The MM principle relies on a surrogate objective that is
conditioned on the old parameters and that minorizes the true
objective.
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The surrogate is then used as a proxy of the true objective
and minimized to find new parameters. The new parameters
can be used to construct a new surrogate, and so forth. As
such a sequence of optimization problems is established. In
the context of the MLE problem this is referred to as the
Expectation-Maximization or EM algorithm.

θ∗ ← argmax
θ

Ep(x|z;θ∗)[log p(x, z; θ)] (39)
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