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Abstract—The goal of this paper is to make a strong point for
the usage of dynamical models when using reinforcement learning
(RL) for feedback control of dynamical systems governed by
partial differential equations (PDEs). To breach the gap between
the immense promises we see in RL and the applicability in
complex engineering systems, the main challenges are the massive
requirements in terms of the training data, as well as the lack
of performance guarantees. We present a solution for the first
issue using a data-driven surrogate model in the form of a
convolutional Long-Short Term Memory network with actuation.
We demonstrate that learning an actuated model in parallel to
training the RL agent significantly reduces the total amount of
required data sampled from the real system. Furthermore, we
show that iteratively updating the model is of major importance
to avoid biases in the RL training. Detailed ablation studies reveal
the most important ingredients of the modeling process. We use
the chaotic Kuramoto-Sivashinsky equation do demonstrate our
findings.

Index Terms—reinforcement learning, surrogate modeling,
partial differential equations, feedback control

I. INTRODUCTION

Feedback control of complex physical systems is an es-
sential building block in almost any modern technology. We
thus face the task of having to take control actions in a
very short amount of time and for a system with highly
complex, distributed dynamics (typically governed by non-
linear partial differential equations (PDEs)) that are difficult
or even impossible to observe completely. In recent years,
reinforcement learning [1] (RL) is gaining more and more
popularity as a very powerful and real-time capable paradigm
for feedback control. We have seen tremendous successes, not
only in the area of games (e.g., [2]), but also in complex
technical applications such as flow control [3] or nuclear
fusion [4]. However, there are two drawbacks that limit the
deployment of RL agents in real systems. The first point is
that the amount of required training data often exceeds tens to
hundreds of millions of samples [5], [6] such that the training
becomes very expensive. Second, the control performance may
vary strongly in between training runs, in particular for high-
dimensional state and action space dimensions, where it is
challenging to obtain the required amounts of training data.
A popular approach to tackle these issues is the usage of

model-based algorithms [7], see also [8] for an overview
and a taxonomy. Therein, a surrogate model replaces the real
environment to allow for a significant increase of the training
on data created by said surrogate. It is widely accepted that
this can reduce the amount of “real” data an agent consumes
before converging in the case that accurate and generalizable
surrogates can be learned [9]–[11], and in many situations,
this model can be orders of magnitude faster than evaluating
the environment model (e.g., numerically solving a PDE).
Collecting data through model-based rollouts is advantageous
as soon as they reduce the amount of computation time spent
on numerical simulations or the number of time-consuming
and impractical real-world trials. At the same time, models
introduce approximation errors so that we may obtain inferior
solutions [12].

Even though it seems clear that surrogates have the potential
to improve the learning process, the trade off in terms of
sample efficiency, computational complexity, and performance
is only rarely quantified in an engineering context such as PDE
control. In this paper, we thus discuss and evaluate a variety of
design choices associated with model-based RL, adopt a more
sophisticated optimization approach, and identify promising
directions for future research. We discuss the various modeling
steps (Section III) that are required in order to arrive at a model
that possesses the required accuracy. We then thoroughly study
the impact on the required amount of training data (Section
IV), where an improvement by a factor of nine is observed for
the case of the 1D Kuramoto-Sivashinsky equation. In both
Sections III and IV, we conduct various ablation studies to
identify the most important modeling techniques in the offline
phase, as well as online updating strategies during deployment.
Finally, we discuss the implications for the robustness of RL
agents as well as future research directions in Section VI.

II. REINFORCEMENT LEARNING

Reinforcement learning (RL) aims to solve sequential
decision-making problems mathematically defined as Markov
Decision Processes (MDPs) (see, e.g., [1] for a detailed
overview). It possesses a set S of system states and a set A of
actions an agent may select among to exercise control. At each
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discrete time step τ , the agent observes the state sτ ∈ S of the
environment and responds with an action aτ ∈ A. A stochastic
transition function T : S × A → P(S) formalizes in what
way the system state changes as a result thereof. In an MDP,
the state transition is independent of past states and actions,
meaning that it satisfies the Markov property. The reward
signal rτ then quantifies the quality of decision aτ taken in
state sτ and is an instance of the stochastic reward function
R : S×A → P(R). Starting from an initial state s0 ∼ P0(S),
the RL framework aims to maximize the expected sum of
discounted future rewards E [

∑∞
τ=0 γ

τrτ ], where γ ∈ [0, 1] is
the discount factor.

A policy π is a mapping π : S → P(A) modeling the
probability π(a|s) of taking action a ∈ A in state s ∈ S of
the environment. Solving an MDP means finding an optimal
policy π∗ = argmax

π
Eπ [

∑∞
τ=0 γ

τrτ ].

So-called value functions are useful concepts to formally
define optimality conditions for policies. In substance, the
state value V π(s) = Eπ[

∑∞
k=0 γ

krτ+k|sτ = s] denotes
what future rewards to expect following policy π when the
environment is in state s. Therefore, a policy π is optimal if
its state value V π (s) at each state s ∈ S is at least as large
as the state values of any other policy. Similarly, state-action
values Qπ(s,a) describe what rewards to expect once action
a is selected in state s and policy π governs the behavior
thereafter: Qπ (s,a) = Eπ[

∑∞
k=0 γ

krτ+k|sτ = s,aτ = a].
In Deep Reinforcement Learning, deep neural networks are

typically used as function approximators to learn policies and
value functions. For continuous control tasks (that is, continu-
ous state and/or action spaces as in PDE control), policy gra-
dient methods (e.g., the Proximal Policy Optimization (PPO)
[13], the deep deterministic policy gradient (DDPG) [14] or
the Soft Actor Critic (SAC) [15]) are the most prominent
methods.

A. Model-based reinforcement learning

Model-based algorithms use a dynamics model to capture
the changes in the environment, i.e., they approximate the state
transition map T : S × A → P(S) by a surrogate fθ ≈ T ,
where θ are trainable parameters.

The model-based framework extends the optimization pro-
cedure of model-free reinforcement learning with additional
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Fig. 1. In model-based RL with learned models, collected data serves two
purposes. Samples are used to learn a model of the system dynamics and to
estimate update targets for the model-free agent. Using rollouts of the agent
in the model, algorithms collect additional data to improve their behavior. In
the ideal absence of prediction errors, the model matches the environment
without its downsides of real-world trials or severe computational costs.

planning [1] and model-learning steps. Our work focuses on
models learned from data for two reasons. The phenomena
defining the physics as well as their parameter values (for
example mass or viscosity parameters) are often not known
exactly. At the same time, computational models solving the
governing PDEs often do not meet real-time constraints, which
is essential for online planning.

B. Reinforcement learning for PDE control

In the literature on partial differential equations, control
problems are usually defined on a continuous time scale (in
contrast to the discrete-time decision-making underpinning
reinforcement learning). The system state u : Ω×[0, T ] → Rn

is a function of time t ∈ [0, T ] and space x ∈ Ω, and
the dynamics is described by a nonlinear partial differential
operator N , i.e.,

∂u

∂t
= N (u,ϕ),

with ϕ : Ω × [0, T ] → Rm being the control input that
may depend on both space and time. Moreover, the initial
conditions are given by I(u,∇xu, . . .) and the boundary
conditions by B(u,∇xu, . . .).

To draw the connection to RL, one can introduce a partial
discretization in time with a constant step size ∆τ and a zero-
order hold on the control:

T (uτ ,ϕτ ) = uτ +

∫ tτ+1

tτ

N (u(·, t),ϕτ ) dt = uτ+1.

Using the above considerations, the control task can be for-
malized as an optimal control problem of the following form:

min
ϕ

J(u,ϕ) = min
ϕ

p∑
τ=0

ℓ (uτ ,ϕτ ) (1)

s.t. uτ+1 = T (uτ ,ϕτ ), τ = 0, 1, 2, . . . , p− 1,

where J is the objective functional over the time horizon
T = p∆τ , and ℓ is the stage cost, e.g., a tracking term (with
regularization, including penalties on the control cost)

ℓ (uτ ,ϕτ ) =
∥∥uτ − uref

τ

∥∥2
L2 + λ ∥ϕτ∥2L2 .

In terms of RL, the stage cost ℓ can be seen as the negative
reward, the state u corresponds to s and ϕ is linked to a.

C. The Kuramoto-Sivashinsky equation

Due to its rich dynamical behavior, the Kuramoto-
Sivashinsky equation is one of the most frequently studied
PDE systems in many situations:

∂u

∂t
= −∇2

xu−∇4
xu− 1

2
u∇xu+ ϕ , (2)

where u is the velocity and ϕ is an additive forcing term.
Similar to other works [16], [17], we study a one-dimensional
spatial domain Ω = [0, L] with L = 22 and periodic boundary
conditions such that the system exhibits chaotic behavior.
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Again following related work [16]–[18], the control consists
of a superposition of several Gaussians

ϕx,τ∆τ =

4∑
i=1

aτ [i]√
2πσ

exp

(
− (x− x(i))2

2σ2

)
, (3)

located at spatial coordinates x(i) ∈ {0, L/4, 2L/4, 3L/4}.
Here aτ [i] ∈ [−1, 1] is the i-th control output of the agent
at time step τ and σ = 0.4. The applied control values
aτ [i] are changed at intervals of ∆τ = 0.25 time units. Each
episode simulates Tmax = 100 time units of the system, that
is, 400 discrete steps, beginning with states sampled from the
unforced attractor as an initial condition.

In accordance with [17], [18], our goal is to dampen the
dissipation D of the solution variable while minimizing the
amount of energy P spent to power the system as well as the
actuation devices:

D = ⟨
[
∇2

xu
]2⟩ and P = ⟨

[
∇xu

]2⟩+ ⟨uϕ ⟩ , (4)

where ⟨ · ⟩ denotes the spatial average taken over the physical
domain Ω. The reward is thus

rτ = −
∫ τ∆τ+∆τ

τ∆τ

D(t) + P (t) dt . (5)

III. LEARNING SURROGATE MODELS OF FORCED PDES

Before integrating our surrogate into the online learning
process of model-based RL, we evaluate its design on an
offline dataset. In order to do so, we discuss the different
modeling steps in detail and assess their importance in an
ablation study on the Kuramoto-Sivashinsky system.

For learning surrogates, the spatial extent of the physical
domain Ω and the dimensionality of its discretization affects
the amount of data necessary in training as well as the
degree to which the surrogate matches the state evolution of
the system. To achieve a dimensionality reduction, we use
a convolutional autoencoder (CAE) architecture, consisting
of an encoder and a decoder network, as illustrated by the
yellow and dark blue blocks in Fig. 2. The encoder network
fθenc

compresses snapshots sτ of the system to a compact
latent space hτ = fθenc

(sτ ), while the decoder network
fθdec

attempts to recover the original input ŝτ = fθdec
(hτ ).

The information bottleneck between the encoder and decoder
networks regulates the degree to which the state dimensionality
is reduced. More details on the specifics of the network
architecture can be found in the long version of this paper,
which can be found on arXiv [19].

For time stepping, we use a convolutional Long-Short Term
Memory (LSTM) network model [20] (cf. [19] for more
details). Similar to other works [21]–[23], the decoder network
fθdec

is tied into a network learning temporal residuals, i.e., it
is used to predict state changes ∆sτ = sτ+1 − sτ of solution
variables:

û τ∆τ+∆τ = u τ∆τ +∆τ · fθdec
(oτ ),

ConvLSTM ConvLSTM
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Fig. 2. Our surrogate model is composed of a state encoder fθenc (yellow),
an action encoder fψenc

(red) and a convolutional LSTM cell fθfwd
(green)

modeling the transition dynamics, as well as a decoder network fθdec (blue)
that restores the spatial extent of its output to the physical domain. Starting
off an initial condition (left), the model predicts the state evolution using its
prior output as an input of the state variable (right). The figure does not show
intermediate scaling or normalization transformations for clarity.

where oτ = fθfwd
(hτ ,vτ ; cτ ), and targets ∆sτ/∆τ ≈

fθdec
(oτ ) are used to train the transition model fθfwd

via end-
to-end backpropagation. The variable cτ is the cell state of our
recurrent transition model. The overall network architecture is
illustrated in Fig. 2. It shows that, in each step, our model
(i) transforms control outputs a to external forcing terms ϕ
using a known functional, (ii) encodes solution variables u
and forcing terms ϕ to a latent space defined on a shared
spatial domain with encoder neural networks (yellow and red
components), (iii) uses a transition model (green component)
to infer encoded state changes o, and (iv) decodes temporal
changes o (blue component) before adding them to the original
input. In order to use our model as a surrogate of the system,
it is unrolled in time, taking the control output of an agent as
well as its prior prediction for an input.

A notable benefit of learning temporal residuals is that the
network’s predictions obey the initial conditions of the system
by construction. In fact, modeling state changes scaled with
coefficient ∆τ imposes a temporal smoothness assumption on
the predictions to thwart irregular and erratic changes in the
state evolution. In the context of model-based control, our
temporal smoothness assumption offers a significant advan-
tage. Since the control loop intertwines data collection, model
learning, and behavior improvement, only a limited number
of system snapshots are available to the surrogate at first. As
we confirmed in our experiments, models predicting states in
place of state changes often suffer from compounding model
errors in the small data regime due to their dependence on
well-functioning encoder and decoder networks.

IV. LEARNING TO CONTROL PDES SAMPLE EFFICIENTLY

As a member of the Dyna family of model-based algorithms,
our approach implements a model-free agent to learn behavior
πω and improve it over time. In essence, all descendants of
Dyna follow instructions similar to those outlined in Alg. 1. In
a broad sense, the algorithm intertwines data collection, model

2960



learning, and behavior improvement for its main steps. Each it-
eration begins with rolling out πω to collect additional samples
that are later stored as a dataset Denv. After training a deep
neural network fθ to learn the dynamics of the environment on
samples stored in Denv, the model serves as an approximate
MDP M′ of the actual system M. Supplementary samples
from model-based rollouts of πω are then stored in a separate
dataset Dmodel as proxies for the actual experience. Iterations
of our algorithm conclude with an update of the model-free
agent. Here, data stored in Denv as well as Dmodel is used, and
the latter amount often exceeds the other by multiple orders
of magnitude.

Algorithm 1 Model-Based Reinforcement Learning
1: Initialize parameters of policy πω and model fθ
2: Initialize empty datasets Denv and Dmodel

3: while not done do
4: Sample M using policy πω → add to Denv

5: Train model fθ on dataset Denv

6: Sample M′ using policy πω → add to Dmodel

7: Update πω using samples of Dmodel and Denv

8: end while

A. The model-based RL framework

A concrete implementation of the model-based principle is,
therefore, all about (i) the design of a surrogate and its training
process, (ii) the way in which Dmodel is populated with
artificial samples, and (iii) the model-free agent updating πω

with data stored in Denv and fictitious samples in Dmodel. In
the following, we outline our approach to each of the above
steps for model-based RL. A more detailed discussion of the
individual steps can be found in the preprint [19].

1) Model learning: Unlike related work on model-based
flow control, we do not collect snapshots of the system in ad-
vance using random exploration. Instead, we alternate between
data collection and model learning to align the distribution
of states that the agent visits with the data our surrogate is
trained on. Our experiments (Section V-B) suggest that an
online adaptation of the model to changes in the behavior is
essential for accuracy. After each step of data collection, we
train the model fθ using the samples collected in Denv. To
mitigate overfitting in the small data regime, we monitor the
model on a validation set Dval and stop training early once
the validation loss Lval converges.

2) Model-Based Rollouts: Consistent with standard prac-
tice [24], [25], we mitigate the risk of model exploitation
using an ensemble {fθ1

, . . . , fθLens
} of dynamics models.

The models deviate not only by their initial weights and
the ordering of mini-batches, but also in terms of the data
used for training and validation. Using our ensemble of
dynamics models {fθ1

, . . . , fθLens
}, we define an approximate

MDP M′ imitating the original system M. Analogous to
recent works on Dyna algorithms, model-based rollouts in
our implementation branch off arbitrary system states sam-
pled from dataset Denv. Unlike rollouts beginning at initial
conditions of the decision-making process, branching rollouts

off arbitrary starting states avoids compounding model errors
for states visited during later stages of episodes. In place
of sampling single starting states, we select state-action se-
quences (sτ−Ktf

,aτ−Ktf
, . . . , sτ ,aτ ) ∼ Denv of length Ktf .

Sampling sequences enables us to warm-start the memory unit
of our recurrent transition model fθ. Each state-action pair
of the sequence is then processed in teacher-forcing mode
(see [26] for a definition) to guide the transitions. We match
the sequence length Ktf to the number of teacher-forcing
steps during training. In our experiments, using Ktf state
transitions to seed the cell state was essential since we did
not backpropagate gradients to its initial state at training time.
Vice versa, we do not learn the initial condition of the memory
unit since model-based rollouts start in different initial state,
which otherwise destabilized the algorithm in our experiments.
In order to implement a similar mechanism for the first Ktf

steps of an episode, we use a simple padding method and
repeat the initial state-action tuple to extend the sequence to
length Ktf .

3) Policy optimization: As our approach belongs to the
Dyna family, arbitrary model-free agents can be used to derive
behavior given artificial samples. We here use the soft-actor
critic [15] method, which is an off-policy algorithm such that
data from previous iterations may be reused, even if the policy
has changed. Our work builds on code made openly available
in [27] and [28]. The soft-actor critic agent implements double
Q-learning [29] to learn estimates of state-action values with
separate networks Qθ and Qθ′ to mitigate selection biases and
uses delayed target networks Qθ− to stabilize the optimization
towards a moving target.

V. EXPERIMENTAL EVALUATION

Corresponding to Sections III and IV, we first evaluate the
capabilities of our surrogate to approximate the state evolution
when the data is collected in advance, before considering the
control aspect. More details on the training of our model can
be found in the preprint [19].

A. Data-driven prediction of forced PDEs

To evaluate the amount of data our surrogate needs to ap-
proximate the state evolution, we collect a dataset of 100 sim-
ulation episodes (40, 000 snapshots) with uniformly sampled
actions. We split the samples into training, validation (80% /
20%), and testing episodes. All results are the aggregate of
cross-validation scores with five folds. We study the evolution
of state variable u for subsequences with 30 prediction steps
(7.5 time units) during training and testing.

The small data regime is critical to our work, which is
why we systematically decrease the amount of data throughout
cross-validation from 100% down to 10%. To isolate the
contribution of single design decisions for our dynamics
model, we introduce several ablations and compare our results
with those of a simple baseline, namely (i) the usage of
fully connected (FC) networks instead of CNNs and (ii) the
prediction of the state instead of a residual update. We train
each model for a maximum of 250 epochs or terminate the
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Fig. 4. Comparison of the temporal state evolution of the Kuramoto-
Sivashinsky equation with forecasts of our model and the different ablations.

optimization once the monitored loss does not decrease for
Pval = 25 validation epochs.

In Fig. 3, we show the normalized mean squared state
prediction error, averaged over various initial conditions. Un-
surprisingly, convolutional models (top row) prove far more
effective than fully connected networks (bottom row) in both
the small as well as large data regime. In terms of the compar-
ison between residual and full-state prediction (left vs. right
column), the former yields a notable advantage for forecasts
over short time durations with error margins being negligible
for several time units. In the small data regime, the full-
state prediction is not yet equipped to recover state variables
and, therefore, suffers from large error margins. Since our

RL approach will limit model usage after a small number
of prediction steps, the inferior accuracy after ∼ 3.25 time
units (13 discrete steps) is less relevant for the optimization.
The errors in the predicted rewards (which have a significant
impact on the learning performance) are very similar to the
state prediction. Exemplary trajectories are shown in Fig. 4.

In general, increasing the degrees of freedom of a model
enables it to learn the state evolution of snapshots in greater
detail. At the same time, models of higher capacity are at a
greater risk of overfitting to patterns in the training set.

B. Reinforcement learning control of PDEs

In this section, we study whether (i) learning a surrogate
of the global dynamics indeed mitigates the data consump-
tion of model-free approaches, (ii) learned control strategies
can match their effectiveness, although model-based RL al-
gorithms introduce approximation errors, (iii) examine the
contribution of single components to our overall approach
in isolation, and (iv) evaluate our algorithm for a number of
configurations.

1) Data efficiency of learned control laws: We compare
episode returns from our approach to those of the popular
model-free algorithms PPO [13] and SAC [15]. These are most
often encountered in the fluid mechanics literature nowadays,
despite the agent discarding past experiences after each update.
Since our approach integrates SAC as a main component for
policy improvement, it is the candidate best suited to compare
against. In both cases, we use the open-source implementations
made available by the stable-baselines3 project [30] as well
as their default configuration for our experiments.
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Fig. 5. Average evaluation episode returns for our approach compared to SAC
and PPO for up to 50, 000 (left) and 1, 000, 000 (right) steps of training. Solid
lines show the mean of three trials, while shaded regions denote the standard
deviation among trials. All lines are smoothed using a Gaussian filter with
σ = 1. The dotted lines on the right-hand side show the average performance
of our model-based algorithm after termination at 50, 000 time steps.

Fig. 5 shows the average return of evaluation episodes with
respect to the number of samples collected for training thus far.
Due to computational costs, we terminate the execution of our
model-based approach once it obtained 50, 000 samples. For
comparison, we execute the baselines for 1, 000, 000 samples.
On the left-hand side of the figure, we show the training curves
up to the point where we terminate our algorithm, while the
right-hand side shows the asymptotic behavior of SAC and
PPO. We find that our model-based approach indeed learns
suitable control strategies using substantially fewer samples.
On average, SAC takes about 430, 000 samples to break even
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Fig. 6. The spatio-temporal evolution of the Kuramoto-Sivashinsky system
(middle) and its dissipative term D and power consumption P (left) as a
result of the actions (right). In each row, we show an agent starting from an
initial condition sampled at random. The figure shows control strategies after
their training terminated after 50, 000 or 1, 000, 000 steps, respectively.

with the average episode returns of our approach at 50, 000
samples, while PPO cannot match its performance even after
1, 000, 000 steps. With an almost nine-fold improvement in
terms of data consumption over SAC, this demonstrates that
model-based RL is indeed a promising direction to learn
control strategies for systems governed by PDEs. Even though
we stopped training early after 50, 000 steps, the control
strategy dampened the dissipation D and power consumption
P of the system by more than 63% of the values accomplished
with random forcing. At the same time, SAC converges to a
value of about 73%, although using 20 times the amount of
data to do so. An example of what actuations the controller
applies to navigate the system towards a stable state after
termination is illustrated in Fig. 6.

2) Ablation study: A part of the motivation for our work
are the shortcomings of past studies on model-based control
for governed systems insofar as recent advances in the RL
literature are not properly taken into account. To this end, our
work examines the following ablations of our model-based
approach.

• Offline model training ablation: Similar to [17], we train
an RL agent on a surrogate model based on 50,000
snapshots collected in advance using random exploration.

• Model exploitation ablation: Similar to [31] and [17], this
ablation neither uses ensembling nor rollout scheduling
to diversify or truncate rollouts in an adaptative manner.

• Surrogate ablation: In place of our residual surrogate,
we use the full-state prediction model to approximate the
temporal state evolution.

Fig. 7 compares our implementation of the model-based
methodology to its ablations. It shows that an improper treat-
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Fig. 7. Average evaluation episode returns for our model-based approach
compared to different ablations. Solid lines show the mean of three trials,
while shaded regions denote the standard deviation among trials. All lines are
smoothed using a Gaussian filter with σ = 1. The dotted lines on the right
show the average performance of the algorithms on the left after 50, 000 time
steps. Since our offline ablation does not collect additional samples, we show
its performance throughout iterations of the optimization.

ment of compounding model errors often leads to unstable
behavior optimization (purple line). Out of all methods we
have tried for learning control strategies in our experiments, we
found the exploitation ablation to be the least stable, as char-
acterized by its wide standard deviation. Implementing model
ensembling and using a schedule to determine the length of
model-based rollouts is seemingly essential to prevent the
agent from taking advantage of model errors in the small data
regime. The figure also shows that a similar issue pertains to
our surrogate ablation (green line). Although convergence is
more stable overall, its approximate MDP cannot faithfully
match the temporal evolution of the PDE in the small data
regime. Our results also suggest that random exploration does
not cover all relevant regions of the state space that policies
visit during their optimization process (red line). After an
initial phase of improvement, the behavior of our offline
ablation diverges more and more from the state distribution
that the model used for training, increasing prediction errors
and destabilizing the optimization.

VI. DISCUSSION AND OUTLOOK

We have seen that carefully constructed surrogate models
are capable of increasing the sample efficiency by roughly one
order of magnitude. Furthermore, we found that an overall
more sophisticated approach to model-based reinforcement
learning (online model adaptation, ensembling, curriculum
learning, etc.) is beneficial to stabilize the convergence, and
we hope that our findings showcase the appeal of adopting
best practices. However, due to the increased complexity,
the performance of model-based RL is still inferior in sit-
uations where the model is comparatively easy to simulate.
For future work, it will thus be highly interesting to see
whether simpler yet more efficient surrogate models can be
utilized. At this point, suitable candidates appear to be GRUs
instead of LSTMs (see, e.g., [32]), as well as the Koopman
operator [33]–[35], as it allows us to learn linear models of
nonlinear systems, which is very efficient both in terms of
the required training data and the run time. Finally, it might
be worth looking into recent prediction error results for these
methods [36]–[38] and see whether they can be transferred
into guarantees for the RL process. In addition, one can
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try to exploit system knowledge (in particular symmetries /
invariances) in order to get smaller agents and thus to reduce
the number of parameters that have to be trained [39], [40].

CODE AVAILABILITY

The source code of the conducted experiments can be ob-
tained freely under https://github.com/stwerner97/pdecontrol.
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