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Abstract— This paper considers control systems with failures
in the feedback channel, that occasionally lead to loss of the
control input signal. A useful approach for modeling such
failures is to consider window-based constraints on possible loss
sequences, for example that at least r control attempts in every
window of s are successful. A powerful framework to model
such constraints are weakly-hard real-time constraints. Various
approaches for stability analysis and the synthesis of stabilizing
controllers for such systems have been presented in the past.
However, existing results are mostly limited to asymptotic
stability and do not consider performance measures such as the
resulting `2-gain. To address this problem, we adapt a switched
system description where the switching sequence is constrained
by a graph that captures the loss information. We present an
approach for `2-performance analysis involving linear matrix
inequalities (LMI). Further, leveraging a system lifting method,
we propose an LMI-based approach for synthesizing state-
feedback controllers with guaranteed `2-performance. The
results are illustrated by a numerical example.

Index Terms— control over communication, switched systems

I. INTRODUCTION

In control systems with an unreliable feedback channel,
failures can lead to the occasional loss of the control input
signal. Such losses appear for example in Networked Control
Systems (NCS), where the feedback loop is closed via a
communication channel that is subject to packet loss [1].
Similarly, in real-time control applications deadline misses
can occur, where the control signal computation does not
finish in time and thus no new actuator command is issued
[2], i.e., the control signal can be considered as lost. In
both scenarios, the system runs in open-loop from time to
time whenever the attempt to control the system fails, e.g.,
when a control input sent over the network is lost or its
computation is not completed before the deadline. A number
of approaches model these losses as random variables, see
[3] and references therein. For such models, only stochastic
guarantees can be given, e.g., in the mean-square sense.
Further approaches deal with deterministic bounded loss [4].
In this case, classical guarantees in the form of stability
in the sense of Lyapunov can be given. However, these
approaches neglect information on the past losses, which is
rather conservative.

To avoid this conservatism, a new window-like determin-
istic packet loss model was suggested in the literature [5]. As
a generalization of bounded loss and scheduling constraints
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like (m, k)-firm deadlines [6], [7], where at least m out of
k consecutive tasks are guaranteed to meet their deadline,
the notion of weakly-hard real-time (WHRT) constraints
has been proposed [5]. Originally presented as scheduling
constraints for real-time applications, these type of con-
straints have been used recently to model the packet loss in
NCS [8], [9], [10]. WHRT constraints pose a window-like
constraint, where in a moving time window of certain length
at least a specified minimum number of control attempts are
successful. This allows to describe losses more accurately
compared to a stochastic description, that allows the losses
to be distributed unevenly. For example, a 10% loss chance
allows that 100 unsuccessful control attempts are followed
by 900 successful ones, or 10 unsuccessful ones followed by
90 successful control attempts, which is vastly different from
a control perspective [5], [8]. The notion of WHRT control
systems includes NCS with WHRT packet loss description
as well as real-time control systems in which the deadline
misses are modeled by a WHRT constraint.

For linear NCS, [8], [9] present linear matrix inequal-
ity (LMI) conditions for asymptotic stability analysis and
asymptotic state-feedback stabilization. The work [10] ex-
tends this to an event-triggered setup, switching controllers
and output-feedback, while [11], [12] deal with asymptotic
stability for a nonlinear WHRT control system based on
the concept of non-monotonic Lyapunov functions. Another
approach in the area of real-time control systems focuses
on asymptotic stability analysis using the constrained joint
spectral radius [2], [13], which characterizes the maximum
asymptotic growth rate over all possible switching sequences.
However, the aforementioned works focus solely on asymp-
totic stability and lack performance considerations, despite
the fact that performance guarantees are crucial from an
application point of view. First progress towards performance
analysis using a quadratic state cost function has been made
in [14], [15], however no theoretical guarantees are given. In
[7], performance guarantees in an LQR setting are studied.
To the best of our knowledge, classical control performance
in the sense of, e.g., `2-gains has not been considered so far.

This paper aims at addressing the analysis of the `2-
performance and the synthesis of state-feedback controllers
with guaranteed `2-performance for WHRT control systems.
To formally describe them, we adapt the switched system
description from [7], [8], [9], [10], where the switching is de-
scribed by a graph, that captures the WHRT constraint, called
the WHRT graph [10]. Leveraging the switched system
performance results from [16] and prior work [17], we derive
sufficient LMI conditions for `2-performance analysis of
WHRT control systems. These novel result can also be used

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3266



for `2-performance analysis of general graph-constrained
switched systems. In contrast to previous works, this has
not been done yet for an `2-performance measure, but only
for stability. Moreover, we utilize a classical system lifting
method [18] to derive an LMI-based approach for synthesis
of switched and non-switched state-feedback controllers with
guaranteed `2-performance, which additionally allows for
a more efficient performance analysis. The lifting method
is based on combining multiple past inputs and outputs
and “discretizing” the system at time instants of successful
control attempts, which directly enables controller synthesis.

The remainder of this paper is organized as follows. In
Section II, we define our setup and state preliminaries. We
then present some first `2-performance analysis results in
Section III. Section IV defines the lifting method and gives an
improved analysis results for the lifted system. In Section V,
controller synthesis is presented and in Section VI we
emphasize our findings by a numerical example. Section VII
concludes the paper.

A. Notation

The set of real and natural numbers are denoted R and N,
respectively, and the notation A � 0 means that A = A> is
positive definite. Matrix blocks which can be inferred from
symmetry are abbreviated with ∗. A (block) diagonal matrix
with the blocks λ1, ..., λn is denoted diag(λ1, ..., λn).

II. SETUP

In this paper, we consider the linear discrete-time plant

xk+1 = Axk +Buak +Bwwk

zk = Cxk +Duak +Dwwk
(1)

with initial state x0 ∈ Rn, actuator input uak ∈ Rm,
performance input wk ∈ Rq , performance output zk ∈ Rp,
and real system matrices. At every time instant k ∈ N0 :=
N ∪ {0}, the control input uck ∈ Rm is computed by means
of a linear state-feedback controller as

uck = Kxk, (2)

which may be lost, e.g., due to transmission failure or a
deadline miss. These losses are described by the binary
loss sequence µ := (µk)k∈N0

, where µk = 1 indicates a
successful control attempt and µk = 0 a loss. Lost control
inputs are discarded and not sent or computed again. Without
loss of generality, we assume for simplicity that the first
control attempt is always successful, i.e., µ0 = 1. The
actuator input uak depends on the control input uck and the
loss sequence, but also on the chosen strategy in case of a
loss. In literature, typically the zero strategy (input is set to
zero if control attempt is not successful) and the hold strategy
(last input is held until a new control input is received) are
considered, and none of them is seen to be in general superior
to the other [19]. In particular, the two strategies result in
the actuator inputs

uak = µku
c
k for zero strategy

uak = µku
c
k + (1− µk)uak−1 for hold strategy,

(3)

Plant (1)Controller K
uck

µk

uak

wk

zk

xk

Fig. 1. The WHRT control system with losses in the controller-actuator
connection.

with some initial condition ua−1 for the hold strategy. An
overview of the system setup is given in Fig. 1.

A. WHRT constraints

We assume that the loss sequence µ satisfies a WHRT
constraint λ. These type of constraints can be interpreted as
a window specification: Within a moving time window, a
minimum number of control attempts has to be successful.
More precisely, the standard type of WHRT constraints is
defined as follows.

Definition 1 ([5]): A loss sequence µ “meets any r in s
control attempts” (r, s ∈ N, r ≤ s), denoted µ `

(
r
s

)
= λ,

if in any window of s consecutive control attempts there are
at least r of them successful (in any order).
Other types of WHRT constraints focus on the number of
successful consecutive control attempts, or on the number of
unsuccessful control attempts.

Definition 2 ([5]): A loss sequence µ “meets row r in s
control attempts” (r, s ∈ N, r ≤ s), denoted µ `

〈
r
s

〉
= λ, if

in any window of s consecutive control attempts, at least r
consecutive of them are successful.

Definition 3 ([5]): A loss sequence µ “misses any r in s
control attempts” (r, s ∈ N, r ≤ s), denoted µ `

(
r
s

)
= λ,

if in any window of s consecutive control attempts there are
not more than r of them unsuccessful (in any order).

Definition 4 ([5]): A loss sequence µ “misses row r in s
control attempts” (r, s ∈ N, r ≤ s), denoted µ `

〈
r
s

〉
= λ, if

in any window of s consecutive control attempts, there are
not more than r consecutive of them unsuccessful.
Moreover, some WHRT constraints can be related to each
other as weaker or harder [5], [20].

Definition 5 ([5]): Given two WHRT constraints λ1 and
λ2, we say that λ1 is easier than λ2 (λ2 is harder than λ1),
denoted λ2 � λ1 if µ ` λ2 ⇒ µ ` λ1.
The combination of (1), (2), (3), and the WHRT loss de-
scription forms the overall system model. More formally,
we define:

Definition 6 (WHRT control system): The WHRT control
system is defined as the system resulting from (1), (2), and
(3), whose control input losses are described by the sequence
µ that satisfies a given WHRT constraint, i.e., µ ` λ.

B. Switched system

To cope with the WHRT control system we will rewrite
it as a constrained switched (linear) system (CSS), where
the loss sequence is constrained by a WHRT constraint. This
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type of systems has been used in the past to deal with similar
setups, e.g., in [7], [8], [9], [10], and proves to be useful in
ours as well.

The CSS takes the form

xk+1 = Acl
µk
xk + Bwµk

wk

zk = Cclµk
xk +Dwµk

wk,
(4)

where the real system matrices depend on the loss sequence
µ. Thus, the CSS has two modes: µk = 1 for a successful
control attempt and µk = 0 representing a loss at time instant
k, e.g., Aclµk

∈ {Acl
0 ,Acl

1 }. Note that the system matrices can
be chosen such that (4) is an interchangeable representation
of the WHRT control system. For example,

Acl
0 = A Acl

1 = A+BK Bw = Bw

Ccl0 = C Ccl1 = C +DK Dw = Dw
(5)

is obtained for the zero strategy, cf. [8], [9]. For the respective
hold strategy matrices we refer to [8], [9], which require
an augmented state vector with the additional auxiliary state
uk−1 for storing the last applied input. We will later state the
full system matrices for both strategies in the lifted system
formulation.

C. `2-performance

The `2-gain is a classical performance measure for control
systems, that can be interpreted as the worst-case energy
amplification from a performance input (e.g., a disturbance)
wk to a performance output zk [21]. More formally, we
define `2-performance and the `2-gain as follows.

Definition 7 (`2-performance): The CSS (4) has `2-
performance with gain γ if it is asymptotically stable and
for x0 = 0

∞∑
k=0

z>k zk < γ2
∞∑
k=0

w>k wk
∀w ∈ `2, w 6= 0,
∀µ ` λ, (6)

where `2 denotes the set of all square-summable signals, i.e.,
all w for which

∑∞
k=0 w

>
k wk <∞. The smallest γ such that

(6) is still satisfied is called the `2-gain of the system.
In this work, we are interested in the `2-performance of the
WHRT control system. For that, we will first study the `2-
performance of the CSS (4) and then transfer the results to
the WHRT control system.

III. `2-PERFORMANCE ANALYSIS FOR CSSS

In this section, we derive a sufficient condition to verify
that the CSS (4) has `2-performance with a certain gain
γ. There already exist `2-performance results for switched
systems in the literature [16], [22]. However, these results
are limited to arbitrary switching between the modes of the
switched system. Since in our setup the switching sequence is
not arbitrary but constrained by the WHRT constraint, using
arbitrary switching results induces conservatism. We leverage
these results by explicitly taking the constrained switching
into consideration.

A. Graph representation

To formalize the notion of constrained switching, a par-
ticular concept has been proven useful in several previous
works [7], [9], [10], [23]: representing the WHRT constraint
λ as an automaton described by a graph, that generates the
allowed switching sequences.

Definition 8 (WHRT graph): For a WHRT constraint λ,
the corresponding WHRT graph G satisfies the following
properties:

(a) It is a labeled directed graph G = (V, E) with the node
set V = {v1, ..., vnV} and the edge set E = {e1, ..., enE}
with ep = (ip, jp, lp), where ep ∈ E if there exists an
edge with label lp from node vip to node vjp .

(b) The labels lp take values in the set {0, 1}, representing
a loss of the control input signal or a successful control
attempt.

(c) All sequences µ ` λ can be generated by the graph.
(d) Every node of G has at least one incoming and one

outgoing edge.
As a consequence, we can represent the loss sequence µ
by moving along the edges of the corresponding graph.
The labels thereby characterize the current mode of the
CSS, whereas the graph specifies how the modes can be
concatenated such that µ ` λ. Based on Definition 8, define
further the indicator function ηi : N0 → {0, 1}, i = 1, ..., nV
with

ηi(k) =

{
1, for i = ip with µk = lp

0, otherwise,
(7)

i.e., η indicates the initial node of the current edge, that
is the current mode µk at time instant k. Note that it is
always possible to generate such a graph for any given
WHRT constraint. We will discuss the corresponding details
in Section IV. The size of the graph is discussed in [20].

B. `2-performance analysis result

Given the previous graph definition, we can now state our
first result. We use [16, Theorem 2] as a basis and modify
it to account for the constrained switching.

Theorem 1 (`2-performance analysis): The CSS (4),
whose switching is captured by a graph G according to
Definition 8, has `2-performance with gain γ if there exist
symmetric matrices Si ∈ Rn×n and matrices Gi ∈ Rn×n,
i = 1, ..., nV , such that

Gi +G>i − Si ∗ ∗ ∗
0 γI ∗ ∗

Acl
l Gi Bwl Sj ∗
Ccll Gi Dwl 0 γI

 � 0 ∀(i, j, l) ∈ E . (8)

A Lyapunov function is then given by

V (xk) = x>k

(
nV∑
i=1

ηi(k)S−1i

)
xk. (9)

Proof: Since every node has at least one incoming and
one outgoing edge, (8) guarantees S−1i � 0 ∀i. Note that (8)
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implies[
Gi +G>i − Si ∗
Acl
l Gi Sj

]
� 0 ∀(i, j, l) ∈ E , (10)

which implies asymptotic stability by [9, Corollary 9].
The remaining proof is adapted from [16, Theorem 2],
but modified to cope with the graph induced con-
strained switching. Applying the congruence transformation
diag(0, γ−1I, 0, γ−1I) on the LMI (8), it is equivalent to[

Ḡi + Ḡ>i − S̄i ∗
Ācl
l Ḡi S̄j

]
� 0 ∀(i, j, l) ∈ E ,

where

Ḡi :=

[
Gi 0
0 γ−1I

]
S̄i :=

[
Si 0
0 γ−1I

]
Ācl
l :=

[
Acl
l Bwl

γ−1Ccll γ−1Dwl

]
S̄j :=

[
Sj 0
0 γ−1I

]
.

Following the same steps as in the proof of [17, Theorem 2]
(step iii) ⇒ ii)) yields[

S̄−1i ∗
S̄−1j Ācl

l S̄−1j

]
� 0 ∀(i, j, l) ∈ E . (11)

Using the Schur complement and resubstituting the (̄·) vari-
ables, we obtain for all (i, j, l) ∈ E[
∗
]> [S−1j 0

0 γI

] [
Acl
l Bwl

γ−1Ccll γ−1Dwl

]
−
[
S−1i 0

0 γI

]
≺ 0.

Since the graph represents the constrained switching with
the labels taking the values in {0, 1}, we can set lp = µk,
and utilize (9), (7) for the initial node ip of the edge at time
instant k and for the receiving node jp of the edge at time
instant k + 1. This results in[
∗
]>[Pi,k+1 0

0 γI

][
Acl
µk

Bwµk

γ−1Cclµk
γ−1Dwµk

]
−
[
Pi,k 0

0 γI

]
≺ 0.

We multiply this equation with
[
x>k w>k

]
from the left and

its transpose from the right and use (9) and (4) to end up with
V (xk+1) − V (xk) < γw>k wk − γ−1z>k zk ∀wk ∈ `2, ∀xk,
which is a sufficient condition for (4) having `2-performance
with gain γ, see, e.g., [16], [22].
Note that Theorem 1 can be used to analyze the `2-
performance of an arbitrary CSS, whose switching sequence
can be captured by a graph. Previous results only captured
the `2-performance of unconstrained switched systems. In
our setup, the WHRT control system can be formulated as
a CSS (4), see (5), and thus Theorem 1 can directly be
used to analyze a given WHRT control system not only
regarding its stability as in [9], but additionally regarding
its `2-performance. Moreover, we can minimize γ under the
LMI constraints (8) to obtain an upper bound on the `2-
gain of the CSS. However, the underlying graph and thus
the number of decision variables of the LMIs (8) may be
relatively large, since we need to solve one LMI per edge,
and have n2 decision variables in Gi per node plus 1

2 (n2+n)
decision variables in Si = S>i per node. Therefore, the
conditions of Theorem 1 might be computationally expensive

to solve. Moreover, controller synthesis becomes difficult,
because it is not possible to isolate K in (8). The reason
is that the matrices Acl

µk
and Cclµk

might not be linear in
K, dependent on the mode. For example in (5), Acl

0 is
independent of K since the computed control signal does
not arrive at the actuator whenever a loss occurs and thus
the system runs open-loop. In contrast, K appears linearly
in Acl

1 , i.e., when the control attempt is successful. In the
next section, we show how we can address these issues by
lifting the system in an appropriate way.

IV. LIFTED SYSTEM

In this section, we apply a lifting method to the CSS (4)
to enable controller synthesis and a more efficient analysis.

A. Main idea and lifting

The fundamental concept is to “discretize” the system at
time instants of successful control attempts, similarly as in
[9]. This approach was called alternative discretization and
constitutes a special case of the lifting presented in this
section, which is adapted from [18]. To formalize, define
τ := (τk̃)k̃∈N0

as in [9] as the sequence of time indices of
successful control attempt instants k, and α := (αk̃)k̃∈N0

as the sequence counting the number of losses between
two successful control attempts. The sequence α plays an
important role in the lifting and its elements take values in the
finite set {0, ..., s−1}, since we assumed s to be bounded and
hence there can only be a finite amount of consecutive losses.
As an example, for µ = (1 0 1 1 0 0 1...) the corresponding
sequences for the lifting are τ = (0 2 3 6...) and α =
(1 0 2...).

The goal is to find an alternative representation of (4),
but based on the successful control attempt time instants.
It is therefore defined at the time instants τk̃ only. All
variables which refer to the lifted system are marked with
(̃·), e.g., x̃ represents the lifted state of x. In [9], this al-
ternative representation is relatively straightforward, because
autonomous systems with no performance in- and output are
considered therein. In contrast, our setup features such an
in- and output, which cannot be discarded at time instants
between successful control attempts without changing the `2-
performance of the system. For this reason, we lift the input
and output as follows

w̃k̃ =
[
w>τk̃−1

· · · w>τk̃−1

]>
z̃k̃ =

[
z>τk̃−1

· · · z>τk̃−1

]>
.

(12)

Note that at each time instant τk̃, the lifted in- and output
w̃k̃ and z̃k̃ consist of past in- and outputs. Since we are
interested in an equivalent formulation of (4), the lifted and
the non-lifted system states are required to coincide at these
time instants, i.e., xk = x̃τk̃ . The lifted CSS is then defined
as

x̃k̃+1 = Ãcl
αk̃
x̃k̃ + B̃wαk

w̃k̃

z̃k̃ = C̃clαk̃
x̃k̃ + D̃wαk̃

w̃k̃
(13)
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Fig. 2. Left: non-lifted WHRT graph with labels representing the loss
sequence µ; right: its lifted counterpart with labels representing α.

with the closed-loop matrices

Ãcl
αk̃

:= Ãαk̃
+ B̃αk̃

K

C̃clαk̃
:= C̃αk̃

+ D̃αk̃
K.

(14)

Since the number of time instants between two successful
control attempts is not constant, the lifted CSS has varying
in- and output dimensions, depending on the current mode
αk̃. For WHRT control systems, we state the lifted system
matrices explicitly in the next subsection.

B. Application to WHRT control systems

The modes of the lifted system (13) are not dependent
on the loss sequence µ anymore, because it is defined at
time instants of successful control attempts only. Instead, the
switching is now based on the sequence α, whose elements
take values in {0, ..., s− 1}. Therefore, we need to redefine
the WHRT graph, similar as in [10].

Definition 9 (Lifted WHRT graph): For a WHRT con-
straint λ, the lifted WHRT graph G̃ is defined as in Defi-
nition 8, but redefining

˜(b) The labels lp take values in the set {0, ..., s − 1},
representing the number of losses between successful
control attempts.

The lifted WHRT graph has ñV nodes and ñE edges. Further,
the indicator function (7) is redefined to η̃i(k̃) by replacing
µk by αk̃ and nV by ñV . Similar to the non-lifted graph, the
α-sequence can be generated by moving along the edges of
G̃. It is always possible to generate a lifted WHRT graph for
any given WHRT constraint. An algorithm for its automatic
generation has been presented in [10] and an implementation
is referenced therein, while an algorithm for generating a
non-lifted WHRT graph is given in [20]. Therein, the authors
furthermore present a method for combining different WHRT
constraints into a joint graph. Further, a (non-lifted) WHRT
graph can be generated from the lifted version as follows.
Any edge with lp ≥ 1 represents lp consecutive losses
followed by one successful control attempt. Replacing these
edges by a series of lp edges with label 0 followed by
one with label 1, including the necessary nodes in-between,
leads to a (non-lifted) WHRT graph for a given WHRT
constraint. An example WHRT graph and its corresponding
lifted version can be found in Fig. 2, where the relation
between both graphs can be observed.

We are now able to state the WHRT control system as
a lifted CSS of the form (13) with (14). Performing the

calculations for the WHRT control system (equations (1)
– (3)), “discretized” at time instants of successful control
attempts, one obtains using the sequence α

B̃αk̃
= Aαk̃B

D̃αk̃
=


for αk̃ = 0: D
for αk̃ ≥ 1:[
D> (CA0B)> · · · (CAαk̃−1B)>

]>
(15)

for the zero strategy and

B̃αk̃
=

αk̃∑
i=0

AiB

D̃αk̃
=


for αk̃ = 0: D
for αk̃ ≥ 1:[
D> (CB +D)> · · · (C

αk̃−1∑
i=0

AiB +D)>
]>
(16)

for the hold strategy, while

Ãαk̃
= Aαk̃+1

C̃αk̃
=
[
(CA0)> (CA)> · · · (CAαk̃)>

]>
B̃wαk̃

=
[
Aαk̃Bw · · · ABw A0Bw

]

D̃wαk̃
=



for αk̃ = 0: Dw

for αk̃ ≥ 1:


Dw 0 · · · 0

CBw
· · · · · · · ·

...
...

· · · · ·

· · · · ·
0

CAαk̃−1Bw · · · CBw Dw



(17)

are identical for both strategies. These matrices also appear
for lifting general (non-switched) discrete-time systems, cf.
[18, Chapter 8.2]. Note that compared to [10] and previous
works, due to our lifting no auxiliary state uak−1 is required
for the hold strategy, thus reducing the state-space dimension.

Note that we can handle one- or multi-step delays in the
feedback channel [2] with our framework. For that, augment
the system state xk with the delayed inputs [uak−1, u

a
k−2, ...]

and adapt the system matrices in (1) accordingly. The later
synthesized controller will additionally to xk depend on the
delayed inputs, which have to be known to the controller,
e.g., by acknowledgment mechanisms of the communication
channel.

C. `2-performance for the lifted system

Observe that by definition of w̃ and z̃
∞∑
k=0

z>k zk =

∞∑
k̃=0

z̃>
k̃
z̃k̃ and

∞∑
k=0

w>k wk =

∞∑
k̃=0

w̃>
k̃
w̃k̃.

Therefore, lifting the system loses no input/output informa-
tion, the `2-gain stays the same, also because asymptotic
stability of the lifted system (13) carries over to the non-
lifted one (4) [9]. Further, `2-performance guarantees given
for (13) carry over to (4). The following Lemma states the
equivalence.
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Lemma 1: The CSS (4) and its lifted counterpart (13) have
the same `2-performance gain γ.
We can now state a similar `2-performance analysis result
for the lifted system (13) as for the non-lifted system (4).

Theorem 2 (Lifted system `2-performance analysis): The
lifted CSS (13), whose switching is captured by a graph G̃
according to Definition 9, has `2-performance with gain γ
if there exist symmetric matrices Si ∈ Rn×n and matrices
Gi ∈ Rn×n, i = 1, ..., ñV , such that

Gi +G>i − Si ∗ ∗ ∗
0 γI ∗ ∗

Ãcl
l Gi B̃wl Sj ∗
C̃cll Gi D̃wl 0 γI

 � 0 ∀(i, j, l) ∈ E .
(18)

A Lyapunov function is then given by

V (x̃k̃) = x̃>
k̃

(
ñV∑
i=1

η̃i(k̃)S−1i

)
x̃k̃. (19)

Proof: The proof follows the same steps as in Theo-
rem 1. The dimensions of Bwµk

, Cclµk
, and Dwµk

in the proof
of Theorem 1 have to be adapted accordingly.

Corollary 1: Under the assumptions of Theorem 2, the
WHRT control system has `2-performance with gain γ.

Proof: From Theorem 2 and Lemma 1 we obtain that
(13) and (4) have `2-performance with gain γ. The fact
that the WHRT control system can be represented by (13)
completes the proof.
Due to the lifting, the system matrices B̃wαk̃

, C̃clαk̃
, and

D̃wαk̃
vary in dimension depending on the current mode αk̃.

Therefore, the size of the LMI (18) increases, but the number
of decision variables does not, because the dimension of Ãcl

αk̃

is not changing. The state dimensions of x̃ and x are equal
as well. As mentioned in [9], the lifted graph is typically
much smaller, cf. Fig. 2. Hence, the overall computational
demand for the analysis of the lifted CSS with Theorem 2 is
typically less than for the non-lifted CSS with Theorem 1,
although the dimension of the LMIs increase. A comparison
by means of an example is given in Section VI.

V. CONTROLLER SYNTHESIS

Based on the lifted CSS, we are able to state suffi-
cient LMI conditions which allow to synthesize a state-
feedback controller such that the WHRT control system is
not only asymptotically stable [9], but additionally has `2-
performance with gain γ. The reason is that in (14) the
controller enters linearly, because at each time instant k̃
the control attempt is successful and thus K influences the
dynamics at these time instants only. For all inter-attempt
time instants the controller does not appear, because the
control signal is lost. Hence, the controller can be isolated
in the LMI (18), which enables controller synthesis. The
following result aims at synthesizing a non-switched state-
feedback controller.

Theorem 3 (`2-performance controller synthesis): There
exists a state-feedback controller such that the lifted CSS
(13), whose switching is captured by a graph G̃ according to
Definition 9, has `2-performance with gain γ if there exist

symmetric matrices Si ∈ Rn×n, i = 1, ..., ñV and matrices
G ∈ Rn×n, R ∈ Rm×n such that
G+G> − Si ∗ ∗ ∗

0 γI ∗ ∗
ÃlG+ B̃lR B̃wl Sj ∗
C̃lG+ D̃lR D̃wl 0 γI

 � 0 ∀(i, j, l) ∈ E . (20)

The corresponding controller is then given by K = RG−1

and a Lyapunov function is (19).
Proof: Along the lines of [16]: G is invertible by

standard arguments and insert R = KG in (20) and together
with (14) the conditions of Theorem 2 are obtained.
Theorem 3 can be used in combination with Corollary 1 to
synthesize a state-feedback controller for the WHRT control
system with guaranteed `2-performance, while in previous
works it was only possible to synthesize a stabilizing con-
troller [9].

As already annotated, Theorem 3 synthesizes a non-
switched controller, which is independent of the past loss
sequence. This induces some conservatism, but is a crucial
property for NCS in which the network features no acknowl-
edgment mechanism. A switched controller requires the
knowledge of the past packet losses, which is challenging to
achieve without the presence of acknowledgments. However,
our results can directly be extended to switched controllers
to be applied to networks that feature such a mechanism by
revising the proof by substituting G with Gi and R with Ri in
(20) with the controller Ki = RiG

−1
i . Switched controllers

can improve the feasibility of the control design. In this
case, the control input (2) and the controller in (14) have
to be adapted accordingly to account for the switching. The
resulting controller is dependent on the starting node of the
corresponding edge in the lifted WHRT graph, i.e., implicitly
depends on the past loss sequence and may switch whenever
a control attempt is successful. In [10], a possibility for
designing switched controller policies in the absence of
acknowledgment mechanisms is presented, with the tradeoff
of requiring computational capabilities at the actuator and
having to compute and send larger control input packets.
This technique can be applied here similarly.

Note finally that if a certain performance gain γ is guar-
anteed for a specific λ, it is also guaranteed for all WHRT
control systems with a harder WHRT constraint.

VI. NUMERICAL EXAMPLE

We consider the numerical example from [8], [9], but
extended by an performance in- and output, namely

xk+1 =

[
0 1
1 1

]
xk +

[
1
1

]
uak +

[
1
1

]
wk

zk =
[
1 1

]
xk + uak + wk.

(21)

The setup is as described in Section II, i.e., the control
input losses are described by a WHRT constraint and we use
the state-feedback controller (2). We use YALMIP (Version
R20210331) [24] and MOSEK [25] to minimize γ with the
respective LMIs as constraints. Note that the obtained γ
is in general only an upper bound on the `2-gain of the
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WHRT control system, since the presented conditions are
only sufficient. In [8], the controller K =

[
−0.35 −0.85

]
for the WHRT constraint λ =

(
2
3

)
and the zero strategy

was proposed. For this controller, Theorems 1 and 2 yield
γ = 3.52. Simulating this system with wk = 1 for k ≥ T
and wk = 0 otherwise with sufficiently large, finite T
and the worst-case loss sequence µ = (1 0 1 1 0 1...), the
simulated γ obtained by computing (6) is γsim = 3.38.
Note that it is in general difficult to find the worst-case
input w and loss sequence µ that lead to the highest γ, i.e.,
the `2-gain. By synthesizing a non-switched controller with
Theorem 3 we obtain the controller K =

[
−0.61 −1.00

]
,

which results in γ = 2.505. The respective simulated gain
is γsim = 2.10. Therefore, we are able to significantly
improve the `2-performance of (21). If we synthesize a
switched controller, the `2-performance can be improved
even a bit further to γ = 2.488. Note that the improvement
of a switched controller over a non-switched one strongly
depends on the chosen system and the WHRT constraint.

To compare the computational complexity, we consider
the WHRT constraint

(
4
10

)
. The corresponding non-lifted

WHRT graph has 462 edges and 336 nodes and its lifted
counterpart has 210 edges and 84 nodes. This leads to 462
LMIs with 2352 decision variables, or 210 LMIs with 588
decision variables. This significant reduction can also be seen
in the computation time. For above example, the analysis
with Theorem 1 took around 1.1 s to compute on a standard
computer, while for the lifted system it finished after roughly
0.3 s. Thus, our numerical findings confirm the computational
advantages when considering the lifted system instead of the
non-lifted one.

VII. CONCLUSIONS
In this paper, we considered the `2-performance of linear

plants with unreliable feedback, i.e., the control signal can
be lost, which is modeled by a WHRT constraint. We pre-
sented sufficient LMI conditions under which such systems
have `2-performance with a certain gain γ. Moreover, we
proposed an approach for the synthesis of state-feedback
controller that ensures that the WHRT control system has
`2-performance with gain γ. This was made possible by
lifting the system, which in addition typically reduces the
computational complexity of the respective LMI conditions
for the `2-performance analysis. The resulting controller
can be a non-switched, loss sequence independent one for
NCS without acknowledgment mechanisms, or designed as
a switched controller, that switches depending on the past
loss sequence. As a side result, we also obtained an `2-
performance analysis result for general switched systems
with constrained switching that can be captured by a graph.
To make the results more applicable to NCS and real-
time control systems, open problems for the future are the
extensions to nonlinear plants and output feedback.
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analysis approaches for nonlinear weakly-hard real-time control sys-
tems,” Automatica, vol. 133, p. 109868, 2021.

[13] N. Vreman, P. Pazzaglia, V. Magron, J. Wang, and M. Maggio,
“Stability of linear systems under extended weakly-hard constraints,”
IEEE Control Systems Lett., vol. 6, pp. 2900–2905, 2022.

[14] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale, “Beyond
the weakly hard model: Measuring the performance cost of deadline
misses,” in Proc. 30th Euromicro Conf. Real-Time Systems (ECRTS),
pp. 10:1–10:22, 2018.

[15] N. Vreman, A. Cervin, and M. Maggio, “Stability and performance
analysis of control systems subject to bursts of deadline misses,” in
Proc. 33rd Euromicro Conf. Real-Time Systems (ECRTS), pp. 15:1–
15:23, 2021.

[16] J. Daafouz and J. Bernussou, “Robust dynamic output feedback control
for switched systems,” in Proc. 41st IEEE Conf. Decision and Control
(CDC), vol. 4, pp. 4389–4394, 2002.

[17] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and con-
trol synthesis for switched systems: a switched Lyapunov function
approach,” IEEE Trans. Automat. Control, vol. 47, no. 11, pp. 1883–
1887, 2002.

[18] T. Chen and B. Francis, Optimal Sampled-Data Control Systems.
Springer London, 1995.

[19] L. Schenato, “To zero or to hold control inputs with lossy links?,” IEEE
Trans. on Automat. Control, vol. 54, no. 5, pp. 1093–1099, 2009.

[20] N. Vreman, R. Pates, and M. Maggio, “WeaklyHard.jl: Scalable
analysis of weakly-hard constraints,” in 28th IEEE Real-Time and
Embedded Technology and Applications Symp., pp. 228–240, 2022.

[21] H. Khalil, Nonlinear systems. Upper Saddle River, New Jersey:
Prentice Hall, 3rd ed., 2002.

[22] L. Fang, H. Lin, and P. Antsaklis, “Stabilization and performance
analysis for a class of switched systems,” in Proc. 43th IEEE Conf.
Decision and Control (CDC), vol. 3, pp. 3265–3270, 2004.

[23] M. Philippe, R. Essick, G. E. Dullerud, and R. M. Jungers, “Sta-
bility of discrete-time switching systems with constrained switching
sequences,” Automatica, vol. 72, pp. 242–250, 2016.
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