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Abstract— Prediction error (PE) and maximum likelihood
(ML) methods are often treated as synonyms when identifying
linear dynamic systems from Gaussian data. It is shown how
these methods differ when specifically dealing with errors-
in-variables problems. These problems can modeled using
multivariable times series with a specific internal structure. In
such situations the ML estimates have lower variances than the
PE estimates. Explicit expressions for the covariance matrices of
the estimates are given and analyzed. For the special case when
the unperturbed input is white noise it is shown that the system
is not identifiable when the PEM estimate is used, while the
ML estimates still have quite small variances. In such situations
ML is thus much superior to the PE estimates. Another special
case concerns non-Gaussian data. In that case a pseudo-ML
estimate (using the ML criterion as if the data were Gaussian)
will no longer be superior to the PE estimate in terms of error
variances.

Index Terms— System identification, Errors-in-variables,
Maximum Likelihood, Prediction errors

I. INTRODUCTION

The prediction error method (PEM) and the maximum
likelihood) ML method are both very well-known in the
system identification literature, [1], [7]. In standard situations
they coincide and consequently give identical estimates.

In an errors-in-variables (EIV) situation, all standard
identification methods yield biased (rather, non-consistent)
estimates due to the measured input signal containing addi-
tional noise, [5], [4]. PEM and ML can be applied also in
an EIV situation after appropriate modifications. However,
then typically PEM and ML are no longer equivalent. This
paper discusses the difference in behavior between these two
estimators in such situations.

The paper is organized as follows. The standard case
(non EIV) is reviewed in Section II, and the EIV setting is
described in Section III. Formal definitions and algorithms
of the estimators are presented in Section IV. Section V
reviews the general results on asymptotic distribution of
the parameter estimates for Gaussian distributed data. The
special case when the unperturbed input is white noise is
coped with in Section VI, while the case with non-Gaussian
data is treated in Section VII. Finally, conclusions are
offered in Section VIII. Due to space limitations, most
proofs are omitted, but they can all be found in [6].
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II. THE STANDARD CASE

Consider the multivariable system (in time-series form)

y(t) = H(q, θ)e(t) (1)
E
{
e(t)eT (t)

}
= Λ (2)

Here y(t) denotes the measured outputs. The transfer func-
tion operator H is a function of the shift operator q and is
parameterized with the parameter vector θ. The signal e(t)
denotes zero mean white noise. The model (1) is assumed
to be in innovations form, meaning that H(q, θ) = I +∑∞

i=1Hi(θ)q
−i, and that H(q, θ) as well as H−1(q, θ) are

asymptotically stable.
It is possible to include a term G(q, θ)u(t) in (1), where

u(t) denotes the input. To comply with the future treatment
in this paper we stick to (1) as a general description. Note
that it is possible to let the elements of the vector y(t) in (1)
contain both system inputs and system outputs, see Section
III.

Under the above assumptions, the one-step prediction error
becomes

ε(t, θ) = H−1(q, θ)y(t) (3)

Two common approaches to identify the system is to
apply the prediction error method (PEM) or the maximum
likelihood (ML) method.

The PEM estimate is designed to minimize the sample
covariance matrix Rε(θ) of the prediction errors

Rε(θ) =
1

N

N∑
t=1

ε(t, θ)εT (t, θ) (4)

For example, one may consider

θ̂ = argmin
θ
h(Rε(θ)) (5)

where h(R) is a positive function. The choice of h will have
effect on the asymptotic covariance matrix of θ̂. A typical
choice is

h(R) = tr(SR) (6)

where S is a user-chosen weighting matrix. It is known, [1],
[7], how the covariance matrix of θ̂ depends on S, and that
it is minimized for the choice

S = Λ−1 (7)

Note that this choice is not practical to use, as Λ is not
a priori known. Further, the asymptotic covariance matrix
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using the criterion (6) with the choice (7) is the same as
using the criterion

h(R) = det(R) (8)

We therefore consider here the PEM estimate to be

θ̂ = arg min
θ

det

(
1

N

N∑
t=1

ε(t, θ)εT (t, θ)

)
(9)

Λ̂ = R̂ε(θ̂) (10)

The ML model is obtained by maximizing the likelihood
function L(θ,Λ). It can equivalently be expressed by min-
imizing the negative logarithm of L. Assuming the data to
be Gaussian distributed, it holds (up to a constant)

− log (L(θ,Λ)) =
1

2

N∑
t=1

εT (t, θ)Λ−1ε(t, θ)+
N

2
log (det(Λ))

(11)
The criterion in (11) can be minimized with respect to Λ, and
then in a second step with respect to θ. The result happens
to lead precisely to the PEM estimate (9), (10), see also [1].

Thus for Gaussian data, PEM and ML give identical
estimates.

When data are not Gaussian, the true ML method corre-
sponds to minimization of another criterion than (11). Min-
imization of (11) can still constitute a meaningful estimator.
We will for such cases label it pseudo-maximum likelihood
(pML) in this paper.

III. ERRORS-IN-VARIABLES MODELS

The errors-in-variables (EIV) identification problem re-
lates to the situation when the input signal cannot be mea-
sured without error. For details see, [5].

The EIV situation can be modelled as follows. The system
and its measurements are given by

y0(t) = G(q)u0(t) (12)
u(t) = u0(t) + ũ(t) (13)
y(t) = y0(t) + ỹ(t) (14)

To apply a PEM or an ML method, we will also need
a model for the unperturbed input u0(t). Here it will be
described as an ARMA model

u0(t) = K(q)v(t) (15)

where K(q) is a ratio of two monic polynomials, and v(t)
is zero mean white noise.

It is assumed that the three noise sources ũ(t), ỹ(t) and
v(t) are white, independent, of zero mean, and with unknown
variances λ2u, λ2y and λ2v , respectively.

Regard now the measured input-output data z(t) =(
y(t) u(t)

)T
as outputs of a multivariable and structured

ARMA process. Then it can be written in the form

z(t) = H(q)ε(t) (16)

This can be done by first writing (13)-(15) as

z(t) =

(
y(t)
u(t)

)
=

(
G(q)
1

)
u0(t) +

(
ỹ(t)
ũ(t)

)
(17)

To get the description (16) we next apply spectral factoriza-
tion

Φz =

(
G
1

)
Φu0

(
G∗ 1

)
+

(
λ2y 0
0 λ2u

)
= HΛH∗

(18)
where H and H−1 are restricted to be asymptotically stable,
and limq→∞H(q) = I . The filter H(q) will depend on all
the unknown quantities in G(q), K(q) and the variances.
It will though be unaffected if all the three variances are
multiplied by the same factor. For these reasons introduce
the parameter vector η as

η =

(
θ
r

)
(19)

where r = λ2v will correspond the unknown common level
of the three variances. Further the vector θ will include
all unknown parameters of G(q) and K(q) as well as the
variance ratios λ2u/λ

2
v and λ2y/λ

2
v .

As a result we have the following innovations form model
for the measured data

z(t) = H(q, θ)ε(t, θ) (20)
E
{
ε(t, θ)εT (t, θ)

}
= Λ(θ, r) = rQ(θ) (21)

Note that the previous reasoning shows that Λ(θ, r) is
proportional to r, and (21) can be taken as a definition of
Q(θ). In the treatment to follow it is assumed that z and
ε are vectors of dimension n (even if n = 2 is the case
that specifically apply to the EIV situation for a single-input
single-output system), and that θ is a vector of dimension
nθ.

We note in passing that how to compute the innovations
model (20) from the description (13)-(15) is based on spectral
factorization. It can, for example, be carried out by first
writing the total system in state space form, and then solve
for the associated Kalman filter, see [2] and [4] for details.

IV. ESTIMATION ALGORITHMS

Note that the model (20)-(21) differs from the one in
Section II, see (1), (2). The essential difference is that in
(21) the covariance matrix Λ carries some information about
θ. This turns out to be useful. It will lead to a difference
between PEM and ML, as explained in what follows.

PEM is still obtained by minimizing the covariance matrix
of the prediction errors. This step is complemented with a
way to estimate the scalar r.

ML is still obtained by minimizing the negative logarithm
of the likelihood function. Now one can no longer minimize
it separately with respect to Λ.

A. Prediction error method

The estimate of θ is defined as before, see (9). It needs to
be complemented with an estimate of r. It is argued in [3]
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that an appropriate PEM estimate of η is

θ̂ = argmin
θ

det

(
1

N

N∑
t=1

ε(t, θ)εT (t, θ)

)
(22)

r̂ =
1

nN

N∑
t=1

ε(t, θ̂)TQ−1(θ̂)ε(t, θ̂) (23)

η̂PEM =

(
θ̂
r̂

)
(24)

Assuming θ̂ is consistent (θ̂ → θ as N → ∞), it follows
from a short calculation that r̂ in (23) is consistent as well.

B. Maximum likelihood method

The ML estimate is still defined as the minimizing element
of the negative log-likelihood function. This means that(

θ̂, r̂
)

= arg min
θ,r

[
1

2

N∑
t=1

εT (t, θ)Λ−1(θ, r)ε(t, θ)

+
N

2
log(det(Λ(θ, r)))

]
(25)

η̂ML =

(
θ̂
r̂

)
(26)

The asymptotic accuracies, measured as cov (η̂PEM) and
cov (η̂ML) are analyzed in Sections V, VI and VII.

V. ANALYSIS IN CASE OF GAUSSIAN DATA

The parameter estimates η̂PEM and η̂ML are both asymp-
totically Gaussian distributed, cf [1].

Set

ψ(t) =
∂ε(t, θ)

∂θ
(27)

M = E
{
ψT (t)Λ−1ψ(t)

}
(28)

Note that ψ(t) is an n × nθ matrix, and M is an nθ × nθ
matrix.

The following lemma describes the asymptotic
distributions (as N → ∞). The main steps of the
proof are based on the general analysis in [1].

Lemma 1. Assume that the matrix M in (28) is invertible.
The estimates are asymptotically Gaussian distributed, as

√
N (η̂PEM − η) ∼ N(0, CPEM) (29)√
N (η̂ML − η) ∼ N(0, CML) (30)

where ∼ denotes convergence in distribution.
The covariance matrix CPEM can be written as

CPEM = Pη =

(
Pθ Pθr

PT
θr Pr

)
(31)

Pθ
∆
= M−1 (32)

Pr
∆
= Nvar (r̂) =

2r2

n
+ bTPθb (33)

Pθ,r
∆
= Ncov

(
θ̂, r̂
)
= −Pθb (34)

where

b
∆
=

r

n

(
tr
(
Λ1Λ

−1
)

. . . tr
(
Λnθ

Λ−1
) )T

(35)

Λi
∆
=

∂Λ(θ)

∂θi
, i = 1, . . . , nθ (36)

The asymptotic covariance matrix for the ML estimate can
be found to be

CML = (S +R)
−1 (37)

S = E

{(
∂ε(t)

∂η

)T

Λ−1 ∂ε(t)

∂η

}
(38)

Ri,j =
1

2
tr

(
∂Λ(η)

∂ηi
Λ−1 ∂Λ(η)

∂ηj
Λ−1

)
, (39)

i, j = 1, . . . , nθ + 1

The matrix R can be partitioned as

R =

(
R11 R12

RT
12 R22

)
(40)

with R22 a scalar, and (for i, j = 1, . . . , nθ)

(R11)i,j =
1

2
tr
(
QiQ

−1QjQ
−1
)

(41)

(R12)i =
1

2
tr

(
rQi

1

r
Q−1Q

1

r
Q−1

)
=

1

2r
tr
(
QiQ

−1
)
=

n

2r2
bi (42)

R22 =
1

2
tr
(
QΛ−1QΛ−1

)
=

n

2r2
(43)

Further, the ML estimate satisfies the Cramér-Rao lower
bound, meaning that

CPEM − CML ≥ 0 (44)

that is, the left hand side of (44) is a nonnegative definite
matrix.

A consequence of (44) is that any linear parameter com-
bination of η̂PEM has at least as large variance as the same
combination of η̂ML.

Next we will examine the difference in (44) closer. Will the
difference between the two covariance matrices sometimes
be significantly large? What happens with the accuracies if
the estimates are applied to non-Gaussian data? These issues
are treated in the coming two sections, respectively.

VI. SPECIAL CASE OF WHITE INPUT SIGNAL

Assume here that the unperturbed input signal u0(t) is
white noise, and that all data are Gaussian. Set

G(q) = B(q)/A(q) (45)

and assume that the polynomials A(q) and B(q) are coprime.
For this case we will show that the matrix M in (28) is
singular. The consequence is that the system is then not
identifiable when PEM is used, and Pθ = M−1 cannot be
computed. In a sense, for this special case therefore PEM
has much (not to say infinitely) worse accuracy than ML.
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For the special case under study, one can find explicit
expressions for the innovations form (20), (21). It holds that

Λ =

(
Λ11 0
0 λ2u + λ2v

)
(46)

H =

(
C/A

λ2
uλ

2
v

λ2
u+λ2

v
B/A

0 1

)
(47)

H−1 =

(
A/C − λ2

uλ
2
v

λ2
u+λ2

v
B/C

0 1

)
(48)

where Λ11 and the monic polynomial C are defined as the
solution to the spectral factorization equation

Λ11C(z)C(z
−1) = λ2yA(z)A(z

−1) +
λ2uλ

2
v

λ2u + λ2v
B(z)B(z−1)

(49)
The parameter vector is set as

θ =
(
a1 . . . ana

b1 . . . bnb
λ2u/λ

2
v λ2y/λ

2
v

)T
(50)

meaning also that r = λ2v .
We now have the following result.

Lemma 2. When u0(t) is white noise, and G(q) is given as
in (45), the matrix M is singular.

Recall that the lemma implies that the system is not
identifiable when PEM is used.

The lack of identifiability when PEM is used for white
unperturbed input, can also be analyzed by using the inno-
vations form model (47)-(48), see [6] for details.

Some consequences of the lemma are discussed in Section
VIII.

VII. ANALYSIS FOR THE NON-GAUSSIAN CASE

It was shown earlier that CPEM − CML ≥ 0, assuming
Gaussian data. Consider now the same estimates as before,
but allow the innovations to have a general distribution. We
are then to compare PEM and pML. We will first derive
expressions for the covariance matrices CPEM and CpML

in the non-Gaussian case. Thereafter we will check the
difference of these two matrices and see whether it is still
nonnegative definite, or if it has another character.

Let the generic estimate η̂ be the minimizing element of
the criterion VN (η). Its covariance matrix is found as

lim
N→∞

Ncov(η̂) = V
′′

∞(η)−1WV
′′

∞(η)−1 (51)

W = lim
N→∞

NE
{
V ′
N (η)V ′

N (η)T
}

(52)

Most of the previous analysis (but not all!!) will still apply
when the matrices in (51) and (52) are to be evaluated.

A. Some notations and preliminary results

Consider a multivariable generic case, (20), (21). Set here

Qi =
∂

∂ηi
Q, Λi =

∂

∂ηi
Λ, Qi,j =

∂2

∂ηi∂ηj
Q (53)

As a preparation we have the following result.

Lemma 3. Let x be an n-dimensional random variable, with
zero mean and covariance matrix Λ. Then

E
{
xTΛ−1x

}
= n (54)

E
{(
xTΛ−1x

)2}
= (1 + β)n2 (55)

for some positive value of β.

Introduce the matrix F , of dimension nθ × nθ by

Fi,j = E
{
εT (t)Q−1QiQ

−1ε(t)εT (t)Q−1QjQ
−1ε(t)

}
(56)

and the vector g of dimension nθ:

gi = E
{
εT (t)Q−1QiQ

−1ε(t)εT (t)Q−1ε(t)
}

(57)

where ε(t) is a vector-valued white noise of zero mean and
covariance matrix Λ.

We have the following result.

Lemma 4. If ε(t) is Gaussian distributed, then

β =
2

n
(58)

F = n2bbT + 4r2R11 (59)
g = (n2 + 2n)rb (60)

B. Analysis of PEM

The PEM estimate of η is defined as in (22). The
asymptotic covariance matrix of the PEM estimate η̂PEM is
given in (31). The modification here is the first term of Pr,
that involves fourth order moments of ε(t).

Lemma 5. The first term for Pr will for non-Gaussian
data be

Pr = βr2 (61)

C. Analysis of pML

The pML estimate of η is given by (26).
First we should calculate the Hessian of V∞(η) as well as

the asymptotic covariance matrix of the gradient V
′

N (η).
Differentiation with respect to θi, i = 1, . . . , nθ gives

∂VN (θ, r)

∂θi
=

1

Nr

N∑
t=1

εT (t, θ)Q−1 ∂ε(t, θ)

∂θi

− 1

2Nr

N∑
t=1

εT (t, θ)Q−1(θ)Qi(θ)Q
−1(θ)ε(t, θ)

+
1

2

1

det(Q(θ))
det(Q(θ))tr

(
Q−1(θ)Qi(θ)

)
(62)
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Differentiation with respect to r gives

∂VN (θ, r)

∂r
= − 1

2Nr2

N∑
t=1

εT (t, θ)Q−1(θ)ε(t, θ)+
n

2r
(63)

Next we proceed to find the Hessian in the asymptotic
case (that is, when N → ∞). The result is in the following
lemma.

Lemma 6. For pML the Hessian is in the asymptotic case
(N → ∞) given by (i, j = 1, . . . , nθ)

∂2

∂θi∂θj
V∞(θ, r) = (M +R11)i,j (64)

∂2

∂θi∂r
V∞(θ, r) =

n

2r2
bi (65)

∂2

∂r2
V∞(θ, r) =

n

2r2
(66)

Note that the expression for the Hessian is, as expected,
indeed the same as in the Gaussian case, cf. the lemma to
(37).

Next we proceed with finding the asymptotic normalized
covariance matrix of the gradient. Set

W =

(
W11 W12

W21 W22

)
= lim

N→∞
NE

{
∂VN
∂η

∂VN
∂η

}
(67)

Lemma 7. It holds for i, j = 1, . . . , nθ

(W11)i,j = Mi,j +
1

4r2
Fi,j −

n2

4r2
bibj (68)

(W12)i =
1

4r3
(
gi − n2bir

)
(69)

W22 =
βn2

4r2
(70)

To summarize the analysis so far, we have (see Lemmas
6 and 7):

∂2V∞
∂η2

=

(
M +R11

n
2r2 b

n
2r2 b

T n
2r2

)
(71)

lim
N→∞

NE

{(
∂VN
∂η

)T
∂VN
∂η

}

=

(
M + 1

4r2F − n2

4r2 bb
T 1

4r3 (g − n2rb)
1

4r3 (g − n2rb)T 1
4r2 βn

2

)
(72)

D. Comparison

We are now finally set to compare the covariance matrices
CPEM and CML. To this aim we evaluate the matrix

S
∆
=

∂2VML

∂η2
[CPEM − CML]

∂2VML

∂η2

=

(
S11 S12

S21 S22

)
(73)

It will be convenient to examine the matrix S rather than
the difference CPEM −CpML. These two matrices will have
similar properties, in particular concerning the existence of
positive and negative eigenvalues.

We have the following result.

Lemma 8

Let A, B and P be symmetric matrices related as

A = PBP (74)

and let P be positive definite. Then

a) If B has a strictly positive eigenvalue, so has A.
b) If B has a strictly negative eigenvalue, so has A.
c) If B has a zero eigenvalue, so has A.
d) If B is positive definite (all eigenvalues strictly posi-

tive), so is A.
e) If B is negative definite (all eigenvalues strictly nega-

tive), so is A.
f) If B is positive semidefinite (smallest eigenvalue equal

zero), so is A.
g) If B is negative semidefinite (largest eigenvalue equal

zero), so is A.
h) If B is indefinite (smallest eigenvalue strictly negative,

largest eigenvalue strictly positive), so is A.

Concerning the properties of the matrix S we have the
following result.

Lemma 9. The blocks of the matrix S satisfy

S22 = 0 (75)

S12 =
1

4r3
[
(β + 1)n2rb− g

]
(76)

We will make use of the following result.

Lemma 10 Let the symmetric, partitioned matrix S fulfill

S =

(
S11 S12

ST
12 0

)
(77)

where S12 is a nonzero column vector. Then the matrix S
is indefinite.

Summing up for the moment, we note

• S22 = 0 implies that S is indefinite, unless it holds
S12 = 0.

• In the Gaussian case, the quantities fulfill

β =
2

n
, g = (n2 + 2n)rb, F = n2bbT + 4r2R11

(78)
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and thus

S12 =
βn2

4r2
b− 1

4r3
g +

n2

4r2
b

=
1

4r3
[
2nrb+ n2rb− (n2 + 2n)rb

]
= 0 (79)

• In general, unless

g = (β + 1)n2rb (80)

S will be indefinite, cf (76).
What does (80) mean? It is equivalent to

E
{
εTQ−1QiQ

−1εεTQ−1ε
}

=
1

n2
E
{(
εTΛ−1ε

)2}
n2r

r

n
tr
(
QiQ

−1
)

(81)

or rewritten as

nE
{
εTQ−1QiQ

−1εεTQ−1ε
}

= E
{(
εTQ−1ε

)2}
tr
(
QiQ

−1
)

(82)

Set
x = Q−1/2ε, W = Q−1/2QiQ

−1 (83)

The ratio of the two sides in (82) can then be written as

δ =
nE
{
xTWxxTx

}
E {(xTx)2} tr(W )

(84)

Consider now the special case when x has a point-wise
distribution. Then

δ =
n(xTWx)(xTx)

(xTx)2tr(X)

=
xTWx

xTx

n

tr(W )
(85)

If x is the eigenvector associated with the smallest eigenvalue
of W we have

δ =
nλmin(W )∑

i λi(W )
(86)

while the case of x being the eigenvector associated with the
largest eigenvalue leads to

δ =
nλmax(W )∑

i λi(W )
(87)

Unless W is proportional to I , we have δ < 1 in (86) and
δ > 1 in (87). We can thus conclude that S12 ̸= 0 in general.

To summarize the analysis so far, we find that in the non-
Gaussian case, then normally S as well as the difference
CPEM−CpML will be indefinite (and thus have both positive
and negative eigenvalues). This means that there is then no
strict ’order relation’ between the two covariance matrices.

One can also comment that for the special case of Gaussian
noise, it is already known that (cf Section V) that S is
nonnegative definite. We therefore have in that case S22 = 0
(as in (75)) and S12 = 0 (as in (79)).

VIII. CONCLUSIONS AND SUMMARIZING DISCUSSION

When standard identification methods are applied to input-
output data that are noise-corrupted, biased parameter esti-
mates occur due to the presence of input noise.

The prediction error (PE) and the maximum likelihood
(ML) estimates have been considered for some multivariable
times series models with internal structure. Such models
appear for a general set of errors-in-variables problems in
system identification. The considered model are character-
ized using the innovations form. The innovation filter as
well as the innovation covariance matrix depend on the
unknown parameter vector. That both quantities depend on
the parameter vector makes PEM and ML to differ. There is
a further parameter that comes in as a scaling factor of the
innovation covariance matrix.

Four different cases have been considered.
• For Gaussian data in standard (non-EIV) situations,

PEM and ML coincide. This case is well-known. [Sec-
tion II]

• For Gaussian data in an EIV situation, PEM and ML
differ due to the fact that the innovations covariance ma-
trix Λ carries additional information about the parameter
vector. This fact is more efficiently exploited in ML
than in PEM. The covariance matrix of the parameter
estimates is smaller for ML than for PEM. [Section V]

• For Gaussian data in an EIV situation where the un-
perturbed input signal is white noise, the system is not
identifiable when PEM is applied. Thus ML is much
superior to PEM for such cases. Numerical experimen-
tation suggest that this also applies to cases where the
unperturbed input is close to white (K(q) in (15) has
all poles close to the origin). [Section VI]

• Finally, the situation of non-Gaussian data was treated
where PEM was compared to a pseudo-ML (the ML
algorithm constructed under assumption of Gaussian
data). For such cases, there is no strict order rela-
tion between the covariance matrices of the parameter
estimates. Depending on which linear combination of
parameters that is considered, either PEM or pML can
give better accuracy. [Section VII]
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