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Abstract— This paper investigates the weapon-target assign-
ment problem and a distributed neighborhood search algorithm
is proposed to solve this problem. The proposed algorithm is
developed based on the very large-scale neighborhood search
(VLSN) algorithm, which is originally developed for centralized
allocation among agents. We improve the construction of the
improvement graph and the search process for valid cycles in
the VLSN algorithm. This enables that the allocation algorithm
can be deployed in a distributed way. Each missile maintains a
local improvement graph by communicating with its neighbors
and attempts to search for valid cycles. The valid cycle
directs missiles to exchange their attack targets to achieve the
distributed target assignment. Extensive numerical simulations
demonstrate the effectiveness of the method.

I. INTRODUCTION

Modern warfare is evolving towards swarm combat, and
the most important aspect of it is the reasonable allocation
of vehicle resources. The solution of the target allocation
problem is a prerequisite for the realization of many-to-many
guidance. Some works consider the above two problems
together, which constitute the so-called two-stage target
assignment and trajectory optimization problem [1], [2].
This paper focuses on the static weapon target assignment
(WTA) problem, which is a classical problem in operations
research [3]. The WTA problem aims to find the association
mapping between missiles and enemy targets, generally by
optimizing an objective function that considers the current
situation. Through properly designing the objective function,
we can consider different criteria, e.g., energy consumption,
advantageous homing geometry, interception time, in the
association task [2], [4], [5].

It is known that the WTA problem is an NP-complete
problem [6], which indicates that it is impossible to find an
optimal solution with polynomial time complexity. There-
fore, obtaining high quality solutions efficiently is one of
the most important research directions of WTA. Existing
algorithms can be classified as centralized and distributed
solutions. Centralized algorithms have a simple architecture
and are generally faster in computation, but cannot handle a
single point of failure. Distributed algorithms are suitable to
be deployed in swarm systems, but require the design of the
communication process.
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There are three main types of centralized algorithms, in-
cluding exact, heuristic and meta-heuristic algorithms. Exact
algorithms, such as branch-and-bound and column genera-
tion, can obtain optimal solutions, but are computationally
intensive and difficult to handle large-scale problems. The
exponentially growing solution space makes the computation
tricky unless the problem is simplified using some assump-
tions. For example, assuming that the missiles are homoge-
neous [7]. Heuristic algorithms usually design some specific
computational rules based on the problem structure to solve
it. Representative approaches are, for example, marginal-
return-based method [8] or submodular optimization [9], and
very large-scale neighborhood search (VLSN) [10]. These
algorithms can obtain satisfactory solutions in a relatively
short time, making them prevalent. Meta-heuristic algorithms
are a general class of methods, such as Genetic Algorithms
(GA) and Particle Swarm Optimization (PSO), etc. Their
key feature is that there are no requirements on the form
of the objective function and they can solve medium-sized
problems effectively.

The realistic requirements of swarm combat drive the
transition from centralized to distributed WTA algorithms.
However, due to the complexity caused by the nonlinearity
of the WTA problem, the distributed algorithm cannot be ob-
tained by simple modifications of the centralized algorithms.
The authors in [11] proposes a task swap-based approach,
which is based on duality theory and Dijkstra’s algorithm.
Based on this, [12] suggested to improve the task swap-
based approach by removing the restriction of weights in
the graph, thus speeding up the optimization process. The
above algorithms can be viewed as distributed variants of
heuristic algorithms. In contrast, [13] developed a gradient-
based primal-dual optimization method. Specifically, each
agent only optimizes its own primal and dual variables,
while the other values are obtained through communication.
The advantages of this algorithm are that it is more robust
and allows for data lag with asynchronous communication
since it is a continuous optimization. However, its compu-
tational speed is slower than task swap-based methods. In
summary, these methods either have average performance or
are computationally burdensome. Therefore, we attempt to
develop a distributed algorithm with low computational cost
and satisfactory performance.

In this paper, we investigate a distributed weapon target
assignment method based on VLSN algorithm, called dis-
tributed neighborhood search (DNS). The construction of the
improvement graph and the search process for valid cycles in
VLSN are improved to a distributed implementation. Briefly,
we let each missile search for valid cycles by maintaining

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2329



a local improvement graph and communicating with its
neighbors, and then exchanging targets with appropriate
other missiles to achieve a distributed target assignment
process. Extensive numerical simulations demonstrate the
effectiveness of the proposed method.

The remainder of this paper is organized as follows: Sec.
II introduces some preliminary mathematical models and
the original VLSN method. Sec. III presents the details of
the DNS algorithm. Finally, some simulation results and
discussions are shown in Sec. IV.

II. PRELIMINARIES AND BACKGROUNDS
A. Mathematical model of missile-target assignment

 

Fig. 1: Multi-missile and multi-target engagement scenario.

The multi-missile-target engagement scenario considered
in this paper is shown in Fig. 1. Assume that there are M
missiles and N targets involved in the engagement. They are
indexed with Mi (i = 1, 2, ...,M ) and Tj (j = 1, 2, ..., N ).
For notational simplicity, we use j as the target index in the
remainder of this paper.

In the engagement, every missile intercepts the target with
a certain probability. Generally, different missiles have differ-
ent interception probabilities for a given target, depending on
different relative geometries. Multiple missiles cooperation
provides the capability to increase the interception probabil-
ity. This can be mathematically described as

pj =

M∏
i=1

(1− pij)xij =

M∏
i=1

q
xij

ij (1)

where pj denotes the survival probability of target j, pij
represents the conditional probability that the ith missile
destroys the jth target when j survives all other missiles.
Computing pij in practice is difficult because it involves
many factors. The physical meaning of pij and the effective
calculation methods can be found in [2], [14], [15]. qij
denotes the survival probability of the jth target pursued by
missile i. xij ∈ {0, 1} is a binary variable with xij = 1
indicating that missile i is assigned to target j, and vice
versa.

In realistic engagements, targets often consist of various
types of vehicles, even including decoys. It is unreasonable
to allocate a large number of missiles to low performance
vehicles or decoys. Therefore, targets are uniformly de-
scribed by values. Combining target values and interception
probabilities, we can calculate the value-weighted survival
effectiveness V ′j of the target j:

V ′j = Vjpj (2)

where Vj is the value of target j.
Now we can formulate the WTA problem as
Problem 1:

min
xij

J =

N∑
j=1

V ′j =

N∑
j=1

Vj

M∏
i=1

(1− pij)xij

s.t.
N∑
j=1

xij = 1, ∀i = 1, ...,M

xij ∈ {0, 1}, ∀i = 1, ...,M, ∀j = 1, ..., N

(3)

where the equality constraint
∑N

j=1 xij = 1 ensures that one
missile can only be assigned to one target. Note that Eq. 3
is the classical form of the objective function in the WTA
problem, which was originally proposed by [3].

B. The Very Large-scale Neighborhood Search Algorithm

To solve large-scale task allocation problems, heuristic
algorithms are generally prioritized. The very Large-scale
neighborhood search algorithm (VLSN) is one of the most
effective algorithms for solving the WTA problem [10]. We
first briefly describe VLSN algorithm and then introduce its
distributed variant in the next section.

We can consider each missile as a node i in the graph,
and each target as a group j. When the missile i is assigned
to target j, the node i is in group j, denoted as j =
g(i). Therefore, the WTA problem is transformed into a
partition problem. The feasible solution can be expressed
as S = {S1, S2, . . . , SN}. Sj ∈ S is the set of missiles
assigned to target j. The calculation of the cost J(S) is
the same as the predefined objective function J and thus
satisfies J(S) =

∑N
j=1 J(Sj). To optimize J(S), the VLSN

algorithm starts with an initial feasible solution S0 and
continuously improves it until a locally optimal solution is
found. To this end, the improved graph is introduced, which
is a graph where each node i is connected to the other nodes
k by arcs, with g(i) 6= g(k). The meaning of arc (i, k) is the
action that missile i is reassigned to target g(k) and missile
k is removed from g(k). So the cost of this arc (say cik) is
equal to the change of the objective function value due to
the above action, which can be expressed as

cik = J
(
{i} ∪ Sg(k)\ {k}

)
− J

(
Sg(k)

)
(4)

After constructing the improvement graph, we can find
many directed cycles i1−i2−· · ·−ir−i1 in it, called subset
disjoint cycles. A subset disjoint cycle represents a process of
missile reassignment (called cyclic multi-exchange), where
no missiles are omitted, as shown in Fig. 2. The negative
subset disjoint cycle is called the valid cycle. It can be found
that executing a valid cycle multi-exchange can lead to an
improvement in the objective function J . The authors in [16]
proposes a dynamic programming based approach to find the
valid cycle. It first searches for all the negative arcs in the
improvement graph and then checks whether they can be
closed into valid cycles independently. If so, it performs cycle
multi-exchange respectively, called 2-exchange because there
are 2 nodes involved. Otherwise, it searches for subsequent
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arcs that can make the cost sum of these negative arcs still
negative and adds them, then repeats the above operation
until no valid cycle exists.

1i 2i

3i

1( )g i 2( )g i

3( )g i

1 2i i
c

2 3i i
c

3 1i i
c

Fig. 2: The subset disjoint cycle exchange.

III. DISTRIBUTED NEIGHBORHOOD SEARCH
ALGORITHM

In this section, we develop a distributed neighborhood
search algorithm (DNS) based on VLSN. The principle of
this algorithm is similar to VLSN, but the implementation is
different. The following assumptions need to be made first:

1) The missiles are not too far apart, so the communication
topology of missiles is fully connected, meaning that
each missile can receive information from all other
missiles.

2) The communication process is synchronized.
3) Information of targets are all accessible.
We divide the DNS algorithm into 4 main phases to

describe the computational process more clearly:
1) Situational awareness and initial assignment generation.
2) Calculate the costs of arcs.
3) Finding the negative cycles.
4) Reassignment and information updates.

A. Phase 1: Situational awareness and initial assignment
generation

In Phase 1, the missile swarm first conducts situational
awareness of all targets to obtain information such as target
value Vj , interception probability pij , etc. Then, each missile
i computes qi = [qi1, qi2, . . . , qiN ] for subsequent informa-
tion exchange.

Recall that the VLSN algorithm optimizes the objective
function by improving the initial feasible solution. Therefore,
the DNS algorithm also requires an initial assignment for
subsequent computations. In this paper, we use a distributed
greedy (DG) algorithm [17] to generate the initial allocation.
The DG algorithm is based on the submodular optimization
theory, in which each missile greedily selects a target, so that
a feasible solution can be generated very quickly.

We define all nodes that are not in the same group as
node i to be its neighbors, denoted by Ni, and nodes that
are within the same group by Ni

′. The elements in Ni and
Ni
′ are the indexes of these nodes, respectively.

B. Phase 2: Calculate the costs of arcs

After each missile selects a target, the next step is to
calculate the arc costs in the improvement graph. For a node
i, an arc either points to i or its neighbors k. Thus only local
improvement graphs can be computed for each node, which
contain the nodes connected to i.

In phase 2, each node i first exchanges information con-
taining qr,g(i) with nodes r ∈ Ni

′. From this each node can
calculate V ′g(i). Subsequently, i communicates with its neigh-
bor k ∈ Ni and receives the index k, the interception data
qk,g(k), qk,g(i) and V ′g(k). Now each node can compute costs
of the arcs with Eq.(5) and construct the local improvement
graph.

cki = V ′g(i)

ñ
qk,g(i)

qi,g(i)
− 1

ô
cik = V ′g(k)

ñ
qi,g(k)

qk,g(k)
− 1

ô
, k ∈ Ni

(5)

We use dashed arrows to denote the information flow of
communication and solid arrows to denote the arcs in the
improvement graph. The illustrations of phase 2 are shown
in Fig. 3 and 4.
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Fig. 3: The flow of information in phase 2.
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Fig. 4: The local improvement graph of node i.

C. Phase 3: Finding the negative cycles

In phase 3, each node needs to find negative cycles in its
own local improvement graph, followed by communicating
with neighbors to identify the node that implements 2-
exchange.

For node i, its first step is to find all the negative cycles and
the corresponding neighborhood node indexes in the local
improvement graph:

Ci = {(c, k) | c = cik + cki < 0, k ∈ Ni} (6)
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and find the smallest negative cycle and its corresponding
neighbor indexes

Cmin
i = min c, c ∈ Ci (7)

Imin
i = argmin

k
c, c ∈ Ci (8)

If there is no negative cycle, the above variables are
the empty set ∅. Next, each node exchanges Imin

i with its
neighbors. For node i, if there is an entry in its received
information that satisfies the following equation

Imin
k∗ = i

Imin
i = k∗

(9)

then nodes i and k∗ form a profitable 2-exchange (i, k∗),
which adds to the set E .

Note that the following special case may occur at this
point: consider a 4-node scenario as shown in Fig. 5. Where
node 1 and node 2 have been determined to be exchanged,
while node 3 has Imin

i = 1 and node 4 has Imin
i = 3.

Since node 1 is already occupied, node 3 can form another
pair with node 4 with less improvement. However, node 3
and node 4 each require an additional communication round
to obtain this information (node 3 knows from 1 that it
has been rejected, while node 4 learns from 3 that it has
been selected.), and more communication rounds lead to
more time expenses, which should be avoided in distributed
systems. Furthermore, extensive experiments have found that
negative cycles of length 2 in the improvement graph are
sparse, so the special cases rarely arise. In this paper, when
the first batch of exchanged node pairs are determined, all the
remaining nodes enter phase 4 to complete the subsequent
computation.

1 2

3 4

Fig. 5: The illustration of a special case.

D. Phase 4: Reassignment and information updates

The nodes i ∈ E exchange their targets based on E , update
g(i) and Vg(i). Other nodes k (including i) satisfying g(k) =
g(i), i ∈ E need to update V ′g(k). This process is similar to
phase 2, except that a significant number of nodes do not
need to update their local information. Phase 2 to phase 4
are repeated until there is no profitable 2-exchange, and the
algorithm terminates.

IV. SIMULATION RESULTS

In this section, we test the performance of the proposed
DNS algorithm in detail and compare it with the VLSN and
DG algorithm. Since it is difficult to obtain optimal solutions
for large-scale WTA problems, we use the dataset provided

Algorithm 1 The distributed neighborhood search algorithm.

Input: The numbers of missiles and targets, M , N , the in-
terception probabilities pij (i = 1, ...,M , j = 1, ..., N ).

Output: The local optimal solution of the problem.
1: Each missile node i acquires Vj , pij and computes qi.
2: Generate initial assignment solution with DG algorithm,

each node i obtains the index g(i) = j of the attack
target.

3: Each node i communicates with other nodes to initialize
the set of neighbors Ni and Ni

′.
4: Each node i communicates with node r ∈ Ni

′ to obtain
qr,g(i) and then computes V ′g(i).

5: Each node i communicates with node k ∈ Ni to obtainî
k, qk,g(k), qk,g(i), V

′
g(k)

ó
.

6: repeat
7: Each node i calculates cik, cki through Eq. 5 to con-

struct the local improvement graph, and then calculates
Ci and Imin

i via Eq. 6 and 8, respectively.
8: Each node i communicates with node k ∈ Ni to

obtain Imin
k .

9: if ∃k∗ such that nodes i∗ and k∗ satisfy Equation 9
then

10: Nodes i∗ and k∗ exchange their targets, broadcast
to other nodes and update g(i∗), g(k∗) and Vg(i∗), Vg(k∗).

11: Each node k updates Nk, N ′k. Each node r ∈ N ′i∗
updates V ′g(i∗) and l ∈ N ′k∗ updates V ′g(k∗).

12: Each k ∈ Ni∗ ,Nk∗ exchanges [k, qk,g(k), qk,g(i),
V ′g(k)] with other nodes i ∈ Ni∗ ,Nk∗ , respectively.

13: end if
14: until There is no node that satisfies Eq. 9.

in [18], which uses an exact algorithm called column enu-
meration to obtain optimal solutions under different cases.
We consider 19 WTA scenarios with various sizes in the
simulations. There are 10 random cases in each scenario,
where Vj and pij are randomly generated.

One of the most important test aspects is the solution
quality. The cases in all scenarios are computed using DG,
DNS and VLSN algorithms. For convenience of comparison,
the maximum cycle lengths in the VLSN algorithm are set
to 2 and 5, resulting in 2-exchange and up to 5-exchange,
denoted by 2-VLSN and 5-VLSN, respectively. The initial
solution of the VLSN algorithm is the same as that used in
the DNS in order to be consistent. The simulation results
are shown in Table I. The numbers in the first column of the
table indicate the total number of missiles and targets, e.g.
10-5 means 10 missiles and 5 targets. G denotes the relative
error between the objective function value optimized by the
four algorithms and the optimal solution, computed as:

G =
|J − Jopt|
Jopt

× 100% (10)

where J is the objective function value optimized by the
algorithm and Jopt is the optimal value given by the dataset.
The detailed calculation of Jopt can be found in [18].
Gmin, Gaver and Gmax denote the minimum, average, and
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TABLE I: Relative errors of the three algorithms in different scenarios.

Scenarios
DG DNS 2-VLSN 5-VLSN

Gmin Gaver Gmax Gmin Gaver Gmax Gmin Gaver Gmax Gmin Gaver Gmax

5-5 0 5.7767 19.5663 0 0.8295 7.3795 0 0.8295 7.3795 0 0 0
10-5 0 10.2554 23.5573 0 1.3233 8.3511 0 2.6791 8.3511 0 0.1732 1.7318

10-10 0 8.2363 17.1219 0 2.5765 7.7141 0 3.3725 10.8271 0 0 0
10-20 0 1.2720 2.6352 0 0.6153 1.9944 0 0.6475 1.9944 0 0.2653 1.3164
20-10 2.4585 12.8273 17.8152 0.8844 4.8648 12.3096 0.8844 4.7626 12.3096 0 0.0221 0.2207
20-20 3.3401 8.4442 15.1178 1.2409 2.9256 5.1231 2.1018 3.8822 7.6587 0 0.2596 1.5735
40-10 7.6179 14.8816 26.1042 0.1696 2.9405 6.0135 0.1696 5.1079 11.2663 0 0.0208 0.1125
40-20 6.7309 13.2484 17.5487 1.7272 5.2323 10.2647 1.7272 5.6791 12.5411 0 0.1329 0.4188
40-40 4.3879 6.0311 7.5358 1.9500 2.9740 4.8951 1.7877 3.0863 4.4033 0 0.2373 0.6170
80-20 10.0870 14.6080 18.2556 3.4197 6.4468 9.4595 4.0600 6.8578 8.8515 0 0.0932 0.4236
80-40 4.4582 7.6826 11.2750 2.6827 3.7652 5.7879 2.1171 4.2323 6.0996 0.0110 0.1927 0.4943
80-80 2.6025 3.6304 4.7267 1.1019 1.8904 2.6690 1.2935 2.0981 3.1289 0.0472 0.1551 0.3567
80-320 0.1330 0.2037 0.2883 0.1119 0.1617 0.2170 0.1119 0.1660 0.2226 0.0321 0.0747 0.1196
100-50 4.4410 6.0092 7.9147 1.9378 3.0216 4.3216 2.7571 3.4879 4.9035 0.0325 0.1837 0.3701

100-100 2.3515 3.3727 4.3613 0.9530 1.6709 2.0415 1.0634 1.7792 2.5397 0.0199 0.2817 1.1277
100-200 0.4523 0.6132 0.8218 0.2831 0.4794 0.6389 0.3573 0.4936 0.6389 0.0975 0.2185 0.4350
200-100 3.3920 4.0683 4.6308 1.8875 2.3644 2.7474 1.8743 2.6288 2.9769 0.0514 0.1912 0.3198
200-200 1.8765 2.1899 2.6516 1.0892 1.2617 1.4412 1.0913 1.3417 1.5120 0.0819 0.1910 0.2953
200-400 0.2843 0.3844 0.4878 0.2572 0.3071 0.3694 0.2654 0.3223 0.3934 0.0798 0.1225 0.2360

maximum relative error among the 10 cases in each scenario,
respectively. Percentage signs are omitted from the table for
convenience.

It can be found that DNS substantially outperforms the
DG algorithm on all scenarios, which is due to the fact that
DNS improves the solution obtained from DG algorithm.
In addition, the DG algorithm has been proved to have a
guaranteed lower bound on its performance [17] so that the
DNS algorithm will not be worse than this value if there are
no external disturbances such as communication and data
transmission problems, indicating that the DNS algorithm is
effective in dealing with the WTA problem.

Compared to the 2-VLSN algorithm, DNS outperforms 2-
VLSN in the vast majority of scenarios. In each iteration,
DNS may execute multiple profitable 2-exchange in parallel,
whereas 2-VLSN performs only one 2-exchange at a time.
Intuitively, the former is not necessarily better than the
latter because each 2-exchange is based on the current
improvement graph, and performing a 2-exchange possibly
eliminates other profitable 2-exchange. However, the results
show that DNS has better performance by executing multiple
2-exchange simultaneously.

5-VLSN is the best performing algorithm because the
longer cycle length allows larger neighborhoods to be
searched. However, it is difficult to implement n-exchange
with a length greater than 2 in a distributed system, so this
paper only focuses on 2-exchange.

Define κ = M/N to be the ratio of the number of
missiles to the number of targets. Note that different κ has a
large impact on the performance of the DNS algorithm. The
performance of DNS decreases when κ becomes large. This
is possibly due to the fact that larger κ leads to complexity in
the solution space, and therefore it is more difficult to search
for profitable exchanges. Another possible reason is that the

initial solution provided by DG algorithm is poor when κ
is large, causing the DNS to suffer. A suitable example
is scenarios 80-20 and 80-320. Both the DG and DNS
algorithms perform poorly in the former and better in the
latter. The results imply that κ can measure the complexity of
the WTA problem to some extent. When κ ≤ 1, each missile
individually chooses a target resulting in the highest payoff,
hence the better solution is easy to find. When κ > 1, the
better solution is difficult to find because there exist targets
that will be selected by more than one missile, leading to
the nonlinear term in Eq. (2).

Next, we evaluate the number of iterations, which reflects
the speed of convergence of the algorithms and also directly
affects the computation time. Table II shows the iteration
number (denoted by T ) for the DNS and the original VLSN
algorithm in all scenarios. For the DNS algorithm, we count
the number of cycles between phases 2 and 4, corresponding
to lines 6 to 14 of Algorithm 1. Note that the DNS requires
an additional round of communication to determine that there
are no profitable 2-exchange in the improvement graph, so
its minimum number of iterations in the first few small-
scale scenarios is 1. It can be found that the number of
iterations is much less than VLSN due to the parallel 2-
exchange feature of the DNS algorithm. As the size of the
scenario becomes larger, the iteration number of the VLSN
increases considerably, leading to longer computation times.
In addition, κ affects the performance and efficiency of the
algorithm, which is the same as in the previous analysis.
Another thing worth noting is that larger scale scenarios have
smaller relative errors instead. This is probably due to the
fact that the solution space of the large-scale problem has
more local optimal solutions which do not have a large gap
to the optimal solution.
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TABLE II: Number of iterations of the three algorithms in different scenarios.

Scenarios
DNS 2-VLSN 5-VLSN

Tmin Taver Tmax Tmin Taver Tmax Tmin Taver Tmax

5-5 1 1.7 3 0 0.8 2 0 1.2 3
10-5 1 2 3 0 1.5 5 0 2.1 6
10-10 1 1.9 4 0 1.6 4 0 3.4 8
10-20 1 2.2 4 0 1.5 4 0 2.2 5
20-10 1 3.2 8 0 3.7 8 2 7.6 11
20-20 2 3 5 2 3.9 6 7 9.4 18
40-10 2 3.6 7 2 6.9 11 6 11.7 21
40-20 2 3.9 8 2 8.4 11 9 19.1 26
40-40 2 3.4 5 3 5.9 10 12 18.5 25
80-20 3 4 6 4 11.9 17 23 33.1 46
80-40 2 4.1 6 7 10.5 16 25 37.5 51
80-80 2 3.5 5 3 8.5 12 27 34.8 48

80-320 2 2.6 4 1 4.1 9 15 23.8 33
100-50 2 3.6 5 4 9.6 16 38 45.7 55
100-100 3 4.3 6 9 15.1 23 36 50.4 69
100-200 2 3.2 6 4 8.5 13 24 40.4 54
200-100 3 4.3 5 11 18.9 30 78 91.2 110
200-200 2 3.6 5 9 16.4 29 71 90.4 111
200-400 2 3.6 6 4 11 19 35 82.9 111

V. CONCLUSIONS

This paper proposes a distributed neighborhood search
algorithm to solve the weapon-target assignment problem.
In the DNS algorithm, each missile maintains a local im-
provement graph by communicating with neighbors and
searches for valid cycles in it. The objective function value
is improved when missiles follow the instructions of the
valid cycles by exchanging their targets, thus solving the
WTA problem in a distributed manner. The DNS algorithm
does not require a central node and is fully distributed.
Extensive simulation results in various scenarios show that
the proposed algorithm can generate satisfactory solutions.
Its parallel feature also reduces the number of iterations
compared to the original VLSN algorithm. Thus it can solve
the WTA problem effectively. Its parallel feature also reduces
the number of iterations compared to the original VLSN
algorithm. Thus it can solve the WTA problem effectively.
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