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Abstract— In the last years, model predictive control (MPC)
has become a significant competitor to conventional control
strategies for power electronic applications. In particular, direct
MPC using sphere decoding algorithms (SDAs) as optimizers
have gained popularity in this context. Besides such specialized
optimization algorithms, it is possible to improve the MPC
performance by dimensional reduction of the optimization
problem using Laguerre polynomials (LaPs). LaP based MPC
has already been proven advantageous for example in robotic
and marine applications. This paper presents an approach to
link the SDA and LaPs by formulating a Laguerre polynomial
based sphere decoding algorithm (LaP-SDA) for the control of
inverters on the modulation-level. Following some introductions
to the SDA and LaPs, the optimization problem and its
particular structure for the SDA is transformed using sets of
LaPs. This modification of the SDA results in a new admissible
set and an additional optimization problem to find the optimal
configuration of the LaPs. Moreover, it changes the shape of
the search tree tailoring it wider but more shallow. Finally,
the LaP-SDA is verified in a simulation using an example
system. There, it is shown that, with a suitable configuration,
the results of the SDA and LaP-SDA are identical. However,
the simulation does not indicate a performance benefit of the
LaP-SDA mainly because of the size of the admissible set. Nev-
ertheless, prospective modifications to improve its performance
and further applications of the LaP-SDA are presented.

Index Terms— Model predictive control, sphere decoding,
laguerre polynomials, inverters

I. INTRODUCTION
Direct model predictive control (MPC), that is the con-

trol without a modulation stage, has become a relevant
control strategy for power electronics in academia [1]. In
this domain, various assessments of different direct MPC
applications have been published over the last years, for
example on the control of cascaded H-bridge inverters [2],
two-level inverters for automotive applications [3] or for
industrial drives [4].
Beyond its common advantages, that is control of multi-
variable non-linear systems and respecting state and input
constraints [5], research has shown that MPC of power
electronics can surpass conventional control methods from
efficiency and current distortion perspectives [3], [4].

In general, the core challenge which emerges with MPC is
solving the underlying optimization problem for each step in
time. Particularly, this challenge applies for power electronic
applications because of the short time constants. Critical
for the time required to solve the optimization problem
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Fig. 1: Essential Idea of Laguerre Polynomial Based Sphere
Decoding Algorithm (LaP-SDA) Using a Transformation Λ

is its dimension. On the one hand, it scales exponentially
with the prediction horizon [6] while on the other hand, it
is linearly proportional to the system order [7]. In power
electronics both of these aspects result in a dimensional gain
of the optimization problem. High order systems can quickly
emerge for example due to additional components such as
filters. Also, long prediction horizons are desirable because
of the beneficial effect on distortion and stability [4], [8].

The aforementioned challenge of solving the optimization
problem has been approached from different angles: First,
more efficient and specialized solvers such as the miOSQP
solver [9] or the sphere decoding algorithm (SDA) [4] have
been developed. The latter has evolved as the most prominent
method to solve the integer control problem which arises
with direct MPC of inverters [10]. Secondly, the compu-
tational burden of high dimensional optimization problems
can be alleviated by transformation in a lower dimension. A
common method for this transformation is the incorporation
of Laguerre polynomials (LaPs) in the original optimization
problem [11]. Successful applications of this approach using
LaPs in MPC can be found in [12] and [13] for robotic and
marine applications, respectively.

As for now, research on different modifications and exten-
sions to further improve the performance of the SDA have
been published [3], [6]. However, to the knowledge of the
authors, there is a lack of research on the supplementation of
the SDA with LaPs for modulation-level control of inverters.
Therefore, this paper introduces a Laguerre polynomial based
sphere decoding algorithm (LaP-SDA) to assess the benefit
of merging the SDA with the MPC schemes using LaPs.
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The fundamental idea of the LaP-SDA is displayed in Fig. 1.
There, not the original optimization problem (Opt. Problem)
in the time domain, but the Laguerre based problem obtained
by a transformation Λ−1, is solved to compute the system
inputs.

II. LAGUERRE POLYNOMIAL BASED COST
FUNCTION

A. Regular Optimization Problem

Using the linear time-invariant discrete state space repre-
sentation of a system with n states, m inputs, and p outputs,
the state vector

x(k + 1) = Ax(k) +Bu(k)

and the output vector

y(k + 1) = Cx(k + 1) +Du(k),

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D = 0p×m.
At a time step k with the available state informa-
tion x(k) ∈ Rn and a future input sequence U(k) ∈ RNpm,
starting from time step k to step k +Np with the prediction
horizon Np, the predicted output vector1

Y (k) = Γx(k) + ΥU(k), (1)

in which Y (k) ∈ RNpp.
For MPC, the cost function JR is defined to penalize de-

viations from the reference trajectory Y ∗(k) and to penalize
input changes both weighted with the positive semidefinite
matrix Q and the scalar λu > 0, respectively. Consequently,
at a time step k

JR(k) =

i+Np−1∑
i=k

‖Y ∗(i)− Y (i)‖2Q + λu‖∆u(i)‖22

holds true, with ∆u(i) = u(i)−u(i−1), the squared Eu-
clidean norm ‖x‖22, and the weighted norm ‖x‖2Q = xTQx.
A more compact version of this cost function is obtained
using (1), by omitting the terms independent of U(k) and
introducing the matrix Θ(k). This leads to2

JR(k) = (U(k))THU(k) + 2(Θ(k))TU(k). (2)

For the SDA, (2) can further be rewritten by completing
the squares, computing the unconstrained optimal solution,
and introducing the generator matrix VR using a Cholesky
decomposition of the symmetric and positive definite matrix
H such that

V T
R VR = H.

This yields

1For the computation of the following matrices the reader is referred
to [4], chapter 5.

2see footnote 1

Ūunc(k) = −VRH
−1Θ(k)

and results in a suitable cost function for the SDA. For
a three-level-inverter, integer and switch constraints for the
elements in U(k) must be added resulting in the optimization
problem

Uopt(k) = arg min
U(k)
‖VRU(k)− Ūunc(k)‖22 (3a)

subject to U(k) ∈ U = {−1, 0, 1}, (3b)
‖∆u(i)‖∞ ≤ 1 ∀ i = k, . . . , k +Np. (3c)

Equation (3b) constrains the values in U(k) to the allowed
integer switch positions while (3c) prohibits switching from
−1 to 1 and vice versa3.

B. General Laguerre Based MPC

LaPs are a set of orthogonal functions and due to their
definition are a suitable and an efficient way to transform
general MPC optimization problems into a lower dimen-
sion [11], [14]. Namely, for z-transformed LaPs Z{lj} =
Γj , j = 1, . . . , NL in the discrete frequency domain with
network dimension NL ∈ T , pole a ∈ B, and prediction
horizon Np ∈ N+ according to the sets

T = 1, 2, . . . , Np, (4)
B = [0, 1), (5)

the recursive computation

Γj(z, a) = Γj−1(z, a)
z−1 − a
1− az−1

, Γ0(z, a) =

√
1− a2

1− az−1

holds. With lj being the inverse z-transform of Γj , the
time evolving sets of LaPs

l(k) =
[
l1(k) l2(k) . . . lNL

(k)
]T
, k ∈ T (6)

in the discrete time domain are computed as

l(k + 1) = ALl(k)

using the auxiliary matrix AL, whose definition can be
found in [11], [15]. For a = 0 the set of LaPs in (6) becomes
a set of pulses, that is

l(k) =
[
0Tk 1 0 . . . 0

]T
. (7)

This special case is identical to the control strategy of
MPC with the input signal

U(k) =
[
uT (k) uT (k + 1) . . . uT (k +Np − 1)

]T
,

(8)
for which in general

3Namely, ‖∆u(i)‖∞ := max |∆u(i)| ∀ i = k, . . . , k + Np
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uT (k + i) =
[
δ(i) δ(i− 1) . . . δ(i−Np + 1)

]
U(k)

with i = 0, . . . , Np − 1, m system inputs, and

δ(j) =

{
1Tm, if j = 0

0Tm, otherwise

holds. Consequently, one can display the input signal using
a transformation matrix Λ consisting of LaPs resulting in

U(k) = ΛE(k), (9)

with the Laguerre coefficients

E(k) =
[
ηT1 (k) ηT2 (k) . . . ηTm(k)

]T
. (10)

The transformation matrix

Λ =
[
ΛT

0 ΛT
1 . . . ΛT

Np−1
]T ∈ RNpm×κ, (11)

with

κ =

m∑
j=1

NL,j (12)

is of block structure in which each block

Λi =


l1(i) 0TNL,2

. . . 0TNL,m

0TNL,1
l2(i) . . . 0TNL,m

...
...

...
0TNL,1

0TNL,2
. . . lm(i)

 . (13)

The entries in (13) are given by (6). Thus, (9) assigns each
input u(k + i) the transformed input, namely

u(k + i) = ΛiE(k).

C. Transformation of Regular Optimization Problem

With (9), the cost function (2) is now rewritten, rendering

JL(k) = (ΛE(k))THΛE(k) + 2(Θ(k))TΛE(k). (14)

Further, with the introduction of the matrices

Ω = ΛTHΛ,

Ψ(k) = (Θ(k))TΛ,

(14) takes the form

JL(k) = (E(k))TΩE(k) + 2Ψ(k)E(k), (15)

with the new optimization variable E(k) defined in (10).
It is important to examine how the optimization problem

in (3) alters because of the introduction of LaPs. On the
one hand, the dimension of the optimization variable can be
lowered from RNpm to Rκ because per definition [see (12))
and (4)]

κ ≤ Npm.

Moreover, this circumstance applies to the dimension of
the generator matrix V , whose dimension changes from
RNpp×Npp to Rκ×κ. With this in mind, the optimization
problem in (3) is transformed to

Eopt(k) = arg min
E(k)
‖VLE(k)− Ēunc(k)‖22 (16a)

subject to ηj(k) ∈ Sj , j = 1, . . . ,m (16b)

with Ēunc(k) = −VLΩ−1Ψ(k). (16c)

Here, the integer as well as switch constraints are sum-
marized in the sets Sj . The calculation of these sets follows
in Section III-A. For now, it is crucial to point out that the
optimization variable E(k) is not of the time domain and
consequently neither is the optimization process in the LaP-
SDA.

This transformation of the optimization problem is vi-
sualized in Fig. 1. The transformation blocks to and from
the Laguerre based domain are labeled with Λ and Λ−1,
respectively. In line with the notation of this section, the
transformed optimization problem as the input for the LaP-
SDA in Fig. 1 is given by (16). The transformation matrix
and blocks are defined by (11) and (13).

III. LAGUERRE POLYNOMIAL BASED SDA

A. Computation of the Admissible Set

The main change introduced by the LaPs in Section II-C
are the change of the admissible set of the three-level-inverter
from U to the sets Sj . The computation of the admissible
set Sj now requires the relation between the original input
U(k) and alternate input E(k), namely the matrix of LaPs
Λ as described in (11). Both the number of columns κ of
Λ and the poles aj , j = 1, . . . ,m can arbitrarily be chosen
with respect to T , see (4), and B defined in (5). To find their
optimal values with respect to (3), an auxiliary optimization
problem with cost function J̃L,j , for each input j,

Zj,opt = arg min
NL,j ,aj

∑
u∈V
‖u−Λj(NL, a)η(u)‖2, (17a)

subject to NL,j ∈ T , (17b)
aj ∈ B, (17c)
u ∈ V (17d)

with η(u) ∈ Sj = {(ΛT
j Λj)

−1ΛT
j u}, (17e)

with Zj,opt =
[
NL,j,opt aj,opt

]T
and Λj = Λj(NL, a),

ker Λj = {0} is defined. The cost function in (17a) penalizes
the summed Euclidean distance of the difference between the
true inputs u and the transformed inputs Λj(NL, a)η(u).
The admissible set V in (17d) comprises all possible switch-
ing sequences for u ∈ RNp which respect the integer (3b)
and switch constraints (3c) except for i = k. Equation
(17e) highlights that Sj is the transformed set of V using
the Moore-Penrose inverse because u = Λjη is usually
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Prediction Horizon Np |S|unc |S|con |S|con/|S|unc

1 3 3 1

3 27 17 0.63

5 234 99 0.41

7 2187 577 0.26

TABLE I: Size of Admissible Sets for Different Prediction
Horizons for one Input

overdetermined except for NL,j = Np. As a result, it can
be derived that the size of the sets Sj of the LaP-SDA is
identical to the number of variations |V| of u.

Here, the solving of (17) and the analysis of the results
is done for one input and thus the index j is dropped. The
findings can be applied directly to multiple inputs. For one
input, Tab. I compares the size of S of the constrained (index
“con”) and unconstrained (index “unc”) case.

The third column shows that the constraints reduce the size
of the set approximately exponentially. This is of importance
because the set size has a strong effect on the performance
of the LaP-SDA as will be seen in Section IV.

To solve (17) the continuous set B in (5) is discretized
with a step size sa such that

aj+1 = aj + sa, j = 0, . . . , b(max(B)−min(B))/sac.

Performing an exhaustive search reveals the optimal set
of network parameters Zopt =

[
Np 0

]T
. This is in line

with (7) because with these parameters Λ transforms E(k)
to the aforementioned set of pulses and the difference in
(17a) is minimal. Fig. 2 shows that every configuration Z
other than Zopt, leads to higher costs J̃L and is consequently
suboptimal. However, though the costs are minimal, with
Zopt =

[
Np 0

]T
no dimensional reduction is achieved.
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Fig. 2: Cost J̃L for Different Network Parameters for Np = 5

More relevant are the cases with NL < Np, which result in
an optimization problem of lower dimension than the original
one. For these, a = 0 and the maximum allowed value for NL

are the optimal network configurations. Such configurations
are essentially MPC schemes which distinguish between
control and prediction horizon, see for example [11].

Furthermore, Fig. 2 shows that if the constraint a > 0 and
NL < Np is introduced, the optimizer shifts the pole a to-
wards one. However, as a consequence, the values in Uopt(k)
are not integers which must be considered. These cases as
well as individual network configurations Zj , j = 1, . . . ,m
for each input are not investigated. Consequently, for simplic-
ity the index j for S, Λ, and Z is dropped for the remainder
of this paper.

B. Algorithmic Modifications

Comparing the original (3) and transformed (16) optimiza-
tion problems reveals two main changes for the implemen-
tation of the LaP-SDA. On the one hand, the admissible
set changes from U to S for which |U| ≤ |S| holds true,
see Tab. I. On the other hand, the optimization variables
are now the Laguerre coefficients ηj(k) in E(k), which
in combination with Λ generate a control trajectory U(k)
for the prediction horizon Np. Consequently, the search for
an optimal solution Uopt(k) by successively adding switch
positions in U(k), until a full input sequence has been found,
must be modified.

The core actions of the SDA are the loop through the
admissible switch positions U and the continuation with the
next item in U(k) if the respective costs are less than the
one of the current incumbent. The relation between these
two algorithmic actions and the shape of the search tree
spanned by the optimization problem is displayed in Fig. 3a
for a multiple input system. The height of the search tree
is set by the number of elements in U(k), namely Npm.
The elements of U(k), see (8), are marked by the dots. The
branches connecting the dots represent the elements of the
admissible set U of the SDA.

Thus, from an algorithmic perspective, for which the
reader is referred to [4], looping through the admissible set
U is a lateral movement through the search tree. In contrast,
a vertical movement in the search tree corresponds to a
recursive call in the SDA.

Comparing the SDA and the LaP-SDA at the bottom of
Fig. 3 shows that the shape of the SDA is narrower and
deeper compared to that of the LaP-SDA.

This difference in shape roots back to the difference in the
admissible sets and the domain of the optimization variables.
As mentioned before, the admissible set S does not comprise
the switch positions, but the transformed variations of u ∈ V ,
which results in a larger set. Consequently, the number of
branches increases and the result is a wider search tree for
the LaP-SDA. This means that instead of switch positions,
the LaP-SDA tests the variations with the corresponding
Laguerre coefficients η(k) of each input to find the optimal
solution E(k). In contrast, the search tree is shorter because
the recursion is only done over the inputs. Applying the
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Fig. 3: Search Trees with Algorithmic Actions

concept of the SDA to the Laguerre based LaP-SDA is
justified by the structure of Λ and its blocks in (11), which
again have a block-diagonal structure [see (13)] in which
each block corresponds to only one input.

The pseudo code for the offline computation prior to LaP-
SDA is shown in Alg. 1.

It is important to notice that the computation of the
variations in V as well as solving the optimization problem
(17) to find the optimal Laguerre network configuration Zopt
are done offline.

The online component of the LaP-SDA is displayed in
Alg. 2. Its fundamental structure is identical to the SDA.
In the LaP-SDA, r1 and r2 shape the range for S, which
respects the switch constraints [see (3c)] between two con-
secutive time steps k− 1 and k. This results in a potentially
further reduced admissible set compared to the values in
Tab. I. The index ”sub” indicates that not all items of that
vector or matrix are used or set. Omitting the particular
indices is done for better readability.

C. Theoretical Performance

As a consequence of the aforementioned change of the ad-
missible set and the number of recursions, common metrics
to assess the performance of the SDA and LaP-SDA must be
defined. Geyer [4] defined the number of explored nodes NN

as a key index for the performance evaluation. The minimum
number of explored nodes, i.e. the lower bound (LB),

NN,R,LB(m,Np) = Npm (18)

Algorithm 1 Offline Computations LaP-SDA

function V = VARIATIONS (Np)
for j =

[
1 2 . . . m

]
do

for a ∈ B do
for NL ∈ T do

5: function Λ = LAMBDA (a,NL) . (11), (13)
function [S, J̃L] = ADMSET (V,Λ)
η(u) = (ΛTΛ)−1ΛTu
J̃L =

∑
u∈V ‖u−Λ(NL, a)η(u)‖2

end
10: if J̃L < Jopt then

aopt = a
NL,opt = NL

Jopt = J̃L
end if

15: end for
end for

end for
function [VL,Ω] = AUXILIARYMATRICES (. . . )

for the SDA and

NN,L,LB(m) = m (19)

for the LaP-SDA to find an optimal solution.
Neglecting the switch constraints, in the worst case, i.e.

upper bound (UB), for the SDA

NN,R,UB(m,Np) =

Npm−1∑
i=0

|U|i. (20)

Analogous, for the worst case of the LaP-SDA

NN,L,UB(m,Np) =

m−1∑
i=0

|S(Np)|i, (21)

Algorithm 2 Online Computations LaP-SDA

function [Eopt, ρ2] = LAP-SDA (r1, r2, S, ρ2, Ēunc,
VL, j, m)

for k = r1 to r2 do
Esub,cand = S(k)
ρ2cand = ‖VL,subEsub, cand − Ēunc‖22

5: if ρ2cand < ρ2 then
if j < m then

function [Eopt, ρ
2] = LAP-SDA (r1, r2,

S, ρ2, Ēunc, VL, j + 1, m)
else
Esub,opt = Esub, cand

10: ρ2 = ρ2cand
end if

end if
end for

end
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in which the upper bound of the sum m and the base
changed compared to (20). It can be seen that both, (20) and
(21), depend on the number of inputs m and the prediction
horizon Np, but in different ways. For the SDA, Np and
m affect only the upper bound of the sum and thus the
maximum exponent i. Conversely, for the LaP-SDA in (21)
the prediction horizon scales the size of the admissible set
S, which results in a base that is greater than or equal to
the base in the SDA (20). This circumstance corresponds to
the shape of the search trees in Fig. 3 directly; the larger
the base, the wider the search tree. Furthermore, the search
tree’s depth is directly linked to the upper bound of the sums
and thus the search tree for the SDA is much deeper than the
one of the LaP-SDA as already discussed in Section III-B.

The analysis of (20) and (21) for different prediction
horizons with m = 3 is displayed in Fig. 4a. It can be seen
that the lower bound of explored nodes for the LaP-SDA
equals m. This means that in the ideal case of finding the
optimal solution directly, the LaP-SDA outperforms the SDA
for Np > 1. The same applies to the worst case scenario in
which the LaP-SDA must try all possible solutions in which
the LaP-SDA explores at least one order of magnitude fewer
nodes than the SDA.

For the number of explored branches, the lower bound of
explored branches

NB,R,LB(Np,m) = Npm|U| (22)

and

NB,L,LB(m) = m|S| (23)

for the SDA and the LaP-SDA. The upper bound of
branches is calculated with (20) and (21) as well, but with
the sums lower bounds i = 1 and upper bounds Npm and
m, respectively. The respective values are plotted in Fig. 4b
and show that the lower bound of explored branches of the
LaP-SDA is significantly higher than the one of the SDA.
This is a consequence of the larger base, i.e. set, of the LaP-
SDA. However, the upper bound for the approaches do not
differ significantly.

IV. SIMULATION RESULTS

A. Simulation Setup

Since it was found that the minimum number of explored
nodes for the LaP-SDA indicates a performance benefit
although it must explore significantly more branches, sim-
ulations were performed in order to evaluate the significance
of these differences and their impact on the actual perfor-
mance. The system setup comprises an induction machine
linked to a three-level inverter, which was implemented and
subsequently simulated. It is assumed that the full state infor-
mation is available and is directly fed back to the MPC within
the sampling time. There is no observer or any simulation
of the rotor. The state space matrices and machine para-
meters are taken from [4] with x =

[
iα iβ ψα ψβ

]T
,

u =
[
u1 u2 u3

]T
and y =

[
iα iβ

]T
. The elements in u
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Fig. 4: Theoretical Lower and Upper Bounds for the Perfor-
mance of SDA and LaP-SDA

correspond to the switching state of each phase, consequently
ui ∈ U = {−1, 0, 1}, i = 1, 2, 3. The Laguerre polynomials
configuration is a = 0 and NL = Np, which does not result
in a dimensional reduction of the optimization problem but
yields the optimal solution found by the SDA. The weight
λu = 6× 10−3 and Q is in this case set equal to the identity
matrix. To introduce parameter uncertainties of the plant,
each item in the state space matrices for the MPC is disturbed
slightly by a normally drawn factor kd ∼ N (1, 1× 10−4).

Moreover, the sampling time of the plant and controller
s = 25× 10−6 s. The simulation is done for Np = 1, . . . , 7
with a 50 Hz reference signal of amplitude â = 0.7 in the
per unit system. Moreover, it is ensured that the system
has reached steady state before measuring the number of
explored nodes and branches for eight fundamentals.

B. Performance Evaluation

Due to the Laguerre polynomials configuration, the results
for the optimal trajectories found by the SDA and LaP-
SDA are identical. For other configurations, e.g. with distinct
sampling times for controller and plant, the LaP-SDA yields
different results for Uopt. However, this discrepancy between
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the SDA and LaP-SDA has only been noticed by the authors
to occur in a handful of configurations. As a consequence,
the resulting currents are not focused on, but the explored
nodes and branches. The explored nodes for one fundamental
period and prediction horizons Np = 4 and Np = 7 are
displayed in Fig. 5. It can be seen that for both prediction
horizons the number of explored nodes of the LaP-SDA
and SDA differ significantly, with the mean value obtained
with the LaP-SDA being smaller by factors kNN,Np=4 = 5
and kNN,Np=7 = 8 with respect to the means of the SDA.
Moreover, for both SDA and LaP-SDA, the lower bounds are
clearly visible. In particular, the direct scaling of the lower
bound NN,R,LB with the prediction horizon compared the
lower bound NN,L,LB can be observed, Fig. 5b.

However, examining the number of explored branches in
Fig. 6 reveals a significantly worse performance of the LaP-
SDA for both prediction horizons. It is important to notice
that the means of the LaP-SDA and SDA differ by factors
kNB,Np=4 = 4 and kNB,Np=7 = 64 in favor of the SDA.

Moreover, granulating these findings for all prediction
horizons, presented in Fig. 7, reveals that this observation
holds for all investigated prediction horizons. There, the
explored nodes and branches for all eight fundamentals are
evaluated.

This shows, that the LaP-SDA can not maintain its
advantage resulting from fewer explored nodes. The in-
ferior performance of the LaP-SDA for the number of
explored branches shows that the LaP-SDA cannot utilize
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Fig. 6: Explored Branches NB for One Fundamental Period

the sphere decoding approach as well as the SDA. The
general performance benefit of the SDA compared to, for
example, an exhaustive search, roots back to the successive
supplementation of the candidate solution Ucand(k), while
not considering suboptimal candidates and the associated
solutions early in the optimization process. Due to the more
shallow search tree of the LaP-SDA, ignoring suboptimal
candidates is not possible as often as in the SDA. This is not
compensated for by the shorter search tree and consequently
fewer items in the optimization variable E(k) and fewer
explored nodes. Though, the LaP-SDA still remains close
to its lower bound of the explored branches. Moreover, the
LaP-SDA does not benefit from a well suited initial candidate
and cost as much as the SDA since it still must try a
significant number of branches nevertheless. These issues
origin from the generally higher lower bound of the LaP-
SDA for the explored branches which grows exponentially
with the prediction horizon, see (23) and Tab. I.

V. CONCLUSION

The results of the previous section showed that the LaP-
SDA does not prove beneficial compared to the SDA. The
theoretical benefit of the LaP-SDA was refuted by the sim-
ulation results. Consequently, the approach presented in the
current paper for the LaP-SDA with this system, controller,
and Laguerre configuration, is not competitive compared to
the SDA. The main challenge introduced with LaP-SDA

3336



1 2 3 4 5 6 7

101

102

103

104

Prediction Horizon Np

M
ea

n
E

xp
lo

ra
tio

ns
N̄

N̄N,SDA

N̄N,LaP-SDA

N̄B,SDA

N̄B,LaP-SDA

Fig. 7: Mean of Explored Nodes N̄N and Branches N̄B over
Eight Fundamentals for Different Prediction Horizons Np

is to tackle the size of the admissible set S by reducing
the explored branches. However, it has to be be considered
that, with the setup used here, the LaPs were purposely not
configured to achieve any dimensional reduction.

Consequently, further prospective research continuing the
current work can be identified. First, it must investigated
under which configurations the LaP-SDA does not yield the
optimal solution found by an exhaustive search or the SDA.
Since this occurs only in certain configurations, reasons
for this could for example be numerical errors. Further,
the research could be applied to four different areas: 1)
controlled systems; 2) control parameters; 3) algorithmic
modifications; and 4) Laguerre network configuration. From
a system perspective, it is of interest to investigate more
sophisticated load scenarios, covering for example transient
behavior, stronger signal disturbances or model uncertainties.
These aspects could result in a stronger difference between
the optimal solution of the previous and current input se-
quence from which the LaP-SDA could benefit compared
to the SDA, since the latter profits from a well suited initial
guess. Moreover, the LaP-SDA performance for systems with
inputs m > 3 should be examined, because this leads to a
relatively deeper search tree for the SDA than for the LaP-
SDA, see Fig. 3.

Regarding the control parameters, for modified weights
λu,Q allowing for potentially more switching actions, the
previously mentioned disadvantage of the LaP-SDA could
be alleviated since this usually introduces more explorations
to find the optimal solution.

Algorithmic modifications could include investigations on
reducing the size of the admissible set by ignoring elements
leading to suboptimal solutions in the optimization process of
the LaP-SDA. This aspect covers modifications of the search
to resemble the SDA and profiting of ignoring branches.

Lastly, other Laguerre configurations should be examined.
Namely, this could cover a = 0 and the Laguerre network
dimension less than the prediction horizon, NL < Np. It
could be investigated how a dimensional reduction of the

optimization problem using the Laguerre network parameters
influences the performance of the LaP-SDA. Furthermore,
extending this idea to the network poles unequal zero as well
would also require strategies to compute integer values.
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