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Abstract— This paper develops a resilient angle control strat-
egy for inverter-interfaced microgrids subject to magnitude-
bounded disturbance. We show that an inverter-interfaced
microgrid can be cast as a Lur’e system (a combination of
a linear time-invariant system and a nonlinear static state
feedback sector-bounded nonlinearity). Then, under this novel
description and use of mathematically rigorous input–output
stability analysis results, the stability of inverter-based micro-
grids will be analyzed. The resilience analysis of the microgrids
controlled by the proposed angle control approach is based on a
mathematically rigorous characterization of disturbances that
a microgrid can tolerate so that its stability and operational
constraints are not violated. The simulation results evaluate the
performance and effectiveness of the proposed resilient angle
control over conventional angle droop control methods.

I. INTRODUCTION

Microgrids are defined by IEC 62898-1:2017 [1] as a
group of interconnected loads and distributed energy re-
sources with defined electrical boundaries, which act as a
single controllable entity and operate in both grid-connected
and island mode. The high integration of renewable en-
ergy and inverter-based resources in microgrids poses new
challenges for modernized power generation due to the low
inertia characteristics of such systems. The challenges are in
terms of stability issues and reducing the system’s resilience
in response to disturbances [2]–[4]. The South Australian
blackout of 2016 was the first known blackout due to high
renewable penetration with low system inertia [5]. According
to the Australian Energy Market Operator (AEMO) [6],
the technical reason for the 2016 blackout was the sud-
den voltage angle changes and rapid load variations. The
South Australian blackout event highlights the importance of
voltage phase angles in the stability of invert-based power
generation and the resilient design of control schemes for
inverters.

Angle droop control is one of the well-known control
approaches introduced in [7], which was motivated by the
fact that small voltage angle differences among inverter-
based resources (IBRs) cause a change in the power-sharing
between the resources. An angle droop-controlled inverter
measures its active power to regulate its phase angle [8].
Certain design criteria ensure proportional active power
sharing among IBRs [8]. Although the implementation of an
angle droop control strategy is harder than frequency droop
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control, it provides several advantages over frequency droop
control methods including improved stability margins and
transient response as well as frequency synchronization [9].

Various types of angle droop control techniques have been
proposed in the literature, e.g., [8], [10], [11] and references
therein. A distributed control scheme for improving the
stability margin and ensuring the desired power sharing in
angle droop-controlled microgrids was proposed in [8]. An
inverse optimal control framework for angle stabilization in
an inverter-based generation was presented in [11].

Due to the higher penetration of renewable energy re-
sources and distributed generators in inverter-based micro-
grids, the occurrence of disturbance has significantly in-
creased [12]. The sources of typical disturbance in these
systems include load shedding, generation tripping, inter-
mittent power outputs of renewable-based generation units,
and cyber-attacks. Therefore, it is required to develop novel
methods for the resilience analysis of inverter-based systems
and quantify the critical disturbance levels that an inverter-
based microgrid can withstand and propose resilient control
frameworks to enhance the normal operation of these systems
in the presence of disturbances. The common resilience anal-
ysis methods based on H2 and H∞ norms cannot be suitable
for analyzing the resilience of inverter-based microgrids and
measuring the maximum magnitude of disturbances applied
to these systems while transient stability and operational
constraints such as frequency constraints are satisfied. The
main reason is that H2 and H∞ norms evaluate the energy
of outputs rather than the magnitude of output signals [13].
Moreover, although the existing angle control methods deal
with frequency synchronization and power-sharing objectives
in inverter-based power networks, the transient stability and
resilience behavior of these systems against disturbances
have not been considered. Hence, it is required to modify
the existing droop control strategies by enforcing a resilient
feature in their design process.

This paper aims to develop a novel angle droop control
strategy with built-in resilient solutions to enhance the re-
silience and optimal operation of inverter-interfaced micro-
grids while under disturbances. To this end, the inverter-
based generation system is represented by a Lur’e system,
which is a combination of a linear time-invariant system and
a nonlinear static state feedback sector-bounded nonlinearity.
By virtue of this novel representation, the inverter-based mi-
crogrid is seen as an input–output map from the disturbance
to the phase angle deviation of IBRs. Using input-output
stability analysis results for Lur’e systems, the stability and
resilient feature of angle droop-controlled inverter-based mi-
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crogrids will be analyzed. Using a mathematically rigorous
resilience analysis framework based on L∞ norms of systems
[14], we show that the proposed resilient angle droop control
can withstand large disturbances (in terms of the magnitude
of disturbances) compared to the conventional angle droop
control methods without violating the frequency constraints.
Simulation results and comparative case studies are presented
to evaluate the performance and effectiveness of the proposed
angle droop control approach.

The paper is organized as follows. The problem statement
is presented in Section II. Section III proposes the resilient
angle droop control strategy. Section IV is devoted to the
input-state stability analysis. Simulation results are presented
in Section V. Finally, Section VI concludes this paper.

Notation. The notation used in this paper is standard. In
particular, 1n, 0n, In, and 0n×m are an n×1 vector of ones,
an n× 1 zero vector, an n× n Identity matrix, and a zero
matrix of dimension n×m, respectively. For an n×m matrix
A, ρ(A) is the symbol of the spectral radius of A and (A)|.|

is a matrix of size n×m whose elements are the absolute
value of the elements of A.

Preliminary. For an n×n positive matrix A≥ 0, M = In−A
is inverse-positive if M−1 exists and M−1 ≥ 0, or equivalently
ρ(A) < 1 [15]. For a vector x ∈ Rn, the element-wise L∞

norm is denoted by ∥x∥L∞
∈Rn whose i-element is obtained

as follows:
[∥x∥L∞

]i = sup
t≥0

|xi(t)|.

For a stable LTI system with a bounded L∞-norm input
u ∈Rm and output y ∈Rn represented by a transfer function
matrix G(s), the following inequality is satisfied [12]

∥y∥L∞
≤ γG∥u∥L∞

where γG ∈Rn×m the gain matrix is defined as the gain matrix
and its i j element is obtained as follows [12]:

γG,i j =
∫

∞

−∞

|gi j(τ)|dτ, (1)

where gi j is the impulse response of Gi j(s).

II. PROBLEM STATEMENT

Consider a lossless Kron-reduced network consisting of
n IBRs interconnected via inductive power lines. Each IBR
i, i = 1, . . . ,n, is represented by a voltage phasor modeled
by a constant magnitude (1 per unit) and controllable angle
dynamics θi(t). The IBR dynamics are presented as follows:

θ̇(t) = u(t)+ω
∗1n, (2)

where θ(t) = [θ1(t), . . . ,θn(t)]T ∈ Rn is the vector of phase
angles of inverters, u(t) = [u1(t), . . . ,un(t)]T ∈ Rn is the
control input vector, and ω∗ ∈ R is a reference frequency.

The underlying network can be presented by a weighted
directed graph G= (V,Ξ,E). Each element in the vertex set
V, |V|= n, and the edge set E, |E|=m respectively represent
an IBR and an inductive power line with susceptance bi j > 0,
(i, j)∈E. The weighting matrix Ξ is defined as Ξ= diag(bi j),
(i, j) ∈ E. The topology of the graph G is described by

an incidence matrix B ∈ Rn×m and the weighted Laplacian
matrix of the underlying graph is L= BΞBT .

Let us define θ ∗(t) = ω∗1nt + θ ∗
0 ∈ Rn and θ ∗

0 =
[θ ∗

1,0, . . . ,θ
∗
n,0]

T ∈Rn as the reference and initial angle vector,
respectively. The main objective is to design u(t) so that the
frequency synchronization is achieved at the steady-state, i.e.,

limt→∞ω(t) = ω
∗. (3)

Assumption 1: The initial reference angle vector θ ∗
0 satis-

fies BT θ ∗
0 ∈ (−π

2 ,
π

2 )
m.

Assumption 1, commonly referred to as a security con-
straint [16], implies that the absolute values of the difference
in the reference voltage phase angles between neighboring
IBRs are not larger than π

2 .
The deviation of the active electrical power Pe,i ∈ R

injected into the network at IBR i and the nominal power
P∗

e,i ∈R drawn from the dc source of IBR i is given as [11]:

Pe,i(θ)−P∗
e,i(θ

∗) = ∑
j∈Ni

|Vi||Vj|bi j
(
sin(θi j)− sin(θ ∗

i j)
)
, (4)

where θi j = θi −θ j, θ ∗
i j = θ ∗

i −θ ∗
j , |Vi| is the nodal voltage

magnitude of IBR i, Ni is the set of neighbors of the i-
th IBR, and bi j is the susceptance of the line connecting
IBRs i and j. The voltage magnitudes |Vi| at are regulated
by internal controllers to constant values, i.e., |Vi| = 1 per
unit. To achieve the frequency synchronization in (3), [11]
proposes the following angle droop controller for the i-th
IBR, which is based on an inverse optimal control strategy:

ui(t) =− 1
2ri

(
θi(t)−θ

∗
i (t)+mθi(Pe,i(θ)−P∗

e,i(θ
∗))
)

(5)

where ri > 0 is a positive gain and mθi > 0 is the P− θ

droop gain. The proposed angle controller in (5) stabilizes
the phase angle vector with respect to a nominal steady-state
angle and ensures frequency synchronization at stationery.
Moreover, (5) can have inherent robustness properties against
additive disturbances, as the solution to an optimal control
problem with the suitable choice of a cost function [11].
However, it is not inherently resilient to any manipulation
of sensors, control inputs, and communication links, in the
sense that it cannot guarantee that transient stability and
operational constraints such as frequency constraints are
satisfied under disturbances. The main objective of this paper
is to design a resilient-by-design angle control scheme for
inverter-interfaced microgrids by modifying (5) to enhance
their resilience against external disturbances.

III. PROPOSED RESILIENT ANGLE CONTROL STRATEGY

The main goal is to use angle measurements from phasor
measurement units (PMUs) and synthesize a controller that
enhances the resilience of (5) against disturbance signals
while achieving angle stabilization and frequency synchro-
nization in inverter-interfaced microgrids. The proposed an-
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gle control law for IBR i, i= 1, . . . ,n, is presented as follows:

ui(t) =− 1
2ri

(
θi(t)−θ

∗
i (t)+mθi(Pe,i(θ)−P∗

e,i(θ
∗))
)

−βixci(t),

ẋci(t) = βi
(
θi(t)−θ

∗
i (t)+mθi(Pe,i(θ)−P∗

e,i(θ
∗))
)

−ηixci(t),

(6)

where ηi > 0, βi ≥ 0 are scalars and xci(t)∈R is an auxiliary
control state. Note that if the value of βi, i = 1, . . . ,n, is
selected to be zero, the proposed controller in (6) is the same
as the one in (5). The dynamics of the inverter-interfaced
power generation system with the proposed control strategy
in (6) can be written as follows:

θ̇i(t) =
−1
2ri

(
(θi(t)−θ

∗
i (t))+mθi ∑

j∈Ni

bi j
(
sin(θi j(t))− sin(θ∗

i j)
))

−βixci(t)+ω
∗,

ẋci(t) =βi

(
(θi(t)−θ

∗
i (t))+mθi ∑

j∈Ni

bi j
(
sin(θi j(t))− sin(θ∗

i j)
))

−ηixci(t).
(7)

Let us assume that θ̄i = limt→∞ θi(t) be an induced steady-
state angle of the i-th IBR. Moreover, x̄ci = limt→∞ xci(t). By
change of variables as θ̃i = θi − θ ∗

i , the dynamics of the
inverter-based system with the proposed control strategy in
(6) can be written as follows:

˙̃
θi(t) =− 1

2ri

(
θ̃i(t)+mθi ∑

j∈Ni

bi j
(
sin(θ̃i j(t)+θ

∗
i j)− sin(θ∗

i j(t))
))

−βixci(t),

ẋci(t) =βi

(
θ̃i(t)+mθi ∑

j∈Ni

bi j
(
sin(θ̃i j(t)+θ

∗
i j(t))− sin(θ∗

i j)
))

−ηixci(t).
(8)

The following lemma analyzes the asymptotic stability of
the closed-loop dynamics in (8).

Lemma 1: Let Assumption 1 hold. The origin of (8) is
locally asymptotically stable.

Proof: We choose the following Lyapunov function:

V =
1
2

θ̃
T

θ̃ +
1
2

xT
c xc +W (θ̃ +θ

∗)−W (θ ∗)− θ̃
T

∇
θ̃+θ∗W (θ ∗)

(9)

where θ̃(t) =
[
θ̃1(t), . . . , θ̃n(t)

]T and xc(t) =

[xc1(t), . . . ,xcn(t)]
T , and W (θ̃) = −1T

n Ξcos(BT θ̃). First,
V (02n) = 0. Moreover, it can be shown that V is positive
around the origin. As W is strictly convex around the origin
[16], W (θ̃ + θ ∗)−W (θ ∗)− θ̃ T ∇

θ̃+θ∗ is locally positive.
As a result, V is positive around the origin. By direct
calculation, the gradient of V is obtained as follows:

∇
θ̃ ,xc

V =

[
M−1

θ
θ̃ +Pe(θ̃)

xc

]
, (10)

where

Pe(θ̃) =

 ∑ j∈N1
b1 j

(
sin(θ̃1 j(t)+θ ∗

1 j)− sin(θ ∗
1 j)
)

· · ·
∑ j∈Nn bn j

(
sin(θ̃n j(t)+θ ∗

n j)− sin(θ ∗
n j)
)
 .
(11)

.
The time-derivative of V in (9) is obtained as follows:

V̇ =−1
2
(
θ̃

T r−1
θ̃ +Pe(θ̃)

T r−1Pe(θ̃)
)
− xT

c ηxc. (12)

where η = diag(η1, . . . ,ηn) and r = diag(r1, . . . ,rn). It is
obvious that V̇ < 0. As a result, the origin of (8) is locally
asymptotically stable.

Remark 1: The proposed resilient control scheme in (6)
is distributed in the sense that the control design for IBR i
requires the knowledge of the neighboring angles θ j, j ∈Ni.
However, (6) can be implemented in a fully decentralized
way by measuring the active power Pe,i(θ) from PMUs.

IV. INPUT-OUTPUT STABILITY ANALYSIS

It is assumed that the control input u(t) is subject to a
magnitude-bounded disturbance δ (t) = [δ1(t), . . . ,δn(t)]

T ∈
Rn. Note that δ j(t) = 0 if and only if the control input
channel of the j-th IBR is not affected by any disturbance.

The main goal is to analyze the stability and resilience of
the proposed angle controller in (6) against the magnitude-
bounded disturbance. To this end, the closed-loop dynamics
of (8) in the presence of the disturbance δ (t) can be
represented as a Lur’e system, i.e., the interconnection of
a linear time-invariant system and a nonlinear static state
feedback, as follows:

ẋ(t) = Ax(t)+Bψ ψ(t)+Bδ δ (t),

y(t) =Cyx(t),

z(t) =Czx(t),
(13)

where

ψ(t) = sin(z(t)+φ
∗)− sin(φ ∗), (14)

and x(t) =
[

θ̃ T (t) xT
c (t)

]T ∈ R2n is the state vector,
y(t) = θ̃(t) ∈ Rn is the output vector, z(t) = BT θ̃(t) ∈ Rm

is the performance output, and φ ∗ = BT θ ∗. The state space
matrices are defined as follows:

A =

[
− 1

2 r−1 −β

β −η

]
, Bψ =

[
− 1

2 r−1MθBΞ

βMθBΞ

]
,

Bδ =

[
In

0n×n

]
, Cy =

[
In 0n×n

]
, Cz =

[
BT 0n×n

]
,

(15)

where β = diag(β1, . . . ,βn) and Mθ = diag(mθ1 , . . . ,mθn).
It can be easily shown that A in (15) is a Hurwitz matrix.

Furthermore, Under Assumption 1, the nonlinearity ψi(t) in
(13) is bounded, i.e., for each element ψi(t),

| ψi(t) |≤ 1+ sin(φ ∗)
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Moreover,
∣∣∣∣ψi(t)

zi(t)

∣∣∣∣ ≤ 1 and γψ,ii = supzi

∣∣∣∣ψi(t)
zi(t)

∣∣∣∣ = cos(φ ∗
i ),

where γψ,ii is the diagonal entry of a diagonal gain matrix
γψ . As γψ,ii is finite, the nonlinear term ψ(t) is BIBO stable.

Let G(s) be the transfer function matrix representing
the linear dynamics between the inputs δ (t) and ψ(t) and
output y(t) and z(t) in the proposed Lur’e system in (13),
represented as follows:

G(s) =
[

Gy,δ (s) Gy,ψ(s)
Gz,δ (s) Gz,ψ(s)

]
, (16)

where Gy,δ (s) = Cy (sI2n −A)−1 Bδ , Gy,ψ(s) =

Cy (sI2n −A)−1 Bψ , Gz,δ (s) = Cz (sI2n −A)−1 Bδ , and
Gz,ψ(s) = Cz (sI2n −A)−1 Bψ . By calculating the inverse of
sI2n −A, one can obtain that

Gy,δ (s) = J(s),

Gy,ψ(s) =−J(s)
(

1
2

r−1 +β (sIn +η)−1
β

)
MθBΞ,

Gz,δ (s) = BT J(s),

Gz,ψ(s) = BT Gy,ψ(s),

(17)

where

J(s) =
(
(sIn +

1
2

r−1)+β (sIn +η)−1
β

)−1

. (18)

The gain matrices of the stable transfer matrices Gz,δ (s),
Gz,v(s), Gy,δ (s), and Gy,v(s) are respectively denoted by γz,δ ,
γz,ψ , γy,δ , and γz,ψ in this paper and obtained using (1). In
the following, we derive analytical solutions for the gain
matrices as a function of control parameters and the physical
parameters of the inverter-based microgrid.

A. Analytical Derivation of Gain Matrices

The transfer matrix J(s) in (18) can be written as follows:

J(s) = diag(J1(s), . . . ,Jn(s)) , (19)

where

Ji(s) =
s+ηi

(s+ 1
4ri

+ ηi
2 )

2 +β 2
i + 1

2ri
ηi − ( 1

4ri
+ ηi

2 )
2
, (20)

for i = 1, . . . ,n. Hence, it can be shown that the impulse
response of Ji(s), denoted by ji(t), can be obtained by:

ji(t) = exp(ait)(cos(bit)+ ci sin(bit)) (21)

where

ai =−(
1

4ri
+

ηi

2
),

bi =

√
β 2

i +
1

2ri
ηi − (

1
4ri

+
ηi

2
)2,

ci =
− 1

4ri
+ ηi

2√
β 2

i + 1
2ri

ηi − ( 1
4ri

+ ηi
2 )

2
.

(22)

By direct calculations and the use of summation formula
of infinite geometric series, it can be shown that:

γy,δ i
=
∫

∞

0
| ji(τ)|dτ (23)

=− ai

a2
i +b2

i
+

2aici exp(πai
2bi

)+bici(1+ exp(πai
bi
))

(1− exp(πai
bi
))(a2

i +b2
i )

.

(24)

Due to the structure of the incidence matrix B, the entities
of Gz,δ (s) ∈Rm×n are either 0 or ±Ji(s), i ∈V. Thus, it can
be shown that

γz,δ (s) = (BT )|.|γy,δ ,

where (BT )|.| indicates the element-wise absolute value of
BT . Also, Gy,v(s) can be rewritten as follows:

Gy,ψ(s) =−Jyψ(s)MθBΞ, (25)

where
Jyψ(s) = diag(Jyψ,1(s), . . . ,Jyψ,n(s)) (26)

and

Jyψ,i(s) =
1

2ri
(s+ηi)+β 2

i

(s+ 1
4ri

+ ηi
2 )

2 +β 2
i + 1

2ri
ηi − ( 1

4ri
+ ηi

2 )
2
, (27)

for i = 1, . . . ,n. Denoting jyψ,i(t) is the inverse Laplace
transform of Jyψ,i(s), by direct calculation, it can be shown
that∫

∞

0
| jyψ,i(τ)|dτ =− diai

a2
i +b2

i

+di fi
2ai exp(πai

2bi
)+bi(1+ exp(πai

bi
))

(1− exp(πai
bi
))(a2

i +b2
i )

,

(28)

where ai and bi are defined in (22) and

di =
1

2ri
,

fi =
(ηi +ai)+2riβ

2
i

bi
.

(29)

As a result, one can obtain that

γy,ψ = diag
(∫

∞

0
| jyψ,1(τ)|dτ, . . . ,

∫
∞

0
| jyψ,n(τ)|dτ

)
(BΞ)|.|.

Furthermore, it can be shown that

γz,ψ = (BT )|.|γy,ψ .

Remark 2: For the conventional droop angle control in
(5), one can obtain that

γy,δ = diag(2r1, . . . ,2rn) ,

γy,ψ = Mθ (BΞ)|.|,

γz,δ = (BT )|.| diag(2r1, . . . ,2rn) ,

γz,ψ = (BT )|.|Mθ (BΞ)|.|.

(30)
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B. Design of Control Parameters

We can further relax the choice of the control parameters
ri, ηi, and βi by simply requiring the following constraint on
the control design parameters:

β
2
i +

1
2ri

ηi = (1+ e−πµ)

(
1

4ri
+

ηi

2

)2

, (31)

where µ ≈ −0.47454 is a negative constant, and µ =
− 2

π
w0(

2
π
) < 0 with w0(·) the Lambert W-function, namely

µ is the unique solution of

exp(
πµ

2
)+µ = 0. (32)

If (31) holds, we can show that

ai =−bi exp(
πµ

2
) =−bi exp(

πai

2bi
), (33)

holds for all ai and bi. Taking (33) into consideration, we
simplify the expressions (23) and (28) as follows:

γy,δ i
(βi) =

−ai +bici

a2
i +b2

i
=

ηi

β 2
i + 1

2ri
ηi

(34)

∫
∞

0
| jyψ,i(τ)|dτ =

−diai + fibi

a2
i +b2

i
=

1
2ri

ηi +2riβ
2
i

β 2
i + 1

2ri
ηi

(35)

= 1. (36)

Let ηi and ri be chosen to satisfy (31). Then, increasing βi
leads to smaller gains. Consequently, the gain matrices are
obtained as follows:

γy,δ = diag

(
η1

β 2
1 + 1

2r1
η1

, . . . ,
ηn

β 2
n + 1

2rn
ηn

)
,

γy,ψ = Mθ (BΞ)|.|,

γz,δ = (BT )|.| diag

(
η1

β 2
1 + 1

2r1
η1

, . . . ,
ηn

β 2
n + 1

2rn
ηn

)
,

γz,ψ = (BT )|.|Mθ (BΞ)|.|.

(37)

C. Bounded-Input Bounded-Output Stability

The following lemma presents sufficient conditions for
the Bounded-Input Bounded-Output (BIBO) stability of the
Lur’e system in (13).

Lemma 2: The Lur’e system in (13) is BIBO stable if
ρ(γz,ψ γψ)< 1.

Proof: If ρ(γz,ψ γψ)< 1, Im − γz,ψ γψ is inverse-positive.
Thus, using norm properties, one can show that

∥y∥L∞
≤
(
γy,δ + γy,ψ γψ(Im − γz,ψ γψ)

−1
γz,δ
)
∥δ∥L∞

. (38)

As the gain matrices γy,δ , γy,ψ , γz,δ , γz,ψ , and the non-
linearity gain γψ are finite, for a bounded ∥δ∥L∞

, ∥y∥L∞
is

bounded. This implies the BIBO stability of the Lur’e system
in (13).

The BIBO stability conditions in Lemma 2 depend on the
microgrid topology and droop gains and are independent of
the control parameters r, η , and β . However, in the follow-
ing, we show that these parameters impact the resilience of
the IBR-based system and should be appropriately designed.

D. Characterization of Resilience Metrics

The transient and steady-state performance specification
introduces constraints on the difference between the phase
angles of adjacent buses θi j, ∀ i, j ∈ V, to ensure that
the inverter-based system remains synchronized during the
transient and steady-state. These operational constraints are
mathematically formulated as follows:

1) Transient-state frequency bounds: ∥y∥L∞
≤ ȳ in which

ȳ ∈ Rn is the maximum phase angle deviation.
2) Transient-state power flow bounds: ∥z∥L∞

≤ z̄, where
z̄ ∈ Rm.

Note that the maximum phase angle difference in a typical
power system is in the order of π/18 to π/9 rad [17].

Let us assume that δ̄ ∈ Rn is a bound on the element-
wise L∞ norm of δ (t), i.e., ∥δ∥L∞

≤ δ̄ . The following
lemma assesses if the inverter-based microgrid satisfies the
above-mentioned operational constraints in the presence of
the disturbance δ (t) with ∥δ∥L∞

≤ δ̄ .
Lemma 3: If there exist δ̄ ∈ Rn and z̄ ∈ Rm so that the

following conditions are satisfied:

(BT )|.|
(
γy,δ δ̄ + γy,ψ cos(φ ∗)z̄

)
< z̄, (39a)

γy,δ δ̄ + γy,ψ cos(φ ∗)z̄ ≤ ȳ, (39b)

the Lur’e system in (13) is constrained input constrained
output (CICO) stable and ∥y∥L∞

≤ ȳ and ∥z∥L∞
≤ z̄.

Proof: Using norm properties, one can show that

∥y∥L∞
≤ γy,δ∥δ∥L∞

+ γy,ψ γψ∥z∥L∞
≤ γy,δ δ̄ + γy,ψ γψ z̄,

∥z∥L∞
≤ γz,δ∥δ∥L∞

+ γz,ψ γψ∥z∥L∞
≤ γz,δ δ̄ + γz,ψ γψ z̄.

(40)

Considering γψ = cos(φ ∗), γz,δ = (BT )|.|γy,δ and γz,ψ =

(BT )|.|γy,ψ (see (37)), from the above inequalities and (39),
one can obtain that ∥y∥L∞

≤ ȳ and ∥z∥L∞
≤ z̄.

The inequality constraints given in (39) characterize the
tolerable disturbances for the transient-state safety in an
inverter-based microgrid. In the following, the impact of βi
on the gain matrices will be discussed.

According to (37), by increasing the value of βi, the
entities of γy,δ and γz,δ decreases while the entities of γy,ψ
and γz,ψ remain unchanged. According to (39), this indicates
that for the pre-defined bound ȳ, the inverter-based microgrid
with the proposed control scheme in (6) can tolerate a larger
disturbance (a larger (element-wise) value of δ̄ ) with a bound
of z̄. Consequently, it highlights the resilience property of
the proposed angle droop control in (6) compared to the
conventional angle droop control in (5).

Remark 3: The constraints in (39) are in terms of linear
matrix inequalities (LMIs) with respect to δ̄ and z̄. These
constraints can be used for estimating the upper bound on
the disturbance magnitude δ̄ (the admissible disturbance that
the IBR-based power system can tolerate) while satisfying
the operational constraints in inverter-based microgrids.

V. SIMULATION RESULTS

We consider a microgrid composed of three IBRs with
a loop topology, controlled using cascaded voltage control
loops. The initial reference angle vector of the IBRs (in rad)
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Fig. 1. Upper bound on the disturbance magnitude versus βi.

is set at θ ∗
0 = [0.951 0.92 0.967]T that satisfies Assumption 1.

The microgrid operates at the rated angular frequency ω∗ =
2π ×50 rad/s.

The effectiveness and performance of the proposed re-
silient angle control scheme in (6) in terms of frequency
synchronization and angle stabilization is demonstrated via
time-domain simulations under nominal (normal) conditions
and disturbances. In the proposed angle controller, the con-
trol parameters are set as r = I3, η = 20I3, β1 = β2 = β3.

For the microgrid system, ρ(γz,ψ cos(φ ∗))= 0.1521, which
is smaller than one. Hence, the condition for the BIBO
stability stated in Lemma 2 is satisfied.

In the next stage, we assess the impact of β on the
resilience of the proposed control law in (6) with respect
to a bounded disturbance δ1(t) affecting IBR 1. To this
end, we determine the maximum admissible disturbance δ̄1
for a given ȳ = [0.2 0.24 0.19]T by solving the convex
optimization problem subject to the set of LMIs given in
(39). The optimization problem is solved by MOSEK [18]
as a solver and YALMIP [19] as an interface.

Fig. 1 depicts the value of δ̄1 in per unit (p.u.) as a
function of βi. The maximum phase difference deviation z̄
for all values of βi reported in Fig. 1 is z̄ = [0.21 0.21]T .
As one can see from Fig. 1, for a fixed z̄ and ȳ, the
proposed control law in (6) with a higher β can allow a
large disturbance magnitude. Note that when β = 03×3 (i.e.,
the conventional angle droop control in (5)), δ̄1 = 0.0895 p.u.
The results highlight the resilience property of the proposed
angle control approach in (6).

VI. CONCLUSION

This paper deals with the resilience-enhancing problem in
angle control of inverter-interfaced microgrid in the presence
of magnitude-bounded disturbance. The paper develops an
angle control strategy with built-in resilience solutions. To
this end, we propose a resilience assessment framework
that incorporate the operational constraints in frequency
synchronization and phase angle differences of microgrids.
The framework will facilitate a quantitative measure to
show the effectiveness of proposed resilient angle control

approach. Rigorous input-output stability conditions are pro-
posed. Simulation results demonstrate the effectiveness and
resilience performance of the proposed angle control strategy
for inverter-based microgrids. The future work includes the
extension of this work to the detailed model of inverter-
interfaced microgrids.
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