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Abstract— The continuous improvements of sensors’ accu-
racy, communication frameworks, and computing technologies,
have pushed the horizon of autonomous driving to a new branch
of mobility, which enhances safety, efficiency, and convenience
of automotive transportation. A fundamental step to the success
of these systems is the design of a robust, safe, and sample-
efficient decision-making module. However, real-world appli-
cations to semi-structured or even unstructured environments,
such as home zones, parking valets, and narrow passages, are
very limited. This paper proposes Informed Hybrid A Star
(InHAS), a new computationally lightweight path planning
algorithm which efficiently provides optimal paths while taking
into account vehicle dimensions and satisfying non-holonomic
constraints. We validate the effectiveness of the proposed
method both in simulation and in real-world application.

I. INTRODUCTION

In the last decades, research community has put consid-
erable effort into autonomous driving (AD). AD cars, also
known as self driving (SD) cars and driverless cars, lay the
foundation for a new mobility, which prioritizes performance
and safety of transportation systems, leading to reduce road
fatalities, enhance traffic efficiency, and empower new ser-
vices such as mobility on demand [1].

To execute complex tasks in an autonomous way, AD tech-
nology inherits some ideas from robotics theory. Particularly,
AD task can be roughly divided into two main categories:
the perception and the decision-making systems. Similarly to
human driving, the perception module aims at observing the
surrounding of the AD vehicle, i.e., the structure of the road,
the relevant obstacles, traffic rules, etc [2]. The output of this
phase is an estimate of the state of the SD vehicle, in terms of
position, heading angle, and velocity, as well as an estimate
of the states of the dynamic objects in the surrounding of
the vehicle, and static road and traffic rules information.
The second system, i.e., the decision-making, continuously
exploits data coming from perception and generates control
actions to move the vehicle; it is commonly partitioned into
a hierarchical structure comprised of four main modules [3]:
route (or mission) planner [4], behavioural planner [5], [6],
local (or motion) planner, and motion (or low-level) control
(see Fig. 1).

Particularly to the motion planner (MP), it can be further
divided into path planning (PP) and trajectory planning (TP)
modules. The former decides how to proceed from the
current state of the vehicle to a goal state, while guaranteeing
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vehicle feasibility (black line in Fig. 1). The output is a
static path that does not take into account the time. The
latter computes the commands, i.e., steering wheel angle and
acceleration, required to follow such a trajectory, including
the time constraint in terms of reference velocity (green line
in Fig. 1).

In the last years the AD community has put consider-
able effort into PP. This task has been addressed through
sampling-based, interpolation-based, and optimization-based
methods [3]. Sampling-based methods are based on incre-
mentally growing a graph rooted in the current state of the
vehicle by sampling the surrounding state space. The major
challenge is how to construct a reliable discretization of
the environment that approximates well the reality. Different
solutions have been proposed to solve this problem, and
promising results come from Dijkstra-based algorithms [7],
[8], and A-star-based ones [9], [10]. Moreover, the authors
in [11] proposed the anytime Dstar to compute a path for
the SD car, and [12] proposed the Hybrid A star (HAS) to
generate smooth paths in unknown environments.
Interpolation-based methods use a given set of waypoints
of a route (e.g., generated with sampling-based methods)
to generate a new set of points forming a smoother path
that respects the vehicle and environment constraints. These
techniques suffer some major problems, such as significant
tracking error in position and orientation of the AD vehicle,
and the lack of a closed form expression [13], [14]. Recently,
optimization-based PP has gained attention from the AD
community, due to the continuously increasing computing
power and wide choice of numerical optimization tools.
These approaches are attractive due to the possibility of
explicitly capturing the vehicle model, in the form of kine-
matic, dynamic and actuator constraints [15]. However, when
dealing with non-linear and non-convex frameworks, guar-
anteeing real-time performance and convergence becomes a
big challenge, and the application of those methods is mainly
limited to simulated environments.

Following this stream of research, this work focuses on the
problem of PP for an automated vehicle (AV) operating in
unknown environments. An AV is an intermediate system
between traditional vehicles with no automation, and SD
ones, where the driver is not expected to intervene at all [16].
Although both perception and decision-making modules have
been designed, we exploit the MP module in more details,
assuming that the AV has adequate sensing and localization
capabilities. Particularly, we:

• propose a computationally lightweight MP algorithm,
namely the Informed HAS, which provides optimal
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Fig. 1: AD decision making structure.

paths in unstructured environments, while guaranteeing
real-time feasibility;

• design a model in the loop to simulate the proposed AV
scheme using Matlab and IPG CarMaker tools;

• validate the effectiveness of the proposed approach on
different real-wold scenarios, through a real proof of
concept (PoC) of the AV.

II. PRELIMINARIES

In this section we recall the vehicle model used to create
feasible paths in the PP module, and we provide formal
problem definitions of the PP and TP, respectively.

A. Vehicle Model

For the application of AVs to low speed scenarios, a good
vehicle approximation that can be used in the PP module to
take into account vehicle’s dynamics and generate feasible
trajectories is the kinematic bicycle model. With the term low
speed we refer to all the applications where the longitudinal
velocity is limited to the range vx P [0, 20] km/h, e.g.,
parking valets, dwelling surroundings, and narrow passages.

The 4 degrees of freedom (DoF) kinematic bicycle model
is one of the most popular models in MP [17]. Using this
approximation, the vehicle is represented as a single track
model, where both left and right wheels are fused together
into two wheels positioned at the centers of the axles (see
Fig. 2), front and rear, respectively. Consequently, the tire
force difference of the two wheels, as well as the side-slip
angles are neglected.

Under these assumptions, let x P R, y P R be the X − Y
Cartesian coordinates in the world frame (WF), and ψ P

Ψ := [−π, π] describes the orientation (or yaw angle) of the
vehicle in the WF. Moreover, let v P V := [vmin, vmax] and
a P A := [amin, amax] denote the velocity and acceleration
of the vehicle, respectively, within acceptable ranges. Note
that in the sequel we refer to the longitudinal (along the
X axis) and lateral (along the Y axis) components of a
measurement with the subscripts (·)x and (·)y , and the x
and y Cartesian coordinates are always referred to the center
of the rear axle of the vehicle.

The steering angle of the front wheels of the vehicle
can be represented as δ P [δmin, δmax], assuming that
the rear wheels cannot be steered, where the limitation on
maneuverability δmin and δmax is referred to as a non-
holonomic constraint [18].

The corresponding kinematic bicycle model of the vehicle
can be represented as

ẋ = v cos(ψ)

ẏ = v sin(ψ)

ψ̇ = v
L tan(δ)

v̇ = a

, (1)

where L is the wheelbase of the vehicle. Thus, the state
and input vectors of such a model can be defined as X :=
{x, y, ψ, v} and U := {δ, a}, respectively.

B. Path Planning

Oftentimes, PP can be formulated as an optimization
problem that takes into account the travel time, comfort,
action efforts, for example. The 4 DoF model (1) forms a
4-dimensional state space C ⊆ R2×Ψ×V , commonly called
configuration space [19]. Specifically to the PP framework,
one typically neglects the velocity profile, as it is demanded
to the lower level TP module, i.e., v = v̄ is assumed to be a
constant in the PP. Under this assumption, the configuration
space becomes P := R2 × Ψ × 1 = R2 × Ψ ⊆ C. An
N -length path is a sequence of configurations, i.e., P :=
{p1, p2, . . . , pN} ⊆ P , where pi = {xi, yi, ψi, v̄}. The
optimal PP problem can be then formulated as follows.

Proposition 2.1: Let P be the configuration space of the
vehicle, and let its initial configuration be pstart P P . The
path is required to end in a goal region Pend ⊆ P , given
that the set of all allowed free configurations is Pfeas ⊆ P .
Then, the optimal PP problem is to find a path

P ∗ = argmin
{p1,...,pN}PP

J

subject to p1 = pstart

pN P Pend
pi P Pfeas i = 1, . . . , N

system (1)
v = v̄, δ P [δmin, δmax]

, (2)

where J is the cost functional.

C. Trajectory Planning

The second MP module is the TP, that, given a generated
path P ∗ := {p1, p2, . . . , pN}, post-processes it to (i) enhance
comfort, and (ii) explicitly combine the restricted configura-
tion space P with the execution time of the path. The time
can be included in terms of velocity profile to be followed.
The TP can be formulated as a tracking problem, and several
methods coming from different application domains have
been proposed from research community, e.g., model pre-
dictive control (MPC). One of the biggest challenges when
dealing with optimization methods is the computational load
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Fig. 2: 4 DoF kinematic bicycle model.

and the corresponding time to obtain an effective solution.
To solve this issue and allow valuable trajectories in real-
time, we formulate the TP problem as a combination of
two distinct linear MPC problems: one related to the lateral
dynamics, and the other referred to the longitudinal ones.
Specifically, given the non-linear model (1), we apply a time-
state control form (T-SCF) transformation to describe the
lateral dynamics as a system of linear, differential equations,
namely [

∂z2
∂z1
∂z3
∂z1

]
=

[
0 1
0 0

] [
z2
z3

]
+

[
0
1

]
µ2, (3)

where z1 = x, z2 = y, z3 = tan(ψ), and µ2 =
tan(δ)

L cos3(ψ) . Furthermore, the longitudinal dynamics can be
well-approximated with a double integrator model, whose
states are the travelled distance ξ ⊆ R, and the vehicle speed
v P V : [

∂ξ
∂t
∂v
∂t

]
=

[
0 1
0 0

] [
ξ
v

]
+

[
0
1

]
a. (4)

This formulation allows to express the original non-linear
model (1) as a combination of two, independent, linear
models. Then, one can discretize those two models, e.g.,
using the Tustin discretization, and apply two independent
linear MPCs to efficiently solve the TP task. For further
details on the adopted MPCs, refer to [17], where a detailed
model transformation can be found, together with the control
design explanation and implementation.

III. METHODOLOGY: INFORMED HYBRID A STAR

In this section we introduce our PP procedure to use
in unstructured environments, and we propose the novel
Informed HAS (InHAS) algorithm to speed-up path explo-
ration. To this end, assume to have from the perception
module static information about the scenario under test, e.g.,
the occupancy grid map. Moreover, assume to be in an
unstructured environment, such as a parking valet, and to
have a maneuver P̄ ⊆ Pfeas that the driver recorded and
stored on the car devices. The goal is to optimize such a
maneuver (w.r.t. some criteria such as the travelled distance
or the number of direction changes) through the PP, and
replicate it whenever the driver falls again in the same
scenario.

The proposed InHAS algorithm is essentially based on
the combination of two main methods: the area optimization
(AO) and the HAS. The AO module is responsible to
“inform” the HAS about the most likely regions of the
occupancy grid map to explore, thus strongly speeding-
up the PP process. Then, the HAS algorithm computes a
drivable path in such areas. The resulting path guarantees
the following AD metrics:

• Computationally efficient, due to the AO
• Feasible and drivable, that is inherent in the HAS

algorithm
• Safe and robust, assured by a continuous collision check

over the perimeter of the vehicle.

A. Hybrid A star

The traditional A star algorithm is a well-known method
in PP [9] that uses an occupancy grid map to discretize the
configuration space P and represent it through a finite set of
nodes. Given an initial configuration pstart, A star assigns a
cost Fi = Gi +Hi for each surrounding node i, where Gi
represents the cost to reach the i-th node from pstart, and
Hi is an estimate representing an heuristic cost to reach the
target configuration pend from node i. The main limitation of
A star is that it works only for holonomic robots. The HAS
algorithm extends the traditional A star to non-holonomic
vehicles [12], leveraging the vehicle’s kinematics (1) to
estimate its exact motion. It provides two main improvements
w.r.t. A star; first, the term hybrid refers to a modified state-
update rule that maps continuous state data (x, y, ψ) into
discrete search space of normal A star. Second, the HAS
extends the configuration space P ⊆ R2 × Ψ to include
vehicle’s direction r := {0, 1}, for reverse and forward
motions, respectively1.

The general HAS algorithm is reported in Algorithm 1,
where n, m are the number of rows and columns of the
occupancy map, with a cell resolution xy_grid_res, and
a yaw resolution yaw_grid_res. Moreover, the algorithm
takes in input the vehicle dimensions, and the motion reso-
lution (mot_res), that corresponds to the minimum distance
that the vehicle can travel at each time-step. The function
popNode extracts the current node based on the cost func-
tional. Then, the function RS_expansion computes Reeds-
Shepp (RS) curves, trying to link the current node with the
target node through the combination of curves and straight
segments [20]. The function updateSets updates the costs
associated to the current node, and generates n_steer new
nodes based on mot_res and using vehicle dynamics.

In the algorithm, SB_C,B_C, S_CH_C, S_C,H_C rep-
resent the weights that form the cost function, which we
defined as:

1With a slight abuse of notation, to lighten the symbols we represent the
new configuration space as P , assuming that when we talk about HAS it
is a 4-dimensional space.
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Fi = Gi +Hi

Hi = H_C
√

(xi − xend)
2
+ (yi − yend)

2

Gi = Gi−1 +Gres +GSB + S_C · |δi|
+ S_CH_C · |δi − δi−1|

s.t. Gres =

{
mot_res, if ri = 1

B_C ·mot_res, if ri = 0

GSB =

{
SB_C ·mot_res, if ri ̸= ri−1

0, otherwise

. (5)

Intuitively, we keep the traditional contributions on the
travelled distance Gi and the heuristic distance Hi, but
we add some additional terms to: (i) smooth the trajectory
(last two terms proportional to the steering control), and (ii)
prefer forward motion (Gres and GSB are functions of the
travelling direction).

Furthermore, we introduce a procedure in the
RS_expansion function to effectively use the HAS
in real-world applications. RS curve theory states that it
is always possible to connect two configuration points
with a combination of straight segments and minimum
radius curves, and the generated sequence always terminates
with a curve, eventually with near-zero length if it is not
necessary. However, RS curves themselves do not take into
account vehicle dimensions. It is clear that, when dealing
with narrow passages or tight parking valets, traditional
RS curves fail to enter without collisions, and generate
non-optimal paths. For the sake of an example, consider
one of the scenarios we have covered in the experimental
results, representing a real-world home-parking, in Fig. 4.
The results of traditional RS curves is reported in red in the
figure. To allow safe and robust PP, we perform a collision
check between the vehicle and static objects during the RS
paths generation, with a resolution of mot_res. Moreover,
we modify RS curves generation; at each iteration of
the algorithm, we compute both normal RS curves and
additional RS paths constrained by a straight segment at
the end of the curve. This choice, while violating the
minimization of the travelled distance, assures a collision-
free path in such scenarios (see the green path in Fig. 4),
and helps the PP to speed-up the learning process. Indeed,
in the example shown in Fig. 4, the algorithm finds a
valid path after only 3 iterations, while in the the original
HAS with the AO phase (described below) it increases to
253 iterations. Surprisingly, if one considers the original
HAS without any additional improvements, the number of
iterations before finding a valid solution explodes to 1751,
even though it is not a comfortable path.

B. Pre-processing: Area Optimization

The HAS algorithm alone is essentially based on a deep
and myopic exploration phase. It turns out that there could be
some scenarios in which basic HAS fails to easily find a path.
For example, assume the case of Fig. 3; here, pstart and pend

Algorithm 1 Hybrid A∗

Input: Grid map GM : Rn+m → [0, 1], pstart, Pend

cfg ← {veh_dims,mot_res, n_steer, xy_gm_res,
yaw_gm_res, gm_dims, SB_C,B_C, S_CH_C, S_C,H_C}

Output: Optimal planned path P ∗

1: P ∗ ← ∅
2: openSet ← {pstart}
3: closedSet ← ∅
4: while ¬isempty(openSet) do
5: [curr_node, openSet] ← popNode(openSet, cfg)
6: closedSet ← {closedSet ∪ curr_node}
7: [isGoal, RS_path] ← RS_expansion(curr_node,Pend), cfg)
8: if isGoal then
9: P ∗ ← getF inalPath(RS_path, closedSet, cfg)

10: break
11: end if
12: [openSet, closedSet] ←

updateSets(curr_node, openSet, closedSet, cfg)
13: end while

Fig. 3: HAS limits example.

are close each other, but due to the occupancy grid map, the
path that connects those two points is more complex. In this
situation, due to the contribution given by the heuristic cost
H , the HAS algorithm will erroneously explore nodes that
are in the neighborhood of pstart and in the direction toward
pend. To solve this issue and speed-up the learning process,
we propose the following simple yet effective procedure,
that we call area optimization (AO). Specifically, given a
recorded non-optimal maneuver P̄ , instead of optimizing it
through HAS from p̄1 to p̄N , one can think to optimize only
specific segments, e.g., focusing on the areas in which there
are maneuvers (one change in the direction of the motion),
or multi-maneuvers (two or more changes). Consequently,
instead of running the HAS on the whole path and the
entire occupancy map, we apply divide et conquer policy by
running the PP algorithm multiple times on reduced areas of
the occupancy map, created by identifying the segments to
be optimized. This procedure turns out to be very powerful
in practice. Indeed, for each sub PP problem it limits the
area in which the HAS can explore, thus filtering out non-
sense paths. The output of the InHAS algorithm will be the
combination of optimized paths segments (through modified
HAS), and acceptable recorded segments from the original
maneuver (such as straight lines). For example, consider the
recorded maneuver represented in blue in Fig. 4. The AO
method outputs a reduced occupancy map (represented as a
black rectangle), and consequently the initial configuration
related to InHAS (yellow point) is much nearer to the goal
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Fig. 4: Comparison between traditional HAS and InHAS. Required time to provide a path is 7.6 sec and 1.3 sec, respectively.

configuration (pink rectangle) than the initial configuration
related to HAS (blue rectangle). This significantly reduces
the computational time required (7.6 sec for HAS and
1.3 sec in the case of InHAS). Furthermore, in the case
of unstructured environments where there is no high-level
constraint on the direction to follow as well as rules of
the road, traditional HAS could perform very bad. Indeed,
the optimized HAS path (red line) is tremendously worse
than the recorded one, in terms of travelled distance, and
most importantly, length of the path travelled backward. By
contrast, even if the proposed InHAS algorithm does not
guarantee global optimal solutions, it provides a very accept-
able optimized path (green line), obtained as a combination
of the recorded maneuver and the modified HAS algorithm.

Remark 1: It is worth to note that we tried to lighten as
much as possible the hardware required for the decision-
making module. Thus, our solution satisfies many AD met-
rics, and we feel that it could be of interest for the application
of MP to real-world scenarios.

IV. EXPERIMENTAL RESULTS

This section reports the experimental results of the pro-
posed methodology on different real-world scenarios, and
compares the performance with a model in the loop (MIL)
simulation using IPG CarMaker tool and Matlab/Simulink.
A. Setup

The prototypal vehicles which has been used to design
and test the proposed AD scheme is a Jeep Renegade,
with dual dry clutch transmission (Fig. 5). It is equipped
with a PwrPak7 Novatel dual antenna GNSS, twelve Valeo
ultra sound scan sensors, six Arbe imaging radars, one
RoboSense LIDAR, and four Fisheye cameras. The generated
data are then fused and processed through a NUC PC and
ROS environment. The MP module runs on an independent
hardware, namely a dSPACE MicroAutobox II.

Fig. 5: Jeep Renegade prototypal vehicle.

B. Simulation and experimental results

The covered scenarios are represented in Fig. 6. Particu-
larly to the scenario on the top, Fig. 4 shows the results of a
perpendicular parking maneuver. As we already mentioned
in the previous section, the proposed methodology outputs an
optimized maneuver (green line) that performs much better
than the traditional HAS, while minimizing the number of
changes in the direction of the motion, ensuring a feasible
and collision free trajectory.

The obtained results related to the other covered scenario
(the one at the bottom of Fig. 6) are shown in Fig. 7. First,
given a recorded maneuver (the blue dashed line), InHAS
correctly optimizes it minimizing the travelled distance.
Moreover, from the figure, one can appreciate the reliability
of the MIL; indeed, the real and the simulated optimized
paths (blue and red lines) are very similar each other. Fig. 8
shows the comparison between the followed trajectory on
the PoC and the simulated one, along with a corridor that
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Fig. 6: Selected scenarios.

Fig. 7: PP performance, scenario 2.

determines the constraints provided to the MPC problem. It
is worth noticing that such constraints are updated in real-
time based on data coming from the sensor fusion, allowing
the possibility to manage maneuvers such as safe stop and
obstacle avoidance. Since the focus here is on the PP module,
and due to space limits, we omit this situations that are
closely related to the TP module.
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