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Abstract— This paper presents a novel multi-modal Multi-
Object Tracking (MOT) algorithm for self-driving cars that
combines camera and LiDAR data. Camera frames are pro-
cessed with a state-of-the-art 3D object detector, whereas
classical clustering techniques are used to process LiDAR
observations. The proposed MOT algorithm comprises a three-
step association process, an Extended Kalman filter for es-
timating the motion of each detected dynamic obstacle, and
a track management phase. The EKF motion model requires
the current measured relative position and orientation of the
observed object and the longitudinal and angular velocities of
the ego vehicle as inputs. Unlike most state-of-the-art multi-
modal MOT approaches, the proposed algorithm does not rely
on maps or knowledge of the ego global pose. Moreover, it uses
a 3D detector exclusively for cameras and is agnostic to the
type of LiDAR sensor used. The algorithm is validated both in
simulation and with real-world data, with satisfactory results.

I. INTRODUCTION

The advent of self-driving vehicles may revolutionize
transportation. An essential task for self-driving cars and
autonomous vehicles is to detect and avoid obstacles. Plan-
ning obstacle avoidance maneuvers requires an estimate and
prediction of the motion of other agents present in the scene.
The problem of tracking multiple objects simultaneously is
known in the scientific literature as Multi-Object Tracking
(MOT).

The most common approaches in multi-object tracking
exploit measurements collected from one or multiple sensors,
which need to be linked to existing tracks (i.e. the detected
moving objects) or utilized to create new ones. Existing
MOT methods are classified either as single-modality-based
or multi-modality-based methods. In the single-modality
context, a single sensor type, such as a camera or LiDAR,
is employed to gather data and predict object trajecto-
ries [1]–[3], [5]–[7], [11]. On the other hand, multi-modal
methods combine inputs from different sensors, exploiting
their different attributes to improve tracking accuracy and
effectiveness. These approaches usually combine LiDAR and
camera observations [4], [8]–[10]. This is because LiDAR
sensors provide precise measurements of objects location,
while cameras more effectively classify the type of road
users in the scene (e.g. pedestrians, cyclists, vehicles, ecc.).
Fusing these sources improves tracking accuracy by filtering
out static objects and focusing on dynamic entities.
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Regardless of the mode used, whether single or
multi-modal, state-of-the-art MOT algorithms comprise
three phases: tracks-measures association, tracks predic-
tion/correction, and tracks management. The overall perfor-
mance of a MOT algorithm relies on the quality of these three
phases and on the performance of the detection algorithms
employed.

In the existing literature, most MOT methods have been
developed in a tracking-by-detection framework. This means
that the multi-object tracking algorithm is developed based
on the output of an object detection algorithm. State-of-the-
art multi-object tracking uses 3D detectors to estimate the
position, orientation, and type of objects in the scene [2], [4],
[8]–[10]. These methods propose algorithms for the tracks-
measures association and tracks management phases.

Advancements in neural networks have also given rise
to different MOT algorithms, including joint detection and
tracking methodologies [1], [3], [6], [7]. These algorithms
unify the tasks of object detection and tracking within a
single neural network framework. These studies assume that
the detection phase is the most complex one, simplifying the
prediction, correction and association steps. However, many
studies demonstrate that the tracks prediction/correction step
and the association phase greatly influence the performance
of the MOT. [2] describes how performing association and
correction in the 2D image plane improves multi-object
tracking performance for camera-only MOTs. This is because
3D measurements from a monocular 3D detector tend to
have highly correlated errors over time, which cannot be
accounted for by the Kalman filter, which does not allow
biased or correlated errors over time. In contrast, [9] shows
that, for multi-modal LiDAR-camera MOT, performing the
association in the 3D Cartesian plane results in a better MOT
performance, as objects are more susceptible to occlusion in
the 2D plane.

The method used for prediction influences the association
step, since the better the prediction of the trajectories, the
better the association with the new measures. There are
different approaches to predict the motion of objects: [2]
uses an Extended Kalman Filter (EKF) for each dynamic
object, exploiting a kinematic single-track model for vehicles
and cyclists, and a constant turn rate and velocity (CTRV)
model for pedestrians. This approach requires knowledge of
the ego vehicle’s global position; [1] uses a prediction LSTM
(P-LSTM), which models the dynamic object position in 3D
coordinates by predicting the object velocity from previously
updated velocities and position; [7] learns to predict a two-
dimensional velocity estimation for each detected object as
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an additional regression output, using only the center of each
object’s bounding box (x, y). To obtain the velocity estimate,
two map-views are required: the current and previous time-
steps; [4] starts from the measure given by [7] and refines it
with a Kalman Filter, assuming constant linear and angular
velocity. This model requires the detector to provide a
velocity estimate.

In this paper, we propose a multi-modal multi-object
tracking algorithm based on the fusion of camera and LiDAR
observations, with the following original contributions:

• Our approach employs an EKF for tracking each object
and a novel motion model that estimates the absolute
longitudinal and angular velocities of an object. The
EKF motion model only requires the current measured
relative position and orientation of the observed object
and the longitudinal and angular velocities of the ego
vehicle as inputs, without relying on maps or knowledge
of the ego global pose.

• The extended Kalman filter accepts a vector of measure-
ments that can have varying dimensions. Specifically,
the measurements supplied by LiDARs are processed
and used to correct the position (x, y), while the ori-
entation (ψ) is corrected by exploiting the measure-
ments provided by a camera. Depending on which
measurements are available at each time instant, the
EKF corrects either all three values (x, y, ψ) or a subset
of them.

• The proposed approach uses the 3D detector [12] exclu-
sively for cameras, unlike most multi-modal approaches
in the literature, which use a 3D detector for both
LiDAR and camera measurements. LiDAR centroids
are calculated using an Euclidean clustering algorithm,
which accelerates the execution of the entire algorithmic
pipeline and ensures fast execution. Besides, detectors
based on LiDAR often strongly rely on the pointcloud’s
structure which significantly varies depending on the
type of LiDAR used. The proposed approach is instead
agnostic to the type of LiDAR sensor used.

II. MULTI-OBJECT TRACKING ALGORITHM

The goal of the proposed multi target tracking algorithm
is to detect and track dynamic (i.e. moving) obstacles in the
scene, estimating their position and linear/angular velocities.
In addition to the motion estimation, the algorithm associates
to each obstacle a class, providing additional information to
the planning layer.

The proposed method, illustrated in Figure 1, consists of
four primary algorithmic blocks:

• Camera and LiDAR processing modules: these mod-
ules process the raw input coming respectively from
the camera and LiDAR sensors, returning a set of
observations of obstacles in the scene.

• Data association: at each time instant, the sensor
processing modules will return multiple measurements.
This step is necessary to group together camera and
LiDAR observations generated by the same object and

to possibly associate them to a pre-existing track repre-
senting the dynamic obstacle.

• Extended Kalman Filter: the EKF estimates the mo-
tion of the identified tracks, based on an internal motion
model and exploiting the LiDAR and camera measure-
ments.

• Tracks management: this step deals with initializing
or deleting tracks, considering both the output of the
association step and the time history of existing tracks.

Fig. 1: Schematic representation of the proposed MOT
algorithm.

A. Camera processing

The aim of the camera processing module is to extract
from the image the position and the class of road users in
the scene. Frames are processed using the CNN described in
[12]. We preferred this solution to classical computer vision
techniques and other proposed CNN-based methods, since it
represented the best compromise between inference time and
detection accuracy. An example of the output of this module
is shown in Figure 2.

Fig. 2: Output of the camera processing module.

The output of the module is the set of camera measure-
ments:

Zcam = {z1cam, ..., z
N
cam} , zicam = (xcam, ycam, ψcam, c)

T

(1)
where (xcam, ycam) represent the planar position of the

centroid of the detected object with respect to the vehicle,
ψcam is its orientation and c is its class (e.g. pedestrian, car,
motorbike, ecc.).
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B. LiDAR processing

The LiDAR processing module extracts from each obser-
vation (i.e. pointcloud) the position of the centroid of each
object visible in the scene. In this phase, an efficient and
robust white box approach was preferred over the use of a
3D detector, being the complexity of the latter solution not
necessary for the extraction of the geometrical information
required by our MOT approach. The extraction of the Li-
DAR’s measures is performed in the following steps:

• Ground removal: points belonging to the ground must
be removed to avoid misidentification as obstacles. This
step is performed with the approach described in [13].

• Clustering: in this step, points that belong to the
same object are clustered and outliers are removed.
The clustering approach used is based on the Euclidean
clustering algorithm described in [14].

An example of this module’s output is shown in Figure 3.

Fig. 3: Output example of the LiDAR processing module.

The module outputs the following set of measurements:

Zlidar = {z1lidar, ..., z
M
lidar} , zilidar = (xlidar, ylidar)

T (2)

where each element represents the planar position of the
centroid of a detected cluster with respect to the vehicle.

C. Data association

The main goal of the data association module is to merge
camera and LiDAR observations that refer to the same object,
and to determine if they correspond to an already existing
track in the target tracking EKF. The main hypothesis of
the association algorithm is that there is at most one camera
or LiDAR measurement for each physical object. Moreover,
it is assumed that two distinct objects cannot be associated
to the same measurement. This is achieved for the camera
processing output thanks to the 3D detector employed, as
it generates a single measurement for every moving object
in the scene. The hypothesis is instead not always verified
for LiDAR measurements, as the underclustering issue may
arise. Underclustering occurs when points belonging to two
different objects are wrongly grouped together and only
one measurement is returned. In our application, the tuning
parameters of the processing algorithm are carefully selected
to prevent this behaviour. On the other hand, if the LiDAR
processing module produces multiple measurements from the
same physical object (overclustering), the association step
will handle it by only considering one cluster (the nearest
one) and ignoring the others.

Given the sets of measurements Zlidar, Zcam and the set
of tracks X , we iterate the association algorithm three times.

1) LiDAR - track association: in this step, the pairings
between existing tracks and new LiDAR measurements
are determined. The data association problem is formu-
lated as a typical combinatorial optimization problem
known as an association problem, which is solved using
Munkres’s algorithm [15]. This requires the construction
of a distance matrix Dtrack

lidar , where each element dij is
computed as follows:

dij = (zilidar − xj
track)

TSj(zilidar − xjtrack) (3)

where zilidar is the position of the i-th LiDAR cluster
centroid, xjtrack = (xj , yj)T is the estimated position
of the j-th track and Sj is its corresponding position
innovation covariance, which is estimated by the EKF.
In addition, Munkres’s algorithm considers a gating
threshold τG to reject the effect of outliers in the pairing
procedure. In particular, every element dij bigger than
τG is forced to infinite, and is therefore ignored by the
optimization algorithm. Finally, the best measurement -
track pairings are determined by solving the optimiza-
tion problem.

2) Camera - track association: the same association
procedure is iterated also for the camera measurements.
The distance matrix Dtrack

cam is constructed by computing
its elements dwj as:

dwj = (z̃wcam − xj
track)

TSj(z̃wcam − xjtrack) (4)

with z̃wcam = (xwcam, y
w
cam)T . In this step, the gating

distance τG(cw) is selected depending on the detected
class of the w-th camera measurement. This is because,
due to the characteristics of the 3D detector, the cam-
era position measurement is subject to different errors
depending on the type of obstacle.

3) Camera - LiDAR association: the final step consists
in verifying if some close LiDAR and camera mea-
surements exist that are not associated to any track,
exploiting again Munkres’s algorithm. Measurements
that have already been paired in the previous iterations
are removed from the full sets, and the remaining
ones are used to construct the distance matrix Dlidar

cam

constituted by the elements diw:

diw = (zilidar − z̃wcam)T · (zilidar − z̃wcam) (5)

As for the step (2), τG(cw) depends on the detected
class of the w-th camera measurement.

After having completed the three association steps the
following sets of groups are constructed:

• Set of LiDAR-track pairs (zilidar, xj): this set contains
the LiDAR measures that are associated to existing
tracks, but no corresponding camera measures exists.

• Set of Camera-track pairs (zwcam, xj): this set contains
the camera measures that are associated to existing
tracks, but no corresponding LiDAR measures exists.
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• Set of LiDAR-camera-track groups (zilidar, zwcam, xj):
this set contains the list of tracks that are associated to
both a camera and a LiDAR measure.

• Set of LiDAR-camera pairs (zilidar, zwcam): this set
contains the LiDAR measures that are associated to
camera measures, but no corresponding tracks exists.

The so formed groups are used to initialize new tracks
or correct the motion prediction of existing ones, as further
discussed in Sections II-D.2 and II-E.

D. Target tracking filter

At the core of the proposed approach is an Extended
Kalman Filter, that predicts the motion of dynamic obstacles
through a motion model and corrects the estimate exploiting
the measurements coming from the sensor processing mod-
ules.

1) Motion model: The tracking filter assumes that the
motion of dynamic obstacles follow a CTRV model. The
model equations express the relative motion of each tracked
object with respect to the ego vehicle. Each track is described
by the following state vector:

x = (x, y, ψ, v, ω)T (6)

where, x, y are the coordinates of the track relative to the
vehicle center of gravity, ψ is its relative heading, and v, ω
its absolute linear and rotational speeds. The state equations
that describe the evolution of each track, in discrete time,
are:

xk+1 = f(xk) + νk

yk = Hxk + wk

(7)

f(x) =


f1 · cos(ωego · Ts) + f2 · sin(ωego · Ts)
−f1 · sin(ωego · Ts) + f2 · cos(ωego · Ts)

ψ + Ts · (ω − ωego)
v
ω

 (8)

with:
f1 = x+ Ts · v cos(ψ)− Ts · vegox

f2 = y + Ts · v sin(ψ)− Ts · vegoy

(9)

where Ts is the sampling time. Note that, opposite to the
classical approach, the CTRV model is written in the body
fixed reference frame of the EGO vehicle.

2) Measurement function: Depending on the results of the
data association procedure, a different measurement vector
may be available for each track at each new iteration. In
particular, three different alternatives are possible:

- In the case of a LiDAR-track pair the full measurement
vector ylidar is considered:

ylidar = (xlidar, ylidar)
T

Hlidar =

(
1 0 0 0 0
0 1 0 0 0

)
(10)

- In the case of a camera-track pair the full measurement
vector ycam is used:

ycam = (xcam, ycam, ψcam)T

Hcam =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 (11)

- Finally, in the case of a camera-LiDAR-track group, we
consider the position measured by LiDARs and the yaw
from the camera. The measurerement matrix Hgroup is
equal to Hcam.

ygroup = (xlidar, ylidar, ψcam) (12)

E. Track management

The number of elements tracked by the EKF filter varies
dynamically. At each iteration, one of the following situa-
tions can happen:

• A measurement is available for an existing track. The
track state is corrected, using the measurement matrices
described in Section II-D.2.

• An existing track is not associated to any measurement.
This may happen because the tracked object is shad-
owed by another obstacle, or because it has exited the
scene. In the latter case, the track should be removed.

• A measurement is left with no associated track. In
this case, a new track should be initialized. To ensure
maximum robustness, the track is created only when
most reliable information is available, corresponding
to the case of a camera-LiDAR measurement. This
allows a precise initialization of the position of the
new track, thanks to the LiDAR observation, while the
detected class from the camera is exploited to easily
recognize a potentially dynamic obstacle. LiDAR-only
or camera-only measurements are instead not used for
initialization, and are therefore discarded.

A similar logic to the one described in [11] is implemented
for the initialization and elimination of tracks. When a new
camera-LiDAR measurement not linked to a previously ex-
isting track is obtained, a new track is initialized as tentative.
If the new track is associated to at least Mc measurements in
the following Nc time instants, it is confirmed, otherwise, it
is discarded. A similar approach is also employed for track
elimination. A track is removed from the tracking filter if it
doesn’t receive a minimum of Me measures within the last
Ne time intervals.

III. EXPERIMENTAL RESULTS

In order to assess the performance and effectiveness of our
multi-object tracking approach, we performed two different
validations:
A) KITTI Multiple Object Tracking (MOT) benchmark:

with this validation it is possible to evaluate the Lo-
calization, Detection and Association accuracy of our
algorithm.

B) State estimation accuracy: this validation aims to eval-
uate the accuracy of the algorithm in estimating the
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tracked objects position, orientation, speed and yaw rate.
The metrics used for the evaluation are the Root Mean
Square Error (RMSE), the Mean Absolute Error (MAE)
and the Maximum Absolute Error (MaAE). This analysis
is performed both in simulation and with real tests.

The vehicle used for the experimental validation is a
Maserati MC20, fully equipped with sensors, processing
units and actuators for autonomous driving. The vehicle is
equipped with both proprioceptive and exteroceptive sen-
sors. Proprioceptive sensors are used to compute the linear
and rotational velocities of the vehicle, while exteroceptive
sensors enable perception of the vehicle’s surroundings. The
following list details all the sensors mounted on the Maserati
MC20 vehicle with their specifications.

• Four wheel encoders.
• Two inertial navigation systems (INS): an OXTS AV200

and a Novatel PwrPak7.
• Two Robosense M1 solid state LiDARs, each one

guaranteeing an horizontal Field Of View (FOV) of
120◦ and a vertical one of 25◦, with a resolution of 0.2◦.
The two LiDARs are positioned with 30◦ of overlap,
in order to obtain a total horizontal FOV of 180◦. The
two LiDARs are synchronized using the gPTP protocol,
allowing for the merging of sensor outputs before the
processing step.

• A Zed2i camera, with an horizontal FOV of 120◦ and
a focal length of 2.1mm.

This vehicle was the first self-driving car to ever partici-
pate in the historic 1000 Miglia competition, as part of the
1000MAD project [18].

A. KITTI MOT benchmark
This validation uses the KITTI dataset [16], known for

its practical applicability, diverse object categories, and dif-
ficult scenarios, to comprehensively evaluate our multi-object
tracking methodology. The metrics used to evaluate the
performance of MOT algorithms on the KITTI dataset are
described in [17]. In particular, by focusing on key metrics
such as HOTA (Higher Order Tracking Accuracy), DetA
(Detection Accuracy), AssA (Association Accuracy), LocA
(Localization Accuracy) and MOTA (Multi Object Tracking
Accuracy) we can evaluate the algorithm’s ability to tackle
complex tracking scenarios, including object occlusions, in-
teractions, and varying environmental conditions. The results
are presented in Table I and demonstrate the approach’s good
performance in tracking both cars and pedestrians.

Class HOTA
(%)

DetA
(%)

AssA
(%)

LocA
(%)

MOTA
(%)

Car 76.784 76.378 77.27 87.498 88.472
Pedestrian 44.737 47.019 42.813 79.536 43.928

TABLE I: Results of 3D MOT on the KITTI tracking
validation set for the car and pedestrian classes.

B. State estimation accuracy
This analysis is performed considering both a simulated

and a real scenario. As regards the simulation, we exploited

VI-WorldSim, an advanced simulator for autonomous driving
that allows the creation of detailed urban scenarios populated
with different types of agents. The simulator also faithfully
replicates the vehicle’s sensor setup and observations. For
the validation, we created a dedicated scenario wherein the
vehicle drives on city streets alongside other agents, such as
pedestrians, cyclists and other vehicles. The validation results
are detailed Table II. The RMSE, MAE and MaAE remain
generally small for all agent categories (e.g. car, cyclist,
pedestrian). The position estimation error of the car class
is slightly higher compared to cyclists and pedestrians, but
the maximum errors remain less than 1 m. On the contrary,
the estimation of other state variables shows better results for
the car class than for pedestrians and cyclists, particularly in
terms of orientation. This outcome may be explained by the
better performance of the 3D detector used to measure the
orientation of cars than of cyclists and pedestrians. Further-
more, it is crucial to note that pedestrians and cyclists change
their orientation more rapidly than cars, leading to higher
errors in orientation estimates for these categories. This
validation demonstrates the algorithm’s ability to accurately
and reliably track the position, orientation, and dynamics of
objects.

The proposed algorithm was validated also with real-world
tests. For this validation a chosen vehicle was equipped
with an GNSS/INS unit with RTK correction that generates
ground-truth measurements. The results of this experimental
test, displayed in Figure 4, demonstrate the significant level
of performance achieved by the proposed algorithm. The
algorithm consistently achieves low levels of estimation
errors for the position, orientation, speed, and yaw rate of the
tracked vehicle, which align with the error values obtained
during simulation.

Fig. 4: Track state estimation error. The four plots show
respectively the position, orientation, speed and yaw rate
estimate errors.

Moreover, the experimental validation results were com-
pared with the same algorithm operating in single-modality
modes, exclusively using either camera or LiDAR data. The
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Agent RMSE MAE MaAE
pos [m] ψ [◦] v [m/s] ω [◦/s] pos [m] ψ [◦] v [m/s] ω [◦/s] pos [m] ψ [◦] v [m/s] ω [◦/s]

Cyclist 0.253 13.34 0.334 9.386 0.207 7.351 0.174 6.019 0.697 31.87 1.157 35.15
Car 1 0.516 5.946 0.574 7.936 0.406 3.391 0.438 5.767 0.955 17.38 1.622 31.31
Car 2 0.408 5.123 0.498 7.241 0.312 2.954 0.354 4.965 0.875 15.24 1.421 24.12
Car 3 0.492 5.561 0.524 7.532 0.361 3.465 0.398 5.482 0.894 16.54 1.574 28.63
Pedestrian 1 0.143 17.79 0.184 11.32 0.107 12.04 0.137 7.521 0.379 47.16 0.669 37.47
Pedestrian 2 0.158 18.27 0.214 11.86 0.112 12.47 0.158 7.864 0.385 53.14 0.884 40.35
Pedestrian 3 0.167 15.39 0.193 9.945 0.132 10.58 0.125 6.361 0.401 41.37 0.563 32.75

TABLE II: MOT algorithm’s state estimation errors for different agents (simulated scenario).

results are presented in Table III. Notably, the algorithm
yielded lower performance in both the camera-only and
LiDAR-only modes, underscoring the necessity of sensor
fusion to achieve accurate tracking by combining information
from both sensors.

Single-modal
(camera)

Single-modal
(LiDAR)

Multi-modal
(camera+LiDAR)

RMSE

pos [m] 0.1804 0.1671 0.1378
ψ [◦] 2.171 3.035 2.329
v [m/s] 0.2782 0.2811 0.273
ω [◦/s] 3.674 4.517 4.15

MAE

pos [m] 0.1271 0.097 0.085
ψ [◦] 1.663 1.877 1.786
v [m/s] 0.2016 0.201 0.196
ω [◦/s] 2.809 3.286 3.185

MaAE

pos [m] 1.015 0.845 0.797
ψ [◦] 11.017 31.939 9.614
v [m/s] 0.8787 1.238 0.873
ω [◦/s] 16.227 22.803 14.744

TABLE III: Errors comparison for the three different modal-
ities.

IV. CONCLUSIONS

This paper presents a MOT algorithm that fuses camera
and LiDAR sensors. The method utilizes a camera 3D detec-
tor to detect dynamic obstacles and clustering techniques to
process the LiDAR output, ensuring fast and precise object
positioning. Our MOT algorithm tracks each object using an
EKF and a novel motion model that estimates the position,
orientation and absolute longitudinal and angular velocities
of the object, without relying on maps or knowledge of the
ego global pose. This approach only requires the current
measured position and orientation of the observed object,
as well as the longitudinal and angular velocities of the ego
vehicle. The correction phase measurement vector and matrix
are dynamically adapted based on the results of a three-
step data association procedure that groups the tracks and
measurements more likely to have been generated by the
same object.
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