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Abstract— Modeling the collective response to an emergency
is a problem of paramount importance in social science and risk
management. Here, we leverage the social-psychology literature
to develop a mathematical model tailored to such a problem. In
our model, a network of individuals revises their risk perception
by processing information broadcast by the institution and
shared by peers, accounting for heterogeneity in terms of
individuals’ trust in institutions, peers, and risk sensitivity.
Analyzing the model, we establish that the temporal average
opinions of the individuals converge to a steady state and, under
some assumptions, we are able to analytically characterize
such a steady state, shedding light on how the individuals’
heterogeneous risk perception shapes the collective response.

I. INTRODUCTION

The development and analysis of mathematical models
for social dynamics have witnessed an increasing interest
in the systems and control community, providing novel
theoretically-informed tools to understand and predict col-
lective human behavior [1]–[8]. In particular, a key area of
research focuses on studying opinion formation in social
communities through the lens of opinion dynamics mod-
els [9]–[13], in which individuals’ opinions evolve over time
through a linear averaging process that accounts for the
information exchanged with peers on a social network.

Concerning opinion formation, of particular interest is to
understand the emergent behavior of a population during
an emergency [14]. In this situation, it is crucial to have
insights about how the individuals of a population collec-
tively respond to the information that public authorities and
institutions broadcast on the nature of the risk of the event
under consideration in order to avoid underestimating the
risk or, on the other extreme, emergence of panic reactions.

Despite the importance of such problem, the literature
presents few mathematical models of opinion formation
tailored specifically to such a scenario. On the one hand,
classical mathematical models focus on an abstract represen-
tation of opinion dynamics [12]; on the other hand, social-
psychological efforts are mostly concerned with unveiling
the individual-level risk interpretation process [15]–[19],
typically overlooking how such individual-level mechanism
propagates at the population-level. In [20]–[22], different
agent-based models tailored to capturing the emergence of
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collective risk perception about an emergency have been pro-
posed and used to perform numerical simulations. However,
the complexity of such models hinders rigorous analytical
studies, calling for the development of new analytically-
treatable mathematical models for collective risk perception.

Here, we fill in this gap by proposing a novel analytically-
treatable model for collective risk perception, grounded in the
theory of opinion dynamics [11], [23]. In particular, inspired
by [21] and building on the social-psychology literature [15]–
[19], we consider a network of interacting individuals who
are forming their opinion on the risk of a given emer-
gency. Specifically, individuals are exposed to two different
sources of information: an evaluation of the risk which is
officially broadcasted by the institutions and a local risk
perception shared by peers on a dynamical social influence
network [16], [17]. Consistent with the social-psychology
literature on risk interpretation [18], individuals recursively
revise their risk perception by processing these different
information sources through their own risk sensitivity [19].

Our contribution is threefold. First, we propose the math-
ematical model for collective risk perception and we demon-
strate that it can be cast as a generalized version of the
well-known Friedkin–Johnsen opinion dynamic model [9]
on a time-varying network. However, the complexity of the
network formation process hinders its direct analysis using
standard techniques [11], [23]. Second, we prove that, while
individuals’ opinions in general tend to keep oscillating,
their temporal average converge under mild assumptions on
the network structure. Third, under some assumptions, we
analytically characterize the steady-state temporal average
opinion, showing how the presence of individuals with high
risk sensitivity could lead to overreactions and panic.

Notation: We denote the set of nonnegative and strictly
positive integer numbers by N and N+, respectively. A vector
x is denoted with bold lower-case font, with ith entry xi and
x⊤ denoting its transpose; a matrix A is denoted with bold
upper-case font, with jth entry of the ith row Aij . Given a
stochastic event E, we denote its probability by P[E]; given
a random variable x, we denote its expectation by E[x].

II. MODEL

We consider a population of n ∈ N+ individuals, denoted
by the set V = {1, . . . , n}. Individuals are connected through
a time-invariant network G = (V, E) that captures social
influence between the individuals. In particular, the directed
edge (i, j) ∈ E if and only if i can be influenced by the
opinion of j. For any individual i ∈ V , we denote by
Ni := {j : (i, j) ∈ E} the set of (out)-neighbors of i, that is,
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the set of individuals who can directly influence the opinion
of i, and by di := |Ni| the (out)-degree of the individual.

Each individual i ∈ V is characterized by an opinion
xi(t) ∈ [0, 1], which represents individual i’s risk perception
on the emergency at discrete time t ∈ N, with initial
opinion xi(0) ∈ [0, 1]. Opinions are gathered into a vector
x(t) = [x1(t), . . . , xn(t)]

⊤, which represents the state of
the network at time t. Moreover, i ∈ V is characterized by
three parameters: risk sensitivity ρi ∈ {−1, 0,+1}, trust in
institutions τi ∈ [0, 1], and trust in peers µi ∈ [0, 1], with
τi + µi ≤ 1. Note that 1 − τi − µi can be interpreted as a
measure of the stubbornness of the individual.

Opinions of the individuals evolve over time in accordance
with observations from the social-psychology literature on
risk interpretation, which provides evidence of the fact that
individuals do not directly take the information broadcasted
by the institution, but they process it using information from
peers and their own risk sensitivity [15]–[19]. Grounded
on such literature, we define a two-step update mechanism.
First, the individuals gather information from the institutional
source and from peers, and process such information, ac-
cording to a weighted average dynamics, regulated by the
parameters representing the individuals’ trust in institutions
and in peers, respectively. Second, the individuals revise
their opinion by using such information gathered, and further
processing it, based on their own risk sensitivity. Such a two-
step mechanism is illustrated in Fig. 1.

In the following, we define these dynamics and explicitly
derive the set of equations that governs the model. For
simplicity, we denote the intermediate step of the opinion
in the revision from xi(t) to xi(t+ 1) as zi(t).

A. Step I: Information gathering

At each time step t ∈ N+, each individual i ∈ V receives
information from the institutions about the nature of the risk.
Specifically, the institution broadcasts a (constant) signal ι ∈
[0, 1], which quantifies the nature of the risk. Such a signal
should be interpreted as a normalized quantity, so that ι = 0
means no risk and ι = 1 corresponds to maximal risk.

At the same time, individuals share information with
their peers, consistent with the observations from the social-
psychological on risk management [16], [17]. Specifically, at
each time-step t ∈ N+, each individual i ∈ V interacts with
a peer j, selected uniformly at random in Ni, independently
of the past. The neighbor j decides to share with i their
opinion with state-dependent probability equal to fj(xj(t)),
where fj : [0, 1] → [0, 1] is a function termed sharing
probability function that maps the opinion of individual j
to their tendency to communicate it. This function captures
the fact, well-known in the social-psychology literature, that
people tend to transmit information that is in accordance with
their risk perception [19].

To represent the information sharing process, we use a
time-varying network Gt = (V, Et). If at time t ∈ N
individual i interacts with j, and j decides to share their
opinion, then we add the link (i, j) to the edge set Et. We
define the adjacency matrix as a n× n time-varying matrix

A(t), with off-diagonal entries Aij(t) = 1 if (i, j) ∈ Et
and Aij(t) = 0 otherwise. The diagonal entries are defined
as Aii(t) = 1 −

∑
j∈V\{i} Aij(t). Note that, at each time,

exactly one entry per each row of A(t) is nonzero: this is
the jth entry if i receives information from j, or diagonal
entry if i does not receive information at time t.

Then, individual i revises their opinion by averaging the
current opinion xi(t) with the information received from the
different sources of information (ι and, possibly, xj(t)), with
the weights given by the trust in institutions τi and in peers
µi, respectively, obtaining the following convex combination:

zi(t) = (1− µi − τi)xi(t) + µi

∑
j∈V

Aij(t)xj(t) + τiι, (1)

which reduces to zi(t) = (1 − τi)xi(t) + τiι, when no
information is received from the network, i.e., if Aii(t) = 1.

B. Step II: Opinion processing through risk sensitivity

After having revised their opinion on the basis of the
information gathered from external sources (institutions and
peers), individuals further process their opinion through their
own risk sensitivity. Specifically, following [21], we assume
that each individual i ∈ V updates their opinion as

xi(t+ 1) =


1
2 (1 + zi(t)) if ρi = +1,
zi(t) if ρi = 0,
1
2zi(t) if ρi = −1,

(2)

which can be conveniently re-written as a linear combination:

xi(t+ 1) =
(
1− 1

2
|ρi|

)
zi(t) +

1

4
|ρi|(1 + ρi). (3)

We conclude this section by observing that the entire two-
step opinion update mechanism can be cast in a compact
form as the linear averaging dynamics on a (weighted)
time-varying network, which is summarized in the following
statement.

Proposition 1. For each and every i ∈ V , the opinion update
mechanism reads

xi(t+ 1) = (1− λi)
∑

j∈V
Ãij(t)xj(t) + λiui, (4)

where

Ãij(t) =


µi

1− τi
Aij(t) if j ̸= i,

1− µi

1− τi

(
1−Aii(t)

)
if j = i,

(5a)

λi =
1

2
|ρi|(1− τi) + τi, (5b)

ui =

(
1− 1

2 |ρi|
)
τiι+

1
4 |ρi|(1 + ρi)

1
2 |ρi|(1− τi) + τi

. (5c)

Proof. By substituting Eq. (1) into Eq. (3), we obtain

xi(t+ 1) =
(
1− 1

2 |ρi|
)(

(1− µi − τi)xi(t)

+µi

∑
j∈V Aij(t)xj(t) + τiι

)
+ 1

4 |ρi|(1 + ρi)

=
(
1− 1

2 |ρi|
)((

1− τi − µi(1−Aii(t))
)
xi(t)

+µi

∑
j∈V\{i} Aij(t)xj(t) + τiι

)
+ 1

4 |ρi|(1 + ρi),

(6)
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Fig. 1: Schematic of the two-step opinion update mechanism.

which, after simplification and proper-re-writing of the co-
efficients, yields Eqs. (4)–(5).

Remark 1. From Proposition 1, we observe that Eq. (4)
can be interpreted as a Friedkin–Johnsen opinion dynamics
model on a time-varying network [9]. However, the com-
plexity of the network formation process (which is inherently
state-dependent) does not allow to directly apply classical
results [11], [23], making the study of the model nontrivial.

III. CONVERGENCE RESULTS

Here, we prove some general properties of the model to
characterize the asymptotic behavior of the model. Specif-
ically, we prove that, while individuals’ opinion will tend
to keep oscillating, their temporal average converges to a
steady state. Before obtaining such a result, we start by
observing that the model is always well-defined, that is, that
the opinions will always remain within their domain.

Lemma 1. The set [0, 1]n is positively invariant for the
model in Eq. (4), that is, if x(0) ∈ [0, 1]n, then x(t) ∈
[0, 1]n, for all t ∈ N.

Proof. We proceed by induction. At t = 0, xi(0) ∈ [0, 1] for
all i ∈ V by assumption. Now, assume that xi(t) ∈ [0, 1],
for all i ∈ V . Then, from Eq. (5a), all the entries of Ã are
nonnegative and each row sums to 1. Hence, Eq. (4) states
that xi(t + 1) is a convex combination of the states xj(t),
and ui. Hence xi(t+1) ≥ min{minj∈V xj(t), ui} ≥ 0, being
ui ≥ τi

τi+1 ι ≥ 0; and xi(t+1) ≤ max{maxj∈V xj(t), ui} ≤
1, being ui ≤ 1− τi

τi+1 (1− ι) ≤ 1.

In general, the opinion of each node, xi(t), may not
necessarily converge to a steady state value, but it can
oscillate, due to the stochastic nature of the process that
regulates the opinion exchange mechanism. See, e.g., the
simulations in Fig. 2a. However, we can define the temporal
average opinion of agent i ∈ V as yi(t) :=

1
t+1

∑t
s=0 xi(s).

From Fig. 2b, one can observe that the temporal average
opinion vector y(t) = [y1(t), . . . , yn(t)]

⊤ seem to converge.
This phenomenon resembles the emergent behavior of gossip
consensus dynamics with stubborn agents [24], [25]. How-
ever, in our model, oscillations are due to heterogeneity in
how individuals process information, rather than due to the
presence of stubborn individuals. In the rest of this section,
we will prove a convergence result to provide analytical
support to such claim. We start by proving ergodicity.
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Fig. 2: Temporal evolution of (a) opinions and (b) temporal average opinions
for n = 8 individuals on a complete backbone network. Parameters τi and
µi are selected uniformly at random in [0, 1/2], ρi in {−1, 0,+1}, and
initial condition xi(0) in [0, 1], for each i ∈ V independently of the others.

Proposition 2. The process x(t) with update mechanism in
Eq. (4) is ergodic.

Proof. The proof follows from the compact formulation in
Eq. (4), which satisfies the assumptions in in [26, Th. 1].

Corollary 1. Since the process x(t) is ergodic, it holds that
if the mean dynamics E[x(t)] converges to a steady state x̄,
then the temporal average opinion vector converges to the
steady state of the mean dynamics, i.e., limt→∞ y(t) = x̄.

Based on Corollary 1, we study the mean dynamics, i.e.,
the evolution of E[x(t)], in order to draw conclusions on the
temporal average opinion. We start by explicitly deriving the
update rule for the mean opinion dynamics.

Proposition 3. For each and every i ∈ V , the expected
opinion evolves as

E[xi(t+1)] =
(
1−λi

)∑
j∈V

Wij(x(t))xj(t)+λiui, (7)

with

Wij(x(t)) =


µi

di(1−τi)
fj(xj(t)) if j ∈ Ni,

1− µi

di(1−τi)

∑
j∈Ni

fj(xj(t)) if j = i,

0 otherwise,
(8)

and λi and ui from Eq. (5b) and Eq. (5c), respectively.

Proof. First, we compute the probability that i receives
information from j ∈ Ni at time t, as

P[Aij(t) = 1] = P[i contacts j]P[j shares] =
fj(xj(t))

di
.

(9)
Using Eq. (9), we compute the probability that i receives
information not only from the institution, but also from the
network, at time t, as

P [Aii(t) = 0] =
∑
j∈Ni

P[Aij(t) = 1] =
1

di

∑
j∈Ni

fj(xj(t)).

(10)
Hence, using Eq. (1), Eq. (9), and Eq. (10), we compute

the expected value of the opinion of individual i after the
information exchange step, by conditioning on the values of
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the ith row of matrix A(t), as follows:

E[zi(t)] = P [Aii(t) = 1] [(1− τi)xi(t) + τiι]

+
∑
j∈Ni

P [Aij(t) = 1] [(1− µi − τi)xi(t) + µixj(t) + τiι]

=
(
1− 1

di

∑
j∈Ni

fj(xj(t))
)
[(1− τi)xi(t) + τiι]

=
∑
j∈Ni

1

di
fj(xj(t)) [(1− µi − τi)xi(t) + µixj(t) + τiι]

=
(
1− µi

di

∑
j∈Ni

fj(xj(t))− τi

)
xi(t)

+
µi

di

∑
j∈Ni

fj(xj(t))xj(t) + τiι.

(11)
Finally, we combine Eq. (11) and Eq. (3), obtaining an

equation that determines the expected value of the opinion
at time t + 1, as a function of the current opinion of the
individual, of their neighbors, and the model parameters:

E[xi(t+ 1)]=
(
1− |ρi|

2

)(
1− µi

di

∑
j∈Ni

fj(xj(t))−τi
)
xi(t)

+
(
1− 1

2
|ρi|

)µi

di

∑
j∈Ni

fj(xj(t))xj(t)

+
(
1− 1

2
|ρi|

)
τiι+

1

4
|ρi|(1 + ρi),

(12)
which can be re-written as Eq. (7), yielding the claim.

Finally, we are ready to prove that, under some reasonable
assumptions on the network of interactions and on the func-
tion f , the expected opinions and, ultimately, the temporal
average opinions converge to a steady state.

Assumption 1. Assume that the network G = (V, E) is
strongly connected, fi(x) > 0 for all x > 0 and i ∈ V ,
ι > 0, and τi > 0, for all i ∈ V .

Theorem 1. Under Assumption 1, the temporal average
opinion vector yi(t) := 1

t+1

∑t
s=0 xi(s) under the opinion

update in Eq. (4) converges almost surely to a steady state,
i.e., limt→∞ y(t) = x̄ ∈ [0, 1]n.

Proof. First of all, we observe that if τi = 1 or µi = 0,
then an individual’s opinion is not influenced by others, so
xi(t) = xi(0) for all t ≥ 0, yielding the claim for individual
i. Let now focus on the individuals with µi ̸= 0 and τi ̸= 1.

We start proving that, under Assumption 1, the mean
dynamics of the ORE model E[xi(t)] from Proposi-
tion 3 converges almost surely to a steady state, that is,
limt→∞ E[xi(t)] = x̄i ∈ [0, 1]. To obtain such convergence
result, we consider the mean dynamics in Eq. (7), with the
expression of Wij(x(t)) reported in Eq. (8). First of all, we
observe that, the update rule in Eq. (4) establishes a lower-
bound on xi(t). In fact, since from Lemma 1, xi(t) ≥ 0,
then we can further refine the bound by establishing that
xi(t) ≥ λiui ≥ 1

2τiι. We define the uniform bound α :=
mini∈V

µi

di(1−τi)
fi(

1
2τiι). Under Assumption 1, we observe

that 1
2τiι > 0, which implies that also fi(

1
2τiι) > 0. Hence,

α > 0. From Eq. (8), we observe that we can derive the
following time-invariant bound on the weight for each link:

Wij(x(t)) ≥ α, for all i ∈ V , j ∈ Ni. Thus, the time-
varying graph with weights W is strongly connected, being
G strongly connected. Hence, the mean dynamics in Eq. (7)
is a Friedkin-Johnsen model on a strongly connected time-
varying network, so E[x(t)] converges [9], [11].

Finally, the fact that the mean dynamics E[x(t)] converges
almost surely to a steady state x̄ (proved in the above),
combined with the fact that the process is ergodic (Propo-
sition 2) implies that limt→∞ y(t) = limt→∞ E[x(t)] = x̄
(Corollary 1), which yield the claim.

IV. STEADY STATE CHARACTERIZATION

In the previous section, we proved that, under some mild
assumptions, the temporal average opinion of the individuals
converges to a steady-state value. In general, the characteriza-
tion of such a steady state is nontrivial due to the complexity
of Eq. (7), which yields a system of n coupled nonlinear
recursive equations — one for each individual, where the in-
herent nonlinearity comes from the fact that the term Wij(x)
(which couples the equations) is state-dependent. In this
section, we consider a specific implementation of the model,
for which we can analytically compute such a quantity, with
a specific focus on the role of risk sensitivity. To perform
such analysis, we make the following assumptions.

Assumption 2. Let G be a complete network, that is, Ni =
V , for all i ∈ V . Moreover, let us assume that the parameters
are uniform across the individuals, that is, τi = τ ∈ (0, 1]
and µi = µ, and that the functions fi are uniform across
the individuals and coincide with the identity function, that
is, fi(xi) = xi. We also assume ι > 0.

In such a setting, we introduce the following notation. Let
η+ := 1

n |{j : ρi = +1}|, η− := 1
n |{j : ρi = −1}|, and

η0 := 1
n |{j : ρi = 0}| be the fraction of population with

high, low, and neutral risk perception, respectively. It clearly
holds η+ + η− + η0 = 1.

Theorem 2. Under Assumption 2, the asymptotic value of
the temporal average opinion of individual i ∈ V under the
opinion update in Eq. (4) satisfies

lim
t→∞

yi(t) =

 ȳ+ if ηi = +1 ,
ȳ0 if ηi = 0 ,
ȳ− if ηi = −1 ,

(13)

where (ȳ+, ȳ0, ȳ−) ∈ [0, 1]3 is solution of

ȳ+ =
1

2

(
1− µ

(
η+ȳ+ + η0ȳ0 + η−ȳ−

)
− τ

)
ȳ+

+
1

2
µ
(
η+ȳ

2
+ + η0ȳ

2
0 + η−ȳ

2
−
)
+

1

2
τι+

1

2
, (14a)

ȳ0 =
(
1− µ

(
η+ȳ+ + η0ȳ0 + η−ȳ−

)
− τ

)
ȳ0

+ µ
(
η+ȳ

2
+ + η0ȳ

2
0 + η−ȳ

2
−
)
+ τι, (14b)

ȳ− =
1

2

(
1− µ

(
η+ȳ+ + η0ȳ0 + η−ȳ−

)
− τ

)
ȳ−

+
1

2
µ
(
η+ȳ

2
+ + η0ȳ

2
0 + η−ȳ

2
−
)
+

1

2
τι. (14c)
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Fig. 3: Numerical simulation of the ORE model with n = 8 on a complete
backbone network, with ι = 0.5, τi = µi = 0.3, for all i ∈ V , initial
condition xi(0) selected uniformly at random in [0, 1], for each i ∈ V
independently of the others, and (a) ρi = +1, (b) ρi = 0, (c) ρi = −1, for
all i ∈ V . The gray dashed line is the predicted consensus (Proposition 4).

Proof. First, we observe that, according to Theorem 1,
the temporal averages of individuals’ opinion converge to
a steady state x̄, which is the steady state of the mean
dynamics. Then, we observe that ergodicity of the process
guarantees that the steady states of the mean dynamics do not
depend on the initial condition. Based on this observation, a
symmetry argument can be used to guarantee that x̄i = x̄j

if ρi = ρj , being all the other parameters equal and the
network fully connected, that is, Eq. (13) holds. At this stage,
we observe that, at the equilibrium, under Assumption 2, the
following two equalities hold true:

1

di

∑
j∈Ni

f(x̄j) =
1

n

∑
j∈V

x̄j = η+ȳ+ + η0ȳ0 + η−ȳ− (15)

and
1

di

∑
j∈V

f(x̄j)x̄j =
1

n

∑
j∈Ni

x̄2
j =

1

n

∑
j:ρi=+1

ȳ2+

+
1

n

∑
j:ρi=0

ȳ20 +
1

n

∑
j:ρi=−1

ȳ2− = η+ȳ
2
+ + η0ȳ

2
0 + η−ȳ

2
+.

(16)
Finally, we write the equilibrium condition for the mean
dynamics, starting from Eq. (12), and we substitute Eq. (15)
and Eq. (16) into such expression, obtaining Eq. (14).

Theorem 2 provides a powerful tool to characterize the
steady-state temporal average opinion of the network. In
general, given the parameter of the model, the solution of
the three coupled quadratic equations in Eq. (14) can be
easily computed using a numerical solver. On the other hand,
determining the analytical solution may be, in general, chal-
lenging, due to the complexity of the equations. In the rest of
this section, we use Theorem 2 to analytically characterize
the steady-state temporal average opinion for some specific
scenarios where analytical treatment is possible.

A. Homogeneous population

First, we consider a homogeneous population where all the
individuals have positive, neutral, or negative risk perception,
i.e., setting η+ = 1, η0 = 1, or η− = 1, respectively. In these
scenarios, we prove almost sure convergence of the opinion
of each individual to a consensus, which we characterize,
with results confirmed by simulations in Fig. 3.

Proposition 4. If Assumption 2 holds and the entire pop-
ulation has the same risk perception, then the ORE model

in Eq. (4) almost surely converges to a consensus, that is,
limt→∞ xi(t) = x∗ with:

E[x∗] =


ι+

1− ι

1 + τ
if η+ = 1,

ι if η0 = 1,

ι− ι

1 + τ
if η− = 1.

(17)

Proof. First, we prove almost sure convergence using The-
orem 3.3 from [27]. The proving argument involves the
definition of an augmented network with an additional node
(which we label as 0) with µ0 = τ0 = 0, and initial opinion

x0(0) =
(1− 1

2 |r|)τι+
1
4 |r|(1 + r)

1
2 |r|(1− τ) + τ

(18)

with r = 1 if η+ = 1, r = 0 if η0 = 1, and r = −1 if
η− = 1. Note that, being µ0 = τ0 = 0, then it holds true
that x0(t) = x0(0), for all t ≥ 0. The entire model can be
reformulated as a De Groot model on a time-varying (state-
dependent) network [11], [23] with node 0 as a globally
reachable node at every time t. Hence, Theorem 3.3 from
[27] guarantees almost sure convergence to a consensus,
which yields the first part of the claim. Since x0(0) =
x0(t), for all t ≥ 0, necessarily the value of the expected
consensus coincides with x0(t). Finally, by substituting r ∈
{+1, 0,−1} into Eq. (18), we get Eq. (17).

Remark 2. From Proposition 4, we observe that, for uniform
populations, the system converges to a consensus, whose
expected value can be computed. In the absence of any
risk perception biases, the consensus coincides with the
actual information sent out by the institution x∗ = ι.
Positive or negative risk perceptions would instead lead to an
overestimation or a underestimation of the risk, respectively,
as can be observed in Fig. 3.

Remark 3. Note that the trust in peers (i.e., parameter µ)
does not play a role in determining the asymptotic consensus
state, but it may affect the speed of convergence. As a conse-
quence, one could relax the assumption that such a quantity
is homogeneous across the population in Assumption 2.

B. Role of heterogeneous risk sensitivity

Here, we investigate the role of individuals with high
risk sensitivity in shaping the emergent behavior of the
population. We consider a polarized scenario with half of the
population with low risk sensitivity and half with high risk
sensitivity, proving that individuals with high risk sensitivity
would lead to an overestimation of the risk.

Proposition 5. If Assumption 2 holds, ι = 1/2, η+ = η− =
1/2, and µ = 1 − τ then the temporal average opinion of
each individual in the ORE model in Eq. (4) almost surely
converges to a steady state with mean opinion < ȳi >:=
1
n

∑
i∈V ȳi ≥ 1/2, with strict inequality holding if τ < 1.

Proof. In this scenario, the equilibrium equations in Eq. (14)
reduce to the following coupled quadratic equations:

ȳ+ =
1

2
(1− τ)

(
ȳ+ − 1

2
ȳ−y+ +

1

2
ȳ2−

)
+

1

2
τ +

1

2
, (19a)
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ȳ− =
1

2
(1− τ)

(
ȳ− − 1

2
ȳ+y− +

1

2
ȳ2+

)
+

1

2
τ, (19b)

where Eq. (14b) is omitted, being η0 = 0. Let us define ξ =
ȳ++ȳ−

2 and ζ = ȳ+−ȳ−
2 as the average and half-difference

between the two mean opinions. We observe that the steady
state with mean opinion < ȳi >:= 1

n

∑
i∈V ȳi = ξ. Hence,

the problem reduces to prove that ξ > 1/2. By computing
the sum and the difference between the two equations in
Eq. (19) and recalling the definition of ξ and ζ, we derive

ξ =
1

2
(1− τ)(1− ξ)ξ +

1

2
(1− τ)(ξ2 + ζ2) +

1

4
τ +

1

4
,

(20a)

ζ =
1

2
(1− τ)(1− ξ)ζ +

1

4
. (20b)

From Eq. (20b), we explicitly compute ξ = 1−2ζ(1+τ)
2ζ(1−τ) .

Our objective is to verify that ξ > 1/2. A necessary
and sufficient condition for having ξ > 1/2 is that ξ >
1
2 ⇐⇒ 1− 2ζ(1 + τ) > ζ(1− τ) ⇐⇒ ζ < 1

3τ+1 .
To check this condition, we need to compute the solution
of Eq. (20) for the variable ζ. To this aim, we substitute
the solution of ξ into Eq. (20a), obtaining the third-order
equation ϕ(ζ) = 2(1−τ)3ζ3+(τ2+4τ +3)ζ− (1+τ) = 0.
It is straightforward to check that ϕ(ζ) is monotonically
increasing in ζ for any τ ∈ [0, 1] (in fact ϕ′(ζ) = 6(1 −
τ)3ζ2 + τ2 + 4τ + 3 > 0); that ϕ(0) < 0 and ϕ(1) > 0.
Therefore, ϕ(ζ) = 0 has only one real solution, which lies
in [0, 1]. However, despite this solution can be analytically
computed (being the unique real solution of a third-order
equation), its complexity hinders the possibility to readily
check whether it is less than 1

3τ+1 . However, we can compute
ϕ( 1

3τ+1 ) =
1

(3τ+1)3 (2(1 − τ)3 + (τ2 + 4τ + 3)(1 + 3τ)2 −
(1+ 3τ)3(1+ τ)) = 4+6τ+22τ2−14τ3−16τ4

(3τ+1)3 , which is strictly
positive for any τ < 1. Being ϕ(ζ) strictly monotonically
increasing, its unique zero must satisfy ζ < 1

3τ+1 , implying
that ξ > 1/2, which yields the claim.

V. CONCLUSION

We proposed a model for collective risk perception
grounded on the mathematical theory of opinion dynam-
ics [9], [11], [23] and social-psychology literature [15], [16],
[18], [19]. We proved convergence of the temporal average
opinions on the risk of a given event, providing a character-
ization of the steady-state temporal average opinions, which
gave us analytical insights into how individuals with high
risk perception may lead to a collective overreactions.

Our results pave the way for several avenues of research.
First, our theoretical analysis should be extended to inves-
tigate the speed of convergence of the temporal average
opinions and their transient behavior, and generalize our
characterization of the steady-state beyond the limitations of
Assumption 2. Second, effort should be placed in extending
the model to incorporate further real-world features, such as
the presence of media which may bias the information pro-
vided by the institution. Third, validation and parametrization
using experimental and survey data on risk perception is
envisaged of our future research.
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