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Abstract—Dynamic soaring is a remarkable flight strategy
employed by soaring birds like albatrosses to harness energy
from the atmospheric wind gradient. This strategy is so efficient
that soaring birds can sustain flight for very long distances
without almost flapping their wings. This phenomenon has in-
trigued researchers across multiple disciplines including biology,
physics, and applied mathematics. For aerospace and control
engineering researchers, mimicking dynamic soaring means new
technologies that contribute to a more sustainable aviation
industry. Significant work has been done in the literature
to mimic dynamic soaring using optimal control frameworks.
However, these approaches have limitations as they are non-
real-time, model-dependent, and computationally expensive.
Very recently, the authors of this paper introduced a novel
autonomous, real-time, and model-free approach for mimicking
dynamic soaring utilizing Extremum Seeking Control (ESC)
methods. However, the ESC structures used in said emerging
approach are sensitive to the curvature of the input-output map
of the system. Therefore, in this paper, we propose a Newton-
based ESC structure for dynamic soaring that is independent
of the input-output map’s curvature. This provides a twofold
contribution: (1) further solidification that the dynamic soaring
problem can be treated as a natural ESC system; and (2) a
framework that captures dynamic soaring independent of the
input-output map’s curvature, which can be particularly useful
in cases where the system model is unknown. We verify our real-
time results via simulations and comparison with non-real-time
powerful optimal control solvers.

Index Terms—Dynamic soaring, Extremum Seeking Control,
Newton Method, Real-time Optimization, Biomimicry.

I. INTRODUCTION

The flight exhibited by soaring birds, including but not
limited to eagles and albatrosses, through the maneuver
known as the “dynamic soaring” has captured the minds,
interest, and fascination of scholars from different science
and engineering communities. For instance, observations and
writings about soaring birds’ flight go back to Lord Rayleigh
and Leonardo da Vinci [1], [2]. How do these birds fly about
8.5 million kilometers in their life span [3] – which is almost
20 times the distance between Earth and the moon? How do
they fly very large distances – over 900 kilometers per day [4]
– which seems to exceed by a very large margin the energy
they get from their food intake? Indeed, it is a challenge to
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overstate how interesting and impressive the energy efficiency
of soaring birds is.

Dynamic soaring as a phenomenon has been studied for
decades – see for example the review papers [5], [6]. In order
for soaring birds to perform dynamic soaring, they conduct
what can be described as four distinct flight phases: (1)
windward climb, (2) high-altitude turn, (3) leeward descent,
and (4) low-altitude turn – see Figure 1. Through these

Fig. 1. The dynamic soaring maneuver of an albatross, characterized by
four distinct flight phases (1-4) depicted in a dark blue trajectory, observed
in the presence of a logistic wind distribution (illustrated in green) above
the surface of the ocean.

distinctive flight phases, the bird covers a significant dis-
tance with minimal energy expenditure utilizing the physical
property known as “wind shear” [6] taking place when the
wind speed varies with altitude, commonly observed above
seas and oceans [7]. In addition, it’s worth mentioning that
the experimental validation of the dynamic soaring flight
maneuver has been conducted with albatrosses [8], [9].
Now, if we are able to replicate/mimic the dynamic soaring
flight maneuver, substantial technological developments can
take place in Unmanned Aerial Vehicles (UAVs), and the
enhancement of their endurance, range, energy efficiency, and
sustainability; it is simply a miraculous-like perspective that
we can fly UAVs almost for free for hundreds of kilometers
as soaring birds do!

As a result, decades-long literature has developed mainly in
the aeronautical/aerospace and control engineering commu-
nities [6] to take us steps closer to the dream of mimicking
dynamic soaring by UAVs. Said decades-long literature,
discussed in more detail in section II, is almost exclusively
dependent on solving the dynamic soaring problem as an
optimal control one, through which, we determine the control
input signals (e.g., pitch and roll) that if applied by the
bird or the mimicking UAV, a successful dynamic soaring
maneuver will be achieved. However, very recently, the

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 239



authors of this paper have introduced a novel approach to
solve the dynamic soaring problem: dynamic soaring can
be performed as an extremum seeking system, and the
manifestation of the dynamic soaring phenomenon seems to
align with the principles of extremum seeking systems in the
natural world [10], [11] –discussed in more details in section
II. Extremum seeking systems are also control systems [12]–
[14] and are often referred to by “ESC.” They are (i) model-
free as long as measurements of the objective function are
obtainable, (ii) real-time, and (iii) not requiring constraints.
We succeeded in implementing dynamic soaring using two
important structures of ESC systems: the so-called classic
ESC structure (see the work of Krstic and Wang in [15], and
[12], for more details on the classic structure) and a control-
affine ESC structure (see [16]–[22] for more details on
control-affine ESC structure, its applications and its relation
with averaging). In [10], [23] we showed that dynamic
soaring is naturally characterized/mimicked by the classic
ESC structure via simulations. We additionally presented a
generalized analysis and mathematical derivation, illustrating
that dynamic soaring can be interpreted as a control-affine
ESC system in [11].

In this paper, we present a novel interpretation of dynamic
soaring as a Newton-based ESC system (elaborated further in
section III). This novel characterization of dynamic soaring
as a Newton-based ESC reaffirms our recent approach in [10],
[11], that dynamic soaring is so natural as an ESC system
that even a different structure such as Newton-based ESC is
also applicable and able to capture the phenomenon. Addi-
tionally, using Newton-based ESC brings major advantages,
especially to the control engineering side of the problem,
by providing an ESC approach that is insensitive to the
curvature of the input-output map of the system unlike the
ESC structures we introduced in [10], [11]. In section IV, we
provide all the details on the design of our control approach
and structure. We also provide numerical simulation results
using our approach (real-time) and compare them with the
powerful optimal control solver (non-real-time) GPOPS2 [24]
to demonstrate the effectiveness of our novel Newton-based
ESC dynamic soaring approach.

II. DECADES-LONG LITERATURE OF DYNAMIC SOARING
VS RECENT REVOLUTIONARY EXTREMUM SEEKING

APPROACH

As previously discussed in Section I, dynamic soaring
has traditionally been formulated in the literature as an
optimal control problem, either partially or fully [6], [25]–
[29]. However, these formulations are nonlinear, model-
dependent, heavily constrained, and non-real-time. Numer-
ical optimizers, such as general purpose optimal control
software (GPOPS), inverse dynamics in the virtual domain
(IDVD), graphical environment for simulation and optimiza-
tion (GESOP), Imperial College London optimal control soft-
ware (ICLOCS), nonlinear programming solver (NPSOL),
and advanced launcher trajectory optimization software (AL-
TOS), have been utilized to generate dynamic soaring tra-
jectories in literature [24], [28]–[31]. These solvers perform

computations in non-real-time and can take up to 1000
seconds for one maneuver, depending on factors such as de-
sired accuracy, problem’s complexity, and the algorithm used
[27]. In some research works [32]–[35], optimal trajectories
have been tracked using different controller architectures,
such as feed-forward-feedback control, nonlinear control,
bio-inspired fuzzy rules, etc. This decades-long trend of the
literature of dynamic soaring is depicted in Figure 2.

Fig. 2. In the literature, optimal control solvers are commonly used to
derive planned trajectories. However, these solvers are non-real-time, com-
putationally expensive, and model-dependent. Following trajectory planning,
a controller is employed to ensure the system tracks the trajectory within an
acceptable margin of error. Regardless of the chosen controller design, the
process remains non-real-time due to the computation involved in trajectory
planning. The “Tracked Trajectory” block depicts the tracked and remaining
segments of the planned trajectory in solid blue and dashed blue lines, along
with the controller’s error margin in lighter dashed curves.

On the other hand, as mentioned in Section I, ESC has been
shown to be natural to the dynamic soaring problem. It can
guide a dynamic system, like an albatross or a mimicking
UAV, in real-time towards the highest/lowest point of an
objective function without requiring knowledge of its math-
ematical expression, as long as accurate measurements are
available. This feature sets ESC apart from optimal control
formulations, making it a powerful alternative approach.
Thus, it is motivating to further investigate a controller that is
autonomous, model-free, and operates in real-time to address
the dynamic soaring problem using measurement via sensors,
which is inspired by an albatross that performs dynamic
soaring in real time without prior knowledge of wind profiles
or mathematical representations of the objective function by
sensing its surroundings (measurement via sensors) – see for
example these studies which conclude that albatrosses nostrils
sense wind speed [36], [37].

Before discussing our novel solution approach using
Newton-based ESC for dynamic soaring, we will first provide
a brief overview of the wind shear models, flight dynamics
models, essential bounds/constraints, and problem formula-
tion as presented in the literature. This overview sets the
context and serves as the operational foundation for the
numerical optimizer used for comparison in Section IV.

A. Wind shear model

Wind shear refers to the fluctuation in wind speed across a
localized region in the atmosphere. It plays an important role
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in facilitating energy harvesting through dynamic soaring [6],
[25]. Hence, having a proper wind shear model is important
for optimal control techniques that are model-dependent.
Usually, in literature, vertical wind shear is assumed. That
is because, at sea level, the wind speed is almost negligible,
but it gradually rises with altitude. To simulate this, numerous
models have been employed in previous research works
on optimal control of dynamic soaring [6]. In [10], both
logarithmic and logistic wind profiles were used to analyze
dynamic soaring as an ESC problem. In this work, we only
consider a logistic wind profile provided by (1) as

W (z) =
W0

1 + e−(z−zm)/δ
. (1)

This wind model has three main parameters: free stream
wind velocity W0, the thickness of the shear layer denoted
by δ, and the altitude corresponding to the middle of the
shear layer, denoted by zm. The corresponding wind profile
is shown in Figure 3.

Fig. 3. A logistic wind profile with free stream wind velocity W0 =
7.8m/s, shear layer thickness δ = 2/3m, and the altitude zm = 5m.

B. Flight dynamics model

The optimal control literature for dynamic soaring has
featured models with three or six degrees of freedom, as
evident in studies such as [6], [25], [28], [29], [38]. However,
the use of six degrees of freedom models (see [38]), may
not provide substantial accuracy improvements relative to
computational costs, as pointed out in [6]. Thus, a point-
mass model is considered to represent either an albatross or
a mimicking UAV, with no thrust component similar to the
ones used in [10], [11]:

ẋ = V cos γ cosψ,

ẏ = V cos γ sinψ −W,

ż = V sin γ,

mV̇ = −D −mg sin γ +mẆ cos γ sinψ,

mV γ̇ = L cosϕ−mg cos γ −mẆ sin γ sinψ,

mV ψ̇ cos γ = L sinϕ+mẆ cosψ.

(2)

The frame of reference taken here is East, North, and Up
denoted by (i, j, k) in Figure 4. In this notation, the roll angle
is denoted by ϕ, and the heading angle, measured between
the projection of velocity V in the ij-plane and i, is denoted
by ψ. Similarly, the flight path angle, represented by γ, is
the angle between velocity V and the ij-plane, considering
a positive orientation when the nose is elevated. The wind is

Fig. 4. The frame of reference, aerodynamic angles, and the aerodynamic
forces acting on soaring birds like albatrosses or mimicking UAVs.

characterized by a density ρ, velocity W , and shear gradient
Ẇ . It consistently blows in a North-to-south direction, con-
tributing only to horizontal wind components. Additionally,
the angles and speed are expressed in the relative reference
frame of the wind, while the spatial coordinates (x, y, z) are
expressed in the Earth’s fixed frame. The aerodynamic forces,
lift (L) and drag (D), are described as follows.

L =
1

2
ρV 2SCL,

D =
1

2
ρV 2SCD,

(3)

where the lift coefficient is represented by CL, and the drag
coefficient, denoted as CD, is determined through CD =
CD0+KC

2
L. Here, CD0 is the zero-lift drag coefficient, while

K is the coefficient of induced drag. Table I provides the pa-
rameters associated with the albatross and the environmental
conditions.

Parameter Value
m 8.5 kg
S 0.65 m2

CD0 0.033
K 0.019
ρ 1.225 kg/m3

g 9.8 m/s2

W0 7.8 m/s
δ 2/3 m
zm 5 m

TABLE I
PARAMETERS RELATED TO THE ALBATROSS AND THE ENVIRONMENT

USED IN THIS STUDY.

C. Optimal control problem formulation

In the optimal control formulation commonly used for
studying dynamic soaring in existing literature [6], the state
vector x(t) and the control vector u(t) are defined as follows:

x(t) = [x, y, z, V, γ, ψ],

u(t) = [CL, ϕ],
(4)
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where the symbols have the usual meaning as described ear-
lier in subsection II-B. The nonlinear system, incorporating
the flight dynamics from (2) and the wind model described
in (1), can be expressed as follows:

ẋ(t) = f(x(t),u(t)). (5)

The primary objective is to maximize the performance index,
denoted as J = g(x; Ẇ ), which generally depends on both
the wind shear/gradient and the state vector. Various choices
for the objective function in dynamic soaring are available, as
outlined in [6]. For this study, we focus on the most relevant
objective function: maximum energy gain

J = max(Energy)gain, (6)

with its expression provided in subsection IV-C. The bird’s
final state after completing a cycle depends on the chosen
dynamic soaring mode—basic, loiter, or travel modes, as
explained in [6]. In loiter mode, the final position must
exactly match the initial coordinates. In travel mode, the
post-maneuver position is partially fixed, whereas in basic
mode, there are no constraints on the final position after the
maneuver—it’s unconstrained with respect to position. In this
study, the basic mode is selected, leading to the following
boundary constraints:

[z, V, γ, ψ]tf
T = [z +∆z, V, γ, ψ]t0

T , (7)

where t0 and tf symbolize the initial and final times, respec-
tively, while ∆z denotes the net change in altitude following
the completion of the dynamic soaring cycle. Similarly,
path constraints for states and control inputs throughout the
dynamic soaring cycle are provided in (8):

Vmin < V < Vmax, ψmin < ψ < ψmax,

γmin < γ < γmax, xmin < x < xmax,

ymin < y < ymax, zmin < z < zmax,

ϕmin < ϕ < ϕmax, CLmin
< CL < CLmax.

(8)

III. NEWTON-BASED EXTREMUM SEEKING CONTROL
AND ITS ADVANTAGES

Extremum seeking control (ESC) is an adaptive and model-
free control technique that was introduced almost a century
ago to stabilize a dynamical system around the extremum
(maximum or minimum) point of an objective function, that
may not be known expression-wise [12], [14]. Its applications
extend across a wide range of disciplines, as explained in
[12]. With particular relevance to our efforts in bringing
this technique to bio-inspiration/mimicry of soaring birds in
[10], [11], we note that ESC structures (both classic and
control-affine structures) have found appealing applications
in decoding biological phenomena and bio-mimicry. For
instance, Cochran et al. [39] succeeded in utilizing model-
free ESC for source seeking by fish. Similarly, ESC has
been used in the bio-mimicry of motion of the bacterium
Escherichia coli (E. Coli) [40] and sea urchin sperm cells
[41]. One important thing to note is that all of the above-
mentioned references used perturbation-based ESC (classic
and control-affine).

The effectiveness of perturbation-based (sometimes called
gradient-based) ESCs is greatly impacted by the curvature of
the underlying map when using structures based on gradient
descent adaptation. Such structures that realize the gradient
by perturbing the feedback measurement of the objective
function, necessitate substantial tuning efforts to ensure sta-
bility across a wide range of operating conditions. In contrast,
Newton-based methods remain unaffected by map curvature
and prove valuable in scenarios where the system model
and Hessian are unknown, as is the case in ESC systems.
Moase, Manzie, and Brear proposed a Newton-like algorithm
for ESC in the late 2000s, which estimates the gradient and
Hessian of the map for a single-input system using a Newton-
like algorithm [42], [43]. A general framework for estimating
higher order derivatives when the cost function itself is
unknown is described in [44]. However, finding the inverse
of the Hessian can be challenging in multivariable systems.
To address this, Ghaffari et al. introduced a multi-variable
Newton-based ESC [45]. Newton-based ESCs have since
been extended to stochastic systems [46], higher derivatives
of unknown maps [47], and various applications such as
power optimization for photovoltaic microconverters [48].
Recently, higher-order Lie brackets approximation techniques
have been used to extend the Newton-based method to
control-affine ESCs [20], [49]. Figure 5 depicts the basic
scheme of the Newton-based ESC, where the parameter θ
is updated to reach the maximum/minimum of the objective
function J . First, a sinusoidal signal a sin(ωt) is added to

Fig. 5. The basic scheme of a Newton-based ESC involves the addition of
a perturbation signal to the parameter θ̂, which is then input into the system
dynamics. The objective function is measured, and an estimator is employed
to estimate both the gradient and Hessian. The adaptation law, utilizing a
Newton-like method, along with an integrator, is employed to update the
parameter θ̂.

the initial estimate of the parameter θ̂, where a and ω denote
the amplitude and frequency of the signal, respectively.
Subsequently, the resulting value of θ is input into the system
dynamics, and the objective function J is measured. It is
essential to highlight that only the measurement of J is
required, and the explicit mathematical form of the objective
function is not needed. An estimator is used to derive the
gradient and Hessian values from the measured objective
function J . These values are then utilized in an adaptation law
based on the Newton-like method to update θ̂. The outcome
of this update determines whether the estimation of θ should
increase or decrease. The guess value of the parameter θ̂ is
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then updated through an integrator.

IV. A NOVEL NEWTON-BASED EXTREMUM SEEKING
CONTROL FOR DYNAMIC SOARING

In this section, we present the rationale behind connecting
Newton-based extremum seeking controller (ESC) with dy-
namic soaring and describe the framework of our proposed
Newton-based ESC model for dynamic soaring that encom-
passes both trajectory planning and tracking. Additionally,
we present the results of simulations conducted on our model
and compare them to those obtained using a powerful optimal
method mentioned in the literature.

A. Reasoning for the use of Newton-based extremum seeking
for dynamic soaring

The application of Extremum Seeking Control (ESC) to
address the dynamic soaring problem was introduced in [10],
[11] by the authors of this paper, representing the first real-
time implementable approach for dynamic soaring since it
was initially discussed by Lord Rayleigh [2]. In these works,
a hypothesis was put forth, suggesting a parallelism between
ESC and dynamic soaring. It was proposed that the variation
or perturbation in the bird’s pitching and rolling actions
corresponds to the modulation step in an ESC. Additionally,
sensing changes in the surrounding environment, such as
wind, height, and velocity, is analogous to measuring the
objective function, while updating the rolling/pitching action
based on feedback is comparable to the parameter update
step. A proof of concept for this hypothesis was provided
through mathematical analysis and simulations, with com-
parisons against results obtained using a powerful optimal
control solver [10], [11]. However, the convergence rate and
stability of perturbation-based ESCs employed in these works
are sensitive to the curvature of the input-output map, given
the use of the gradient descent adaptation algorithm. As a
result, if operating conditions vary significantly, the system
requires retuning. Furthermore, for the dynamic soaring
problem, no prior knowledge of the system model or the
expression of the objective function is assumed. Therefore,
a method that is independent of map curvature is highly
desirable, especially from a control engineering standpoint.
The Newton-based ESC satisfies these criteria and addresses
the shortcomings of perturbation-based ESCs. Thus, we use
it for this research work.

B. Structure of Newton-based ESC for dynamic soaring

In section III, we introduced a general structure of the
Newton-based ESC, which was illustrated in Figure 5. To
tailor this structure to solve the dynamic soaring problem, we
will customize it as follows. For system dynamics, we assume
it to be the albatross/mimicking-UAV flight dynamics. For the
simulation we conduct later, we consider the model given
in (2). It’s worth noting that in a real ESC implementation,
having a model is not necessary, as long as objective function
measurements are accessible. Similar to the rationale and
sense of [10], [11], we adopt the scenario with the constant
CL to obtain a single-input single-output (SISO) system with
rolling action/control ϕ as the sole input, given that this work

is introductory results. Since ϕ is the input to the system
dynamics model, we set the parameter θ to be θ = ϕ. This
choice implies that the rolling action/control becomes the
parameter optimized to either maximize (or minimize) the
objective function of the system. The single output is now the
objective function J , as expressed in (6), and it is assumed to
depend on the states and the wind shear/gradient, represented
as J = g(x, Ẇ ). This completes the customization of
the Newton-based ESC system for the dynamic soaring as
a maximization problem, and the customized structure is
provided in Figure 6. As done in [10], [11], the objective
function corresponding to specific energy gain can be derived
by taking the derivative of specific total energy e = z + V 2

2g ,
with respect to time as follows

ė = ż +
V V̇

g
(9)

= V sinγ +
V

g
[−D − g sin γ − Ẇ cos γ sinψ] (10)

= −DV
g

− V Ẇ cos γ sinψ

g
. (11)

As we can see in (11), the term −V Ẇ cos γ sinψ/g is
the metric for determining energy gain from the wind and
is adopted as the performance index. A similar objective
function was studied and used in [10]. Although assuming
complete knowledge of the behavior of the objective function
is challenging, we assume here that the objective function sat-
isfies the required mathematical conditions (e.g., smoothness,
convexity, unique optimum, etc.), similar to the approach in
[42], [43], and as utilized in our previous works [10], [11].
The rest of the structure in Figure 6 is similar to that provided
in Figure 5. We use the Kalman filter as the estimator to
estimate the gradient and Hessian of the objective function.
Finally, we use an adaptation law that utilizes a Newton-like
method to update the value of the nominal parameter ϕ̂. Next,
we describe the adaptation law and Kalman filter in detail.

Fig. 6. A novel Newton-based ESC system for the dynamic soaring problem.
This structure is similar to that in Figure 5 but with the roll angle (ϕ) as a
control input, (2) as system dynamics, maximum energy gain as the objective
function, and Kalman filter as the estimator.

Adaptation law. The adaptation law used in this study is
similar to that presented in [42] and is based on a Newton-
like method, as shown in equation (12):

dϕ̂

dt
=

{
−kωJ ′/J ′′ if |J ′| < δaJ ′′,

−kωδasgn(J ′) otherwise.
(12)
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The dimensionless constants δ and k, the gradient and
Hessian values (J ′ and J ′′), and information of perturbation
signal are used to progress the control parameter ϕ̂ according
to the Newton-like method when |J ′| < δaJ ′′, and as per the
sign of the gradient otherwise. This approach offers several
advantages, including the avoidance of the point of inflection
when J ′′ = 0 and the saturation of the maximum rate of
change for ϕ̂ to kwδa, leading to more desirable results.

Kalman Filter. For the Kalman filter, we use similar
concepts used in [50], [51]. Let us consider a system with
no dynamics with input ϕ̂ and output Ĵ . Now, using Taylor
series expansion of Ĵ about ϕ̂ is

J = Ĵ + Ĵ ′a sin(ωt) + 1/2Ĵ ′′a2 sin2(ωt) + h, (13)

where h represents higher-order terms, a, ω represent ampli-
tude and frequency of perturbation signal. Now, to estimate
the gradient and Hessian, let us define the state variables x̄
as given in (14):

x̄ =


Ĵ + 1/4a2Ĵ ′′

Ĵ ′a sin(ωt)

Ĵ ′acos(ωt)

Ĵ ′′a2 sin(2ωt)

Ĵ ′′a2 cos(2ωt)

 , A =


0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 2
0 0 0 −2 0

 (14)

By assuming that the change in ϕ̂ is slower compared to the
dither signal, we get the dynamical equation as

˙̄x = Ax̄+Ω, (15)

where A is given in (14) and Ω represents unmodeled
dynamics and is assumed to be Gaussian with zero mean
and covariance Q. Now, by assuming the the higher-order
terms (h) as Gaussian measurement noise ν(t) ∼ N(0, r),
we get from (13):

J = Cx̄+ ν, (16)

where C = [1, 1, 0, 0,−1/4]. Thus, (15) and (16) constitute
the state update and measurement update equation for the
Kalman filter. Now, the gradient and Hessian can be extracted
from the states of the Kalman filter using the following
equations:

aĴ ′ = C ′x̄; C ′ = [0, sin(ωt), cos(ωt), 0, 0] (17)

a2Ĵ ′′ = C ′′Ĵ ; C ′′ = [0, 0, 0, sin(2ωt), cos(2ωt)] (18)

Remark. Apart from our novel contribution using Newton-
based ESC for dynamic soaring, we also tried to identify
which kind of estimator works best for this problem, as
other estimators like Luenberger observer can be found in the
literature. We found that the gain value for the Luenberger
observer is difficult to get and also the unmodeled dynamics
are ignored. On the other hand, for the Kalman Filter, the
unmodeled dynamics are modeled as noise, and the algorithm
itself has a method to get the optimal gain. In addition, we
found that the result using the Kalman Filter is better when
compared to the Luenberger observer. Thus, the Kalman filter
is chosen as the estimator. Of note, the Kalman filter can be
found in the literature of Newton-based ESC [52].

C. Simulations and comparative results

In this subsection, we perform simulations for the newly
proposed Newton-based ESC tailored for dynamic soaring.
Additionally, we compare the simulation results with solu-
tions obtained from GPOPS2 [24], an optimization software
compatible with MATLAB®, utilizing hp-adaptive Gaussian
quadrature collocation methods and sparse nonlinear pro-
gramming. In these simulations, a logistic wind profile is
used for wind modeling, and the objective function is defined
as the energy gain, expressed as J = −V Ẇ cos γ sinψ

g , as
provided in (11). Table I lists the parameters associated with
the albatross and its environment. It is crucial to empha-
size that the explicit expressions for the objective function,
system dynamics model, wind model, and constraints are
not necessary for ESC implementation; however, we include
them for the sake of comparison with GPOPS2. Further-
more, for ESC, we use a modulating signal in the form
of a sin(ωt), where a = 1 and ω = 1. For the adaptation
law, we set k = 1 and δ = 1. We set the initial state as
[−16, 15, 10, 14,−0.66,−0.135] and apply a constant value
of CL = 1.5. Finally, for the Kalman filter, we set the initial
state as x̄0 = [0.1, 0.1, 0.1, 0.1, 0.1], with Q = 0.01I5×5 and
R = 0.01.

Next, we discuss the outcomes of our simulation applying
the novel Newton-based ESC and GPOPS2. The key measure
of the success of our implementation is evident in Figure 7,
where energy neutrality (near-neutrality) is achieved—a fun-
damental characteristic of dynamic soaring. Figure 7 shows
the comparison of potential energy (PE), kinetic energy (KE),
and total energy (TE) obtained using both Newton-based
ESC and GPOPS2 during a cycle of dynamic soaring. It is

Fig. 7. Comparison of kinetic energy (KE), potential energy (PE), total
energy (TE) obtained during a single cycle of dynamic soaring using
Newton-based ESC and GPOPS2.

noteworthy that the total energy is nearly constant in both
approaches, i.e., the energy is traded off between kinetic and
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potential without any or with minimum drag loss. Figure
8 illustrates the comparison between 3D trajectories, while
Figure 9 depicts the plot for states and control input vs
time obtained using both methods. The outcomes from both
methods are quite similar and can be compared: a model-
free, real-time, no-constraints Newton-based ESC vs. model-
dependent, non-real-time, heavily-constrained GPOPS2.

Fig. 8. Comparison of 3D trajectories during a cycle of dynamic soaring
obtained using Newton-based ESC and GPOPS2.

Fig. 9. Comparison of states and control inputs during a cycle of dynamic
soaring using Newton-based ESC and GPOPS2.

V. CONCLUSION

Dynamic soaring is a fascinating phenomenon that has
captivated researchers and engineers for many years, with
the potential to revolutionize the aviation industry. However,

dynamic soaring has been traditionally studied as an opti-
mal control problem that is model-dependent, non-real-time,
and heavily constrained [6]. This decades-long approach is
severely limiting to a better understanding of dynamic soaring
and its applicability. To overcome these issues, an Extremum
Seeking Control (ESC) approach has been proposed very
recently by the authors of this paper in [10], [11] as a more
natural and descriptive way to study and mimic dynamic soar-
ing as it provides a model-free, real-time, no-constraints, and
sensing/measurement-based approach – hypothetically inline
with what soaring birds do. The Newton-based ESC approach
introduced in this paper further solidifies the potential of the
ESC approach proposed by the authors [10], [11] breaking
away from the decades-long optimal control approach in
literature. Additionally, the proposed Newton-based ESC is
particularly useful for the control engineering side of the
problem when the system model and the objective function
curvature are unknown. The simulation results suggest that an
important feature of the dynamic soaring phenomenon, near-
constant total energy, is captured by the Newton-based ESC
which by design is independent of the input-output map’s
curvature. Similarly, the states and the trajectory obtained
using Newton-based ESC are comparable to that obtained in
non-real-time via a powerful optimal control solver.
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