
Efficient C++ implementations of generalized interpolation in
Reproducing Kernel Hilbert Spaces to compute Lyapunov functions

Sigurdur Freyr Hafstein∗,1

Abstract— The Radial Basis Function (RBF) method to com-
pute Lyapunov functions for nonlinear systems uses generalized
interpolation in Reproducing Kernel Hilbert spaces. We present
two different implementation in C++. One that is computa-
tionally efficient and one that is memory efficient. The former
uses standard functions of a numerical library and the latter
directly calls LAPACK routines for packed matrices to perform
in-place Cholesky factorization of the interpolation matrix. The
memory efficient implementation only needs one-fourth of the
memory needed when using a standard numerical library and
thus makes it possible to use double the amount of collocation
points. Both implementations are easily adapted to different
generalized interpolation problems.

I. MOTIVATION

As a motivation we consider a general ordinary differential
equation (ODE) of the form

ẋ = f(x), where f : Rn → Rn and f(0) = 0, (1)

and study the stability of its equilibrium at the origin.
If f in (1) is locally Lipschitz, the ODE has a unique

solution for every initial-value ξ ∈ Rn at time t = 0 and
we denote this solution t 7→ φ(t,ξ). We assume that f ∈
Cm(Rn;Rn), m ∈ N := {1,2, . . .}, let p ∈ Cm(Rn;R) be a
positive definite function, i.e. p(0) = 0 and p(x) > 0 if
x ̸= 0, and let q ∈Cm(Rn;R) be a positive function such that
supx∈Rn ∥f(x)∥2/q(x)<∞. Then by [12, Th. 2.8] the origin is
exponentially stable, i.e. there exist a neighbourhood N ⊂Rn

of the origin and constants α > 0, C ≥ 1, such that

∥φ(t,ξ)∥2 ≤C∥ξ∥2 exp(−αt)

for all ξ ∈N and all t ≥ 0, if and only if the partial differential
equation (PDE)

⟨∇V (x), f(x)⟩2 := ∇V (x) • f(x) =−p(x)q(x), (2)

has a positive definite solution V : M →R, where M ⊂Rn is
a neighbourhood of the origin. In particular, one can take M
as the origins basin of attraction

A(0) := {x ∈ Rn : lim
t→∞

φ(t,x) = 0}.

The function V is a Lyapunov function for the system (1)
and since

V ′(x) :=
d
dt

φ(t,x)
∣∣∣∣
t=0

= ⟨∇V (x), f(x)⟩2 =−p(x)q(x)< 0

*This research was partially supported by the Icelandic Research Fund
in grant number 228725-051.

1Sigurdur Freyr Hafstein is with the Science Institute, University of
Iceland, Dunhagi 5, 107 Reykjavik, Iceland shafstein@hi.is

for all x∈M\{0}, the PDE forces V to be strictly decreasing
along all solution trajectories of system (1) in x ∈ M \{0}.

The Lyapunov stability theory is of fundamental sig-
nificance in the theory of dynamical systems and control
theory and has various applications in both theory and
applications, see e.g. [23], [19], [8], [20], [27], [29], [22], [4].
Since Lyapunov functions cannot be obtained analytically,
except in special cases, many numerical methods for their
computations have been devised; see e.g. [28], [25], [24],
[7], [21] and the review [13]. In the so-called RBF method,
where RBF refers to Wendland’s Radial Basis Functions [30],
generalized interpolation in a reproducing kernel Hilbert
space (RKHS) is used so solve the PDE (2) numerically.
Let us present the most relevant steps and equations here.

First one selects a Wendland function ψ = ψℓ,k : [0,∞)→
[0,∞) of appropriate order ℓ,k ∈ N; for our problem that
means k ≥ 2 if n is odd and k ≥ 3 if n is even and that
ℓ := ⌊ n

2⌋+ k+1. We will use the system

ẋ =

[
ẋ
ẏ

]
=

[
y

−x+ 1
3 x3 − y

]
=: f(x) (3)

as an example for our computations so n = 2 and with k = 3
we have ℓ= 5. We choose a constant c > 0 and set

ψ(r) = ψ5,3(cr) = (1− cr)8
+[32(cr)3 +25(cr)2 +8cr+1],

where (1−cr)m
+ := (1−cr)m if r ∈ [0,1/c] and (1−cr)m

+ = 0
otherwise, m ∈ N. The parameter c > 0 fixes the support
[0,1/c] of the Wendland function ψ . In practice it usually
works best to take the order of the Wendland function as low
as possible, because then the so-called collocation matrix is
better conditioned [2].

Second, one selects a set of collocation points X :=
{x1,x2, . . . ,xN} to compute a numerical solution to (2). With
the auxiliary functions

ψ1(r) =
d
dr ψ(r)

r
and ψ2(r) =

d
dr ψ1(r)

r
for r > 0, (4)

which in our example are

ψ1(r) =−22c2(1− cr)7
+[16(cr)2 +7cr+1],

ψ2(r) = 528c4(1− cr)6
+[6cr+1],

and using the ansatz

VR(x) =
N

∑
j=1

α j⟨x j −x, f(x j)⟩2ψ1(∥x−x j∥2), (5)

one fixes α := (α1,α2, . . . ,αN)
T as the solution to Aα = β ,

where β := (β1,β2, . . . ,βN)
T ,

βi =−p(xi)q(xi), i = 1,2, . . . ,N, (6)

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1064

and the so-called collocation matrix A = (ai j) ∈ RN×N has
the entries

ai j = ψ2(∥xi −x j∥2)⟨xi −x j, f(xi)⟩2⟨x j −xi, f(x j)⟩2

−ψ1(∥xi −x j∥2)⟨f(xi), f(x j)⟩2, (7)

i, j = 1,2, . . . ,N. Such a solution exist if X does not contain
an equilibrium point for (1), i.e. f(xi) ̸= 0 for all i =
1,2, . . . ,N. Indeed, then one can show that the symmetric
matrix A is positive definite and hence non-singular.

Further, as shown in [12, Th. 3.9], for a given δ > 0 and
a compact neighbourhood M ⊂ Rn of the origin, M ⊂ A(0),
one can select the collocation points X such that

max
x∈M

|VR(x)−V (x)|< δ and

max
x∈M

|V ′
R(x)−V ′(x)|< δ ,

where VR is the numerical solution (5) and V is the true
solution to (2). To achieve this one must select the collocation
points such that the so-called fill distance

hX ,M := sup
x∈M

min
x j∈X

∥x−x j∥2 (8)

is small enough.
The implementations we will present in the next section

can easily be adapted to other applications, e.g. generalized
interpolation for the computation of Lyapunov functions for
discrete-time systems, stochastic differential equations, or
contraction metrics; or something completely different. We
will not discuss the generalized interpolation problem in
RKHS further here, but point the interested reader to [3],
[31] for the general theory and [9], [18], [6], [10], [11], [14],
[15] for some specific applications.

The essential property for the implementation is that one
uses a symmetric and positive definite collocation matrix
of dimension N × N, where N is the number of the col-
location points, and more collocation points lead to better
approximations. Hence, one wants N to be large and thus
the size of the matrix A ∈ RN×N can quickly become a
limiting factor. One way to deal with large A∈RN×N is to use
sparse matrix data structures, if possible, but this approach
brings its own problems like how to organize the collocation
points in order to have sparse collocation matrices, which
sparse solver can be used, and what kind of preconditioning
is needed. Another approach, and that is the one we will
present, is to fit the matrix A into as little memory as possible
without assuming sparsity and use in-place computations,
i.e. numerical methods that do not need extra memory. We
do this by calling LAPACK [1] functions for packed matrices
directly.

II. THE IMPLEMENTATION

The advantage of using C++ instead of other common
programming languages for numerical computations, such
as Matlab or Python, is that C++ code tends to be much
faster and that C++, as a further development of C, gives the
programmer low-level control over the computer. Apart from
the standard library we use the Armadillo library for linear

algebra and scientific computing [26] in our implementation,
which allows Matlab like syntax for many computations.
We will present a memory saving implementation using
a packed collocation matrix and direct calls to LAPACK
routines, but we will also show a more straight-forward
implementation of the RBF method without using direct
calls to LAPACK routines. The latter implementation is
faster, but it needs considerably more memory (factor four).
Hence, by using the former implementation one can use
double the amount of collocation points used on a given
computer. All the code presented here can be downloaded
from https://github.com/shafstein/RBFLya

We did our implementation on Linux Mint 21.2 using
the GNU compiler g++. The compiler flags used were
-O2 for speed, -larmadillo to use Armadillo, -lmkl_rt
to use intel’s implementation MKL of LAPACK, and
-pthread for multithreading. On the AMD platform we set
MKL_DEBUG_CPU_TYPE=5 to avoid AVX2 being disabled in
MKL, see e.g. [16].

As default integer type we use using bint=long long

(big integer) and for thread parallelization we use the stan-
dard threads library std::thread; see the following code.

1 using bint = long long;
2 using namespace std;
3 void ParallelFor(const bint _end,
4 function<void(bint)> parfor,
5 const bint NrThread = 1000) {
6 for (bint i = 0; i < _end; i += NrThread) {
7 vector<thread> threads(NrThread);
8 for (bint j = i; j < i + NrThread
9 && j < _end; j++) {

10 threads[j%NrThread]=thread(parfor,j);
11 }
12 for (bint j = i; j < i + NrThread
13 && j < _end; j++) {
14 threads[j%NrThread].join();
15 }
16 }
17 }
18

We implement the RBF method in class RBFLya defined
below.

1 using namespace arma; // vec, mat
2 class RBFLya {
3 bint N;
4 double c;
5 function<vec(vec)> f;
6 function<double(vec)> pq;
7 function<double(double,double)> psi1, psi2;
8 vec alpha, beta;
9 vector<vec> X, fX;

10 vec A;
11 mat Am;
12 public:
13 RBFLya(function<vec(vec)> _f,
14 function<double(vec)> _pq,
15 function<double(double, double)> _psi1,
16 function<double(double, double)> _psi2,
17 double _c) : f(_f), pq(_pq), psi1(_psi1),
18 psi2(_psi2), c(_c), N(0) {
19 };
20 void FixVertices(const vector<vec> &_X);
21 void WriteA(void);

1065

22 void WriteAm(void);
23 void SolveRBF(void);
24 void SolveRBFm(void);
25 double V(const vec &x) const;
26 double OrbDerV(const vec &x) const;
27 };
28

The data members are as follows: N is the number of
collocation points, c is the support radius parameter for the
Wendland function, see the definition of ψ below equation
(3), f is the right-hand side of (1), pq is the function
x 7→ p(x)q(x) on the right-hand side of the PDE (2), psi1
and psi2 are the auxiliary function functions ψ1 and ψ2 from
(4) that are used in (7) and (5), X contains the collocation
points, and fX contains the values f(x j) for the collocation
points x j ∈ X to speed up computations. The vectors alpha
and beta are the vectors α,β ∈ RN in Aα = β . The vector
A is the packed form of the matrix A and the matrix Am

is the unpacked form of the matrix. The constructor of the
class simply initiates some of the data members. A listing
of the member functions together with their implementation
follows.

The member function FixVertices is used to read the
collocation points X into X and compute fX, i.e. f(x j) for all
x j ∈ X . For brevity, we generate a regular grid of collocation
points in the example program below and read them using
FixVertices. A better choice is to generate an optimal
grid, in the sense of lowest fill distance for a given number
of collocation points. An efficient implementation of such a
grid is shown in Listing 1.1 in [5]. We also assert that no
point in X is an equilibrium point, a common mistake that
results in the collocation matrix being singular, and fix N as
the number of collocation points.

1 void RBFLya::FixVertices(const vector<vec>
2 &_X) {
3 X = _X;
4 N = X.size();
5 fX.resize(N);
6 for (bint i = 0; i < N; i++){
7 fX[i] = f(X[i]);
8 assert(norm(fX[i]) > 1e-10);
9 }

10 }

The member function WriteA is used to write the symmetric
collocation matrix A into the vector A in a packed form and
the vector beta, which represent the right-hand side of the
equation Aα = β . The code should be self-explanatory, as it
is essentially the coding of formulas (6) and (7), although the
numbering in A might be a little confusing; we are writing
the elements in the upper triangle of the symmetric matrix
A column-by-column consecutively into the vector A. To
speed up the computations we use thread parallelization with
ParallelFor.

1 void RBFLya::WriteA(void) {
2 A.set_size(N * (N + 1) / 2);
3 beta.set_size(N);
4 ParallelFor(N, [&](bint k) {
5 bint offset = k * (k + 1) / 2;

6 beta(k) = -pq(X[k]);
7 for (bint j = 0; j <= k; j++) {
8 vec x_j_m_x_k = X[j] - X[k];
9 double dist = norm(x_j_m_x_k, 2);

10 if (1.0 - c * dist > 0.0) {
11 A[offset + j] = -psi2(dist, c)
12 * dot(x_j_m_x_k, fX[j])
13 * dot(x_j_m_x_k, fX[k])
14 - psi1(dist, c) * dot(fX[j], fX[k]);
15 }
16 else {
17 A[offset + j] = 0.0;
18 }
19 }
20 });
21 }

The member function WriteAm writes the the vector beta
and the symmetric collocation matrix A into the matrix Am

in unpacked form.

1 void RBFLya::WriteAm(void) {
2 Am.set_size(N,N);
3 beta.set_size(N);
4 ParallelFor(N, [&](bint k) {
5 beta(k) = -pq(X[k]);
6 for (bint j = 0; j < N; j++) {
7 vec x_j_m_x_k = X[j] - X[k];
8 double dist = norm(x_j_m_x_k, 2);
9 if (1.0 - c * dist > 0.0) {

10 Am(j,k) = -psi2(dist, c)
11 * dot(x_j_m_x_k, fX[j])
12 * dot(x_j_m_x_k, fX[k])
13 - psi1(dist, c) * dot(fX[j], fX[k]);
14 }
15 else {
16 Am(j,k)=0.0;
17 }
18 }
19 });
20 }

We now come to the interesting part, the member func-
tion SolveRBF. It calls the LAPACK function dpptrf_

to Cholesky factorize the matrix A, stored in the vector
A in packed form, and does this without requiring any
additional memory, as it does this in-place and overwrites
A with the Cholesky factor. Note that the Cholesky factor is
stored in the vector A just like the matrix A, i.e. the upper
triangular part of the Cholesky factor is written column-by-
column sequentially in A; the lower triangular part that is
not written consists only of zeros. Now, that A contains the
Cholesky factor of A, we can solve the equation Aα = β

efficiently using the LAPACK function dpptrs_. Note that
the parameter INFO in the code must be of type int (and
not bint). Further note that we need to declare the LAPACK
functions dpptrf_ and dpptrs_ as extern "C" to get the
correct binding.

1 extern "C" {
2 void dpptrf_(char *UPLO, bint *N,
3 double *A, int *INFO);
4 void dpptrs_(char *UPLO, bint *N,
5 bint *NRHS, double *AP, double *B,
6 bint *LDA, int *INFO);
7 }
8

1066

9 void RBFLya::SolveRBF(void) {
10 char UPLO = 'U';
11 int INFO;
12 // Cholesky factorize in-place
13 dpptrf_(&UPLO, &N, A.memptr(), &INFO);
14 bint NRHS = 1;
15 // solve A*alpha = beta (overwrites beta)
16 alpha = beta;
17 dpptrs_(&UPLO, &N, &NRHS, A.memptr(),
18 alpha.memptr(), &N, &INFO);
19 }

The member function SolveRBFm assumes that the matrix
A has been written into the matrix Am and uses standard
Armadillo functions to Cholesky factorize it and solve the
equation Aα = β . The Armadillo functions trimatl and
trimatu inform the Armadillo solve function that the
matrix is lower triangular and upper triangular, respectively.

1 void RBFLya::SolveRBFm(void) {
2 Am=chol(Am);
3 alpha = solve(trimatl(Am.t()),beta);
4 alpha = solve(trimatu(Am),alpha);
5 }
6

After the solution α to Aα = β has been computed, either
with SolveRBF or SolveRBFm, we can use formula (5) to
compute VR(x) at any x ∈ Rn. This is done in the member
function V, which is implemented as follows.

1 double RBFLya::V(const vec &x) const {
2 double ret = 0.0;
3 for (bint k = 0; k < N; k++) {
4 vec x_k_m_x = X[k] - x;
5 double dist = norm(x_k_m_x, 2);
6 if (1.0 - c * dist > 0) {
7 ret += alpha(k) * dot(x_k_m_x, fX[k])
8 * psi1(dist, c);
9 }

10 }
11 return ret;
12 }

We also implemented the member function OrbDerV to
compute the orbital derivative V ′

R at an arbitrary x ∈Rn. The
formula for V ′

R(x) can be shown to be, see [9, Prop. 3.5],

V ′
R(x) =

N

∑
j=1

α j

[
ψ2(∥x−x j∥2)⟨x−x j, f(x)⟩2⟨x j −x, f(x j)⟩2

−ψ1(∥x−x j∥2)⟨f(x), f(x j)⟩2

]
(9)

and this formula is implemented in the member function
OrbDerV as follows.

1 double RBFLya::OrbDerV(const vec &x) const {
2 double ret = 0.0;
3 vec fx = f(x);
4 for (bint k = 0; k < N; k++) {
5 vec x_k_m_x = X[k] - x;
6 double dist = norm(x_k_m_x, 2);
7 if (1.0 - c * dist > 0) {
8 ret += -alpha(k) * (psi1(dist, c)
9 * dot(fx, fX[k])

10 + psi2(dist, c) * dot(x_k_m_x, fx)

11 * dot(x_k_m_x, fX[k]));
12 }
13 }
14 return ret;
15 }

Now that the class RBFLya is fully implemented we give
a short example program of how to use it to compute a
Lyapunov function using the RBF method for system (3).
We write the results into files using the Armadillo command
save, which is defined for both vectors and matrices in such
a way that Matlab can easily read them for plotting.

1 #include "RBFlya.h"
2 const unsigned int n = 2;
3 int main(int argc, char **argv) {
4 // use packed collocation matrix
5 bool packed = true;
6 function<vec(const vec &)> f =
7 [](const vec &x)->vec {
8 vec fx(n);
9 fx(0) = x(1);

10 fx(1) = -x(0) - x(1)
11 + 1.0 / 3.0 * pow(x(0), 3);
12 return fx;
13 };
14 function<double(const vec &)> pq =
15 [&f](const vec &x)->double {
16 return pow(norm(x, 2), 2)
17 * (1 + pow(norm(f(x), 2), 2));
18 };
19 function<double(double,double)> psi1 =
20 [](double r, double c)->double {
21 return 1.0 - c * r > 0 ?
22 -22 * pow(c, 2) * pow(1 - c * r, 7)
23 * (1 + 7 * c * r + 16 * pow(c * r, 2))
24 : 0.0;
25 };
26 function<double(double,double)> psi2 =
27 [](double r, double c)->double {
28 return 1.0 - c * r > 0 ?
29 528 * pow(c, 4) * pow(1 - c * r, 6)
30 * (1 + 6 * c * r)
31 : 0.0;
32 };
33 double c = 1.5;
34 RBFLya R(f,pq,psi1,psi2,c);
35 // xN, yN must be even numbers to avoid (0,0)
36 bint xN = 200, yN = 250;
37 double xMin = -2.6, yMin = -2.6;
38 double xMax = 2.6, yMax = 2.6;
39 vector<vec> X(xN * yN);
40 for (bint i = 0; i < xN; i++) {
41 for(bint j = 0; j < yN; j++) {
42 X[j + yN*i] = vec
43 {xMin+i*(xMax-xMin)/(xN-1),
44 yMin+j*(yMax-yMin)/(yN-1)};
45 }
46 }
47 R.FixVertices(X);
48 if (packed == true) {
49 R.WriteA();
50 R.SolveRBF();
51 }
52 else {
53 R.WriteAm();
54 R.SolveRBFm();
55 }
56 // now write results
57 vec xMatlab(xN), yMatlab(yN);
58 for (bint i = 0; i < xN; i++){
59 xMatlab(i) = X[i*yN](0);

1067

60 }
61 for (bint j = 0; j < yN; j++){
62 yMatlab(j) = X[j](1);
63 }
64 mat VMatlab(yN,xN), OrbDerVMatlab(yN,xN);
65 ParallelFor(yN,[&](bint j)->void {
66 for (bint i = 0; i < xN; i++) {
67 VMatlab(j,i) = R.V(X[j+yN*i]);
68 OrbDerVMatlab(j,i) =
69 R.OrbDerV(X[j+yN*i]);
70 }
71 });
72 xMatlab.save("x.txt", raw_ascii);
73 yMatlab.save("y.txt", raw_ascii);
74 VMatlab.save("V.txt", raw_ascii);
75 OrbDerVMatlab.save("OrbDerV.txt", raw_ascii);
76 }

The computed Lyapunov function can now easily be
plotted in Matlab using the following commands:

1 load -ascii 'x.txt'
2 load -ascii 'y.txt'
3 load -ascii 'V.txt'
4 [X,Y]=meshgrid(x,y);
5 surf(X,Y,V)
6 xlabel('X')
7 ylabel('Y')
8 zlabel('V(X,Y)')

Its orbital derivative can similarly be plotted with the com-
mands:

1 load -ascii 'x.txt'
2 load -ascii 'y.txt'
3 load -ascii 'OrbDerV.txt'
4 [X,Y]=meshgrid(x,y);
5 surf(X,Y,OrbDerV)
6 xlabel('X')
7 ylabel('Y')
8 zlabel("V'(X,Y)")

In Figure 1 we plot the Lyapunov function VR computed with
the code and its orbital derivative V ′

R.

III. COMPUTATIONAL RESULTS

Let us discuss some computation results with the code
from the last section. We use the system (3) for our compu-
tations, but note that the the time and the memory needed for
the computations only depends on the number of collocation
points and not on the dimension of the differential equation.
The memory needed is easily computed. For example, with
N = 50,000 collocation points the memory needed to save
an N ×N matrix of doubles (8 Bytes) is (recall G = 10243

in computer science)

8N2

10243 GB =
8 ·50,0002

10243 GB = 18.63GB

and as the Cholesky factorization with the Armadillo com-
mand A=chol(A) is not done in-place, and therefore two
such matrices are needed, we need 2 ·18.63GB = 37.26GB
to perform the computations. In comparison the packed
version of A only needs

8N(N +1)
2 ·10243 GB =

8 ·50,000 ·50,001
2 ·10243 GB = 9.31GB

Fig. 1. The Lyapunov function (upper) and its orbital derivative (lower)
computed for system (3) using the RBF method.

and as the Cholesky factorization is done in-place additional
memory is not needed.

The reduction in the memory needed comes at the cost of
some computational speed. In Table I we compare the speed
of the implementations on an intel platform with a 13900K
processor (24 cores, 128 GB) and an AMD platform with
Threadripper 3990X (64 cores, 256 GB). The computational
time increases by a factor of 2.4 to 4.1 when using the packed
form in comparison with the unpacked form, unless memory
is very tight for the computations (232.8 GB out of 256 GB
available). Thus, if sufficient memory is available for the
collocation points needed, it is considerably faster to use the
unpacked form.

IV. CONCLUSIONS

We presented two implementations of the RBF method
to compute Lyapunov functions for nonlinear systems. One
implementation using straightforward calls to computational
routines in the numerical library Armadillo and one using
packed matrices to save memory and using direct calls to in-
place Cholesky factorization in LAPACK. While the second
implementation is slower it allows for the use of double the
amount of collocation points. A modern personal computer
can be equipped with 192 GB of RAM and on such a
machine one can use ca. 210,000 collocation points when
using the latter approach, instead of just ca. 105,000 when
using a more straight forward implementation. It is the hope
of the author that the implementations in this paper are useful
to engineers and scientists, who want to use generalized
approximation in Reproducing Kernel Hilbert Spaces, and
enables them to solve more demanding problems faster.
Although the code given is for the computation of Lyapunov
functions for nonlinear systems using the RBF method,
it is easily adapted to other applications in generalized
approximation, e.g. the data driven approach in [17].

1068

N = 50,000 (37.3 GB unpacked / 9.3 GB packed)
intel 13900K - 128 GB AMD 3990X - 256 GB

unpacked 35 seconds 37 seconds
packed 101 seconds 87 seconds

N = 75,000 (83.8 GB unpacked / 21.0 GB packed)
intel 13900K - 128 GB AMD 3990X - 256 GB

unpacked 79 seconds 98 seconds
packed 320 seconds 273 seconds

N = 100,000 (149 GB unpacked / 37.3 GB packed)
intel 13900K - 128 GB AMD 3990X - 256 GB

unpacked out of memory 193 seconds
packed 745 seconds 605 seconds

N = 125,000 (232.8 GB unpacked / 58.2 GB packed)
intel 13900K - 128 GB AMD 3990X - 256 GB

unpacked out of memory 1171 seconds
packed 1395 seconds 1138 seconds

N = 250,000 (931.3 GB unpacked / 232.8 GB packed)
intel 13900K - 128 GB AMD 3990X - 256 GB

unpacked out of memory out of memory
packed out of memory 9797 seconds

TABLE I
COMPARISON OF THE MEMORY NEEDED AND THE COMPUTATIONAL

TIMES FOR USING THE RBF METHOD TO COMPUTE A LYAPUNOV

FUNCTION FOR SYSTEM (3). WE SHOW RESULTS FOR THE STRAIGHT

FORWARD IMPLEMENTATION USING UNPACKED COLLOCATION

MATRICES AND THE IMPLEMENTATION USING PACKED COLLOCATION

MATRICES AND DIRECTLY CALLING LAPACK ROUTINES, BOTH ON AN

INTEL PLATFORM AND AN AMD PLATFORM. THE REDUCTION IN

MEMORY NEEDED (FACTOR FOUR) IS OFFSET BY A LONGER

COMPUTATIONAL TIME (FACTOR 2.4 TO 4.1).

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, 3. edition, 1999.

[2] C. Argáez, P. Giesl, and S. Hafstein. Comparison of different radial
basis functions in dynamical systems. In Proceedings of the 11th
International Conference on Simulation and Modeling Methodologies,
Technologies and Applications, pages 394–405, 2021.

[3] N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc.,
68:337–404, 1950.

[4] P. Bernhard and S. Suhr. Lyapounov functions of closed cone
fields: From Conley theory to time functions. Commun. Math. Phys.,
359:467–498, 2018.

[5] H. Bjornsson and S. Hafstein. Informatics in Control, Automation
and Robotics, volume 793 of Lecture Notes in Electrical Engineering,
chapter Advanced algorithm for interpolation with Wendland func-
tions, pages 99–117. Springer, 2021.

[6] H. Bjornsson, S. Hafstein, P. Giesl, E. Scalas, and S. Gudmundsson.
Computation of the stochastic basin of attraction by rigorous con-
struction of a Lyapunov function. Discrete Contin. Dyn. Syst Ser. B,
24(8):4247–4269, 2019.

[7] G. Chesi. Domain of Attraction: Analysis and Control via SOS
Programming. Lecture Notes in Control and Information Sciences,
vol. 415, Springer, 2011.

[8] C. Conley. Isolated Invariant Sets and the Morse Index. CBMS
Regional Conference Series no. 38. American Mathematical Society,
1978.

[9] P. Giesl. Construction of Global Lyapunov Functions Using Radial
Basis Functions. Lecture Notes in Math. 1904, Springer, 2007.

[10] P. Giesl. Computation of a contraction metric for a periodic orbit
using meshfree collocation. SIAM J. Appl. Dyn. Syst., 18(3):1536–
1564, 2019.

[11] P. Giesl, C. Argáez, S. Hafstein, and H. Wendland. Minimization
with differential inequality constraints applied to complete Lyapunov
functions. Math. Comput., 90(331):2137–2160, 2021.

[12] P. Giesl and S. Hafstein. Computation and verification of Lyapunov
functions. SIAM J. Appl. Dyn. Syst., 14(4):1663–1698, 2015.

[13] P. Giesl and S. Hafstein. Review of computational methods for
Lyapunov functions. Discrete Contin. Dyn. Syst. Ser. B, 20(8):2291–
2331, 2015.

[14] P. Giesl, S. Hafstein, and I. Mehrabinezhad. Computation and
verification of contraction metrics for exponentially stable equilibria.
J. Comput. Appl. Math., 390:Paper No. 113332, 2021.

[15] P. Giesl, S. Hafstein, and I. Mehrabinezhad. Computation and
verification of contraction metrics for periodic orbits. J. Math. Anal.
Appl., 503(2):Paper No. 125309, 32, 2021.

[16] P. Giesl, S. Hafstein, and I. Mehrabinezhad. Computing contraction
metrics: Comparison of different implementations. IFAC PapersOn-
Line, 54(9):310–316, 2021.

[17] P. Giesl, B. Hamzi, M. Rasumussen, and K. Webster. Approximation
of Lyapunov functions from noisy data. J. Comput. Dynamics,
1(7):57–81, 2020.

[18] P. Giesl and H. Wendland. Construction of a contraction metric by
meshless collocation. Discrete Contin. Dyn. Syst. Ser. B, 24(8):3843–
3863, 2019.

[19] W. Hahn. Stability of Motion. Springer, Berlin, 1967.
[20] M. Hurley. Lyapunov functions and attractors in arbitrary metric

spaces. Proc. Amer. Math. Soc., 126:245–256, 1998.
[21] R. Kamyar and M. Peet. Polynomial optimization with applications

to stability analysis and control – an alternative to sum of squares.
Discrete Contin. Dyn. Syst. Ser. B, 20(8):2383–2417, 2015.

[22] H. Khalil. Nonlinear Systems. Pearson, 3. edition, 2002.
[23] A. M. Lyapunov. The general problem of the stability of motion.

Internat. J. Control, 55(3):521–790, 1992. Translated by A. T.
Fuller from Édouard Davaux’s French translation (1907) of the 1892
Russian original, With an editorial (historical introduction) by Fuller,
a biography of Lyapunov by V. I. Smirnov, and the bibliography of
Lyapunov’s works collected by J. F. Barrett, Lyapunov centenary issue.

[24] M. Peet and A. Papachristodoulou. A converse sum of squares
Lyapunov result with a degree bound. IEEE Transactions on Automatic
Control, 57(9):2281–2293, 2012.

[25] A. Polanski. On absolute stability analysis by polyhedral Lyapunov
functions. Automatica, 36(4):573–578, 2000.

[26] C. Sanderson and R. Curtin. Armadillo: a template-based C++ library
for linear algebra. J. Open Source Softw, 1(2):26, 2016.

[27] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control.
Springer, 1999.

[28] A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and
domains of attraction for autonomous nonlinear systems. Automatica,
21(1):69–80, 1985.

[29] M. Vidyasagar. Nonlinear System Analysis. Classics in Applied
Mathematics. SIAM, 2. edition, 2002.

[30] H. Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Adv. Comput. Math.,
4(4):389–396, 1995.

[31] H. Wendland. Scattered data approximation, volume 17 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge
University Press, Cambridge, 2005.

1069

