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Abstract— Online advertising is typically implemented via
real-time bidding, and advertising campaigns are then de-
fined as extremely high-dimensional optimization problems. To
solve these problems in light of large scale and significant
uncertainties, the optimization problems are modularized in
a way that makes feedback control a critical component of
the solution. The control problem, however, is challenging due
to plant uncertainties, nonlinearities, time-variance, and noise.
An Oracle would define the control signal in terms of bid
price adjustments only; however, we propose the introduction
of a companion throttling control signal that creates a useful
plant linearity. In this paper, the control problem is redefined
in such a way that the linearity is exploited for improved
feedback control. A dual lever control algorithm is designed
and evaluated in simulations, with promising results.

Index Terms — Adaptive Control, Optimization, Real-time
Bidding, Programmatic Advertising

I. INTRODUCTION

Programmatic advertising is an important aspect of the
business model for companies such as Amazon, Google, and
Facebook. A Demand Side Platform (DSP) is an example
of such a business model. A DSP provides the service of
spending online advertisement budgets optimally. It repre-
sents advertisers and is situated between an advertiser and
one or more open exchange trading so called ad impressions,
which are opportunities to show an ad creative to Internet
users. The DSP implements advanced algorithms to compute
and submit bids on impressions in real time.

The optimization problems are extremely high-
dimensional, but can be reformulated such that the
bid engine becomes a three player non-cooperative game.
The three players that combined produce bids on behalf
of an advertiser are represented by impression valuation,
campaign control, and bid shading optimization. Impression
valuation computes the expected value of an impression
conditioned on it being awarded to the campaign [1]–
[3]. Campaign control makes bid adjustments to satisfy
campaign delivery constraints (more on that later) [4]–[8].
And bid shading optimization computes the final bid by
taking into account how much other campaigns are expected
to bid for the same impression [9]–[12].

There is a rich literature on strategies for the three players,
and improvements to the strategies remain an active research
area in both academia and industry. This paper in particular
deals with strategies for the campaign controller player.

Campaign control is a critical feature of the bid compu-
tation, but is challenging due to plant uncertainties, nonlin-
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earities, time-variance, and noise. It is difficult to devise a
solution that is simultaneously robust and that performance-
wise is near-optimal. The nature of the control problem is
described in [13], [14], and some techniques on how to
overcome the challenges are discussed in [8], [15]. These
techniques involve bid randomization, which ensures local
linearity of the plant. However, the linear approximation is
difficult to identify online, making stabilization of the closed
loop system non-trivial.

Moreover, advertisers are becoming increasingly sophisti-
cated and expect their campaigns to satisfy a growing number
of optimization constraints [16], [17]. Each added constraint
translates to a control problem, and as the dimension of the
control problem grows, stability is harder to guarantee for a
plant that is nonlinear and uncertain.

Our contribution is the introduction of a companion throt-
tling control signal that creates a useful plant linearity. We
redefine the control problem in such a way that the linearity
is exploited for improved feedback control. A dual lever
control algorithm is designed and evaluated in simulations,
with promising results.

The article is organized as follows. Section II defines
the optimization and control problems under investigation.
Thereafter, Section III describes a sensible plant model
used for design and simulation. The control design itself is
developed in Section IV, whereas Section V summarizes the
control algorithm. Basic simulation results are provided in
Section VI, and conclusions and ideas of future work are
discussed in Section VII.

II. PROBLEM FORMULATION

We first we briefly describe the optimization problem that
justifies the control problem considered in the remainder of
the paper. The optimization objective is to maximize the
cost-discounted profit J := EV − αEC, where EV is the
total expected daily advertiser value, EC is the total expected
daily cost of awarded impressions, and α ∈ (0, 1] is a given
cost-discount parameter. The problem is subject to a spend
constraint EC ≤ ξ, where ξ ∈ [0,∞) is a daily budget.

Let Ω denote the set of all eligible impression opportuni-
ties for the day. Impressions i ∈ Ω are awarded via sequential
real time bidding in an open impression exchange, and sold
in the manner of a first or second price cost model [18].
The cost model for each impression opportunity is decided
by the seller of the impression and is known before a bid is
computed. For a first price impression (i ∈ Ω1) the winner
pays an amount equal to its own bid, whereas for a second
price impression (i ∈ Ω2) the winner pays an amount equal
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to the second highest bid. Assume Let Ω1 ∩ Ω2 = ∅ and
Ω1 ∪ Ω2 = Ω. The decision variables of the problem are
given by the bid prices bi ∈ [0, bmax], for all i ∈ Ω, where
bmax > 0 is an advertiser specified max bid. Let the expected
value of impression i (if awarded) be denoted vi ∈ [0,∞). It
represents the expected performance and/or branding value,
and may encode the probability of a click or conversion (a
sale), and the branding value of reaching prospective future
customers with the advertisement message.

The optimization problem is mathematically defined by

maximize
{bi|0 ≤ bi ≤ bmax, ∀i ∈ Ω}

EV − αEC (1)

subject to EC ≤ ξ. An optimal bidding strategy for this
problem is well-known (see e.g. [16], [17]) and satisfies

bopti =

{
argmax
0≤b≤bmax

(bui − b)Fi(b), i ∈ Ω1,

bui , i ∈ Ω2,

where the private value, bui is defined by

bui =
vi
λ
; (2)

and where EC ≤ ξ, (λ − α)(EC − ξ) = 0, and λ ≥ α.
Function Fi(b) is the cumulative density of the highest
competing bid price (the win rate function), and λ is a
unitless shadow price. Assume Fi(b) and vi are known
(produced by a different system). It remains to find the value
of λ, which is independent of individual impressions.

It is easily shown that EV and EC are monotonic decreas-
ing functions of λ, and that the optimal λ equals the smallest
value, but no smaller than α, for which EC ≤ ξ [8].

Impressions Ω do not occur all at once but over time,
which suggests a feedback control solution might be appli-
cable. The goal is to compute a price control signal λ(t) that
converges sufficiently fast towards a constant that satisfies
(λ− α)(EC − ξ) = 0 and EC ≤ ξ at the end of the day.

Consider a time-sampled implementation of the control
system with equidistant time points indexed t = 1, 2, . . .,
where the sampling time ∆ is, for example, 1/30 hours. The
number of samples per day equals T = 24/∆. Distribute the
daily budget uniformly throughout the day as ūc(t) = ξ/T ,
and let this represent the command signal. Furthermore, let
the observed spend in time interval t be denoted y(t). It
follows that ξ =

∑T
t=1 ūc(t) and c =

∑T
t=1 y(t), where c is

an observation of the daily spend C (note, C is random).
Although one might consider designing a feedback con-

troller that adjusts only the scalar price control signal λ(t)
towards its optimal value, this turns out to be a remarkably
difficult problem [8]. The challenge stems from a highly
nonlinear and uncertain relationship between λ and y, which
makes the robustness versus performance trade-off difficult.
To ensure stability, this approach often requires a conserva-
tive control system with low performance.

Therefore, consider a complementary rate control signal
u(t) ∈ [0, 1], which is a lever that indiscriminately and
randomly throttles impression opportunities. For example, if
u(t) = 0.8, then for each individual impression opportunity,
a bid is submitted with a 0.8 probability. In other words, u(t)
is the probability to participate in the bidding.

Fig. 1. The closed loop bid optimization system from the vantage point
of the feedback controller, where impression valuation and bid shading
optimization in charge of computing vi and bi are parts of the plant.

Figure 1 depicts the closed loop bid optimization system
from the perspective of the feedback controller. Impression
valuation and bid shading optimization, which compute vi
and bi (outside the scope of the paper), are components of
the plant and the details of these sub systems are irrelevant
for as long as a useful model of the relationship from control
signals u(t) and λ(t) to plant output y(t) is available.

The control problem now is to adjust u(t) and λ(t)
simultaneously toward their optimal values. Note, the optimal
value of u(t) = 1, but allowing it to operate slightly away
from one leads to a less difficult control problem.

III. PLANT MODEL

The plant is non-linear, time-varying, and stochastic; but
is typically subject to only a short delay. Assume a one-
step delay. It follows that y(t + 1) = f(t, u(t), λ(t), w(t)),
where w(t) is stochastic noise. The (unknown) function f is
monotonic increasing in u(t), monotonic decreasing in λ(t),
and produces a non-negative output.

The explicit time dependency of f(·) is due to a time-
varying Internet traffic and competitive landscape. Assume
it is T -periodic, scale-invariant, and independent of all other
inputs. Since bid throttling is applied indiscriminately, we
may assume y(t + 1) is proportional to u(t). On the other
hand, the relationship between λ(t) and y(t+1) is nonlinear,
poorly known, and potentially discontinuous. Finally, assume
the stochastic noise is scale-invariant and white. Combined,
the plant model is given by

y(t+ 1) = (1 + h(t))f̃(λ(t))u(t)(1 + w(t)), (3)

where seasonality function h(t+T ) = h(t),
∑T

t=1 h(t) = 0,
and h(t) > −1, ∀t, f̃(·) is non-negative and monotonic
decreasing, and w(t) is mean zero white noise. The time-
periodicity h(t) can be estimated with reasonable accuracy
in advance, and enhanced online via standard system identi-
fication techniques [19]. Here we assume h(t) to be known.

IV. CONTROL DESIGN

We propose a control design that involves a T -periodic
feedforward controller, a plant gain estimator, and two sep-
arate, but connected, feedback controllers.

First, the feedforward controller adjusts the uniform bud-
get allocation encoded in ūc(t) throughout the day based
on the plant periodicity and computes an adjusted command
signal uc(t). Thereafter, the rate feedback controller adjusts
u(t) dynamically such that y(t) → uc(t). In the process,
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u(t) → ue(t), where ue(t) is the steady-state bid rate
control. Meanwhile, the plant gain estimator identifies the
input-output sensitivity of the plant (relative the rate control
signal). The plant gain estimate is used by the rate feedback
controller to ensure desired robustness versus performance
trade-off. A somewhat slower price feedback controller has a
dead-zone; i.e., the control signal is updated only if the target
signal is outside a prescribed interval, with hysteresis. This
controller adjusts price control signal λ(t) ∈ [λmin, λmax]
such that ue(t) converges to a neighborhood of ut ∈ [ul, uh],
which is a configured target bid rate control signal.

Typically, λmin ≡ α, which provides an interpretation of
the lower bound of λ(t) as the cost-discount parameter of
objective function (1) in the original optimization problem.
The upper bound λmax is introduced on practical grounds to
avoid an unnecessarily wide range of price control values.
Scenarios where a larger value of λ(t) is otherwise war-
ranted, may be handled by a reduced value of u(t).

Figure 2 shows a block diagram of the control system

Fig. 2. Block diagram of the control system with the four main components
and their interfaces.

with the four main components and their interfaces. Each
component is described in detail in the following subsections.

A. Feedforward Controller
The feedforward controller computes an adjusted com-

mand signal uc(t) from ūc(t) according to

uc(t) =
(
1 + h(t− 1)

)
ūc(t). (4)

As shown next, this makes stabilization of the closed loop
system possible. The idea is that the daily budget via uc(t)
is distributed throughout the day to make convergence of the
control signals possible.

B. Rate Feedback Controller
The plant in expected sense (Ew(t) = 0) is given by y(t+

1) = (1 + h(t))f̃(λ(t))u(t). Assume f̃(λ(t)) by virtue of
how λ(t) is updated is at most slowly varying. We may then
adopt the certainty equivalence principle [20] during the rate
control design and pretend f̃(λ(t)) := a (the plant gain) is
constant. It follows that

y(t+ 1) =
(
1 + h(t)

)
au(t). (5)

Assume for a moment that a is known. To serve as a proof of
concept, and to permit stability analysis (see [8]), consider
a pure integral error feedback controller, which in recursive
form satisfies

u(t) = u(t− 1) + cIe(t), (6)

where cI is the integral gain, and the error signal e(t) is

e(t) = uc(t)− y(t). (7)

Since u(t) cannot take values outside the interval [0, 1], in
an implementation each computed value u(t) is projected
to [0, 1] to prevent impossible bid rate control signal values
from being produced. Combine (5)-(7) to obtain

u(t) = u(t− 1) + cI

(
uc(t)− y(t)

)
= u(t− 1) + cI

(
uc(t)−

(
1 + h(t− 1)

)
au(t− 1)

)
. (8)

Rearrange (8) and substitute uc(t) with (4) to obtain

u(t) = ψ(t)u(t− 1) + ϕ(t)ūc(t), (9)

where

ψ(t) = 1− cIa
(
1 + h(t− 1)

)
and

ϕ(t) = cI

(
1 + h(t− 1)

)
.

Equation (9) is a first order T -periodic linear difference
equation, and it can be shown (Theorem 3, [8]) it is globally
asymptotically stable if and only if |

∏T
t=1 ψ(t)| < 1. A

sufficient condition for global asymptotic stability is

0 < cIa <
2

1 + h(t)
, for all t, (10)

(Corollary 1, [8]). If the stability condition is met and a ≥
ūc(t) (via adjustments to λ(t)), then

u(t) → ϕ(t)ūc(t)

1− ψ(t)
=
ūc(t)

a
∈ [0, 1],

(
≡ ue(t)

)
. (11)

It follows from (5) and (11) that y(t) → (1+h(t−1))ūc(t),
which implies that EC =

∑T
t=1 y(t) →

∑T
t=1(1 + h(t −

1))ūc =
∑T

t=1(1 + h(t− 1))ξ/T = ξ.
In light of the stability condition, a sensible design param-

eter is given by the closed loop gain cCL := cIa that is chosen
to satisfy (10), whereas the integral gain is computed from
cI = cCL/a. In practice a is unknown and must be estimated,
which is the topic of next section.

Besides computing u(t), which by design evolves grace-
fully to ensure stability under noise and uncertainty, a delay-
free estimate of the steady state bid rate control is given by

ûopt(t) =
ūc(t)

a
∈ [0,∞).

It is distinguished from ue(t) in that the latter is the actual
steady state value bounded between zero and one, while
ûopt(t) is a fictional rate control signal that may exceed one.
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C. Rate Plant Gain Estimator

The rate feedback controller makes updates to u(t) based
on e(t) and cI, but to ensure stability cI must be chosen
relative a, which in practice is unknown and may vary over
time. Let â denote an estimate of a, and consider plant
model (3), which can be expressed as

y(t) = (1 + h(t− 1))u(t− 1)
(
a+ aw(t− 1)

)
,

Technically, for as long as u(t−1) > 0, an unbiased estimate
of a can be computed based on one pair of u(t−1) and y(t),
by recognizing that

ỹ(t) = a+ ϵ(t),

where ϵ(t) is mean zero white noise, and

ỹ(t) =
y(t)

(1 + h(t− 1))u(t− 1)
,

ϵ(t) = aw(t− 1).

Indeed, a possible estimate is â = ỹ(t); however, such an
estimate would have a very high variance. To account for
noise and other plant uncertainties, we propose a recursive
estimator defined by

â(t) =

 γâ(t− 1) +
(1− γ)y(t)

(1 + h(t− 1))u(t− 1)
, if u(t− 1) > 0,

â(t− 1), otherwise,

where γ ∈ [0, 1) is a plant gain estimation forgetting factor.

D. Price Feedback Controller

The responsibility of the price feedback controller is to
adjust λ(t) ∈ [λmin, λmax] such that ue(t) converges to
a neighborhood of the target bid rate control signal ut ∈
[ul, uh]. In order to do so with an element of foresight, the
controller is designed to drive ûopt(t) towards ut. The plant
as perceived by this controller is the mapping from λ(t) to
ûopt(t), which can be shown to be monotonic increasing, but
otherwise heavily dependent on the nonlinear and difficult to
estimate f̃(λ(t)).

In consideration of the high degree of plant uncertainty,
and to reduce the interference with the rate feedback con-
troller near the steady-state, we propose a design, where
the price controller starts making updates to λ(t) only if
ûopt(t) departs from the interval [ul, uh], and then continues
making updates until ûopt(t) reaches ut, which is an interior
point of the interval. This control strategy makes the design
a dead-zone controller with hysteresis. Figure 3 illustrates
the concept of ideal operating regime. The control system
strives to operate with control signals u(t) and λ(t) in the
green-shaded area.

In this paper, each update to λ(t) is a fixed multiplicative
adjustment δ or 1/δ, where δ > 1 is close to one. Not
making an adjustment of λ(t) relative to the difference ut−
ûopt(t) reflects the assumed nonlinear and poorly understood
plant. However, assume we know how to select δ to avoid
instability. This typically requires a conservative choice.

Let η(t) ∈ {−1, 0, 1} denote an internal bid heading
state. It is set to -1/+1 when the controller detects that

Fig. 3. Illustration of ideal operating regime. The control system strives
to operate with control signals u(t) and λ(t) in the green-shaded area.

the bid price needs to decrease/increase and λ(t) needs to
increase/decrease. This happens when ûopt(t) exits [ul, uh].
If η(t) is set to -1 or +1, then it will remain at that value
until ûopt(t) reaches ut, at which point η(t) is set to zero.

The control signal update is described mathematically as
follows: First, if

(
η(t − 1) = −1 and ûopt(t) ≥ ut

)
or(

η(t− 1) = 1 and ûopt(t) ≤ ut
)
, then η(t) = 0. Thereafter,

η(t) =

{
−1, if ûopt(t) < ul,
+1, if ûopt(t) > uh.

Finally, increase λ(t) by a factor δ, if η(t) = −1; and by a
factor 1/δ, if η(t) = 1.

λ(t) = Proj[λmin,λmax]

(
δ−η(t)λ(t− 1)

)
,

where the projection operator Proj caps its argument from
above and below to remain in the interval [λmin, λmax].

V. IMPLEMENTATION

The controller derived in Section IV is summarized in
Algorithm 1. A sampling time-invariant implementation is
obtained by defining parameters γ, cCL, δ in terms of the
sampling time ∆, time constants τCL, τγ , and max hourly
bid price increase δhr. In particular, γ = exp(−τγ/∆),
cCL = exp(−τCL/∆), and δ = δ

1/∆
hr . Assume h(t) = hθ(t)

is fully determined by θ, a known seasonality parameter.

VI. SIMULATION RESULTS

Based on first principle reasoning and real-world observa-
tions, [15], [19], consider a plant where ∆ = 1/30 hrs,

h(t) = 0.58 sin

(
2πt

T
− 1.6

)
+ 0.32 sin

(
4πt

T
− 1.5

)
,

and

f̃(λ) =
1000(π/2 + arctan(−(log(λ) + 20)/2))

π
.

Time t is now in the unit of hours. It is no longer just an
integer index.

Assume the daily budget changes over time according to

ξ =



135, if 0 ≤ t ≤ 72,
300, if 72 < t ≤ 120,
80, if 120 < t ≤ 216,
200, if 216 < t ≤ 288,
130, if 288 < t ≤ 384,
400, if 384 < t ≤ 408.

Consider two simulated scenarios.
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Algorithm 1 Simultaneous Rate and Price Control
1: Parameters: θ, cCL, γ, λmin, λmax, ul, ut, uh, δ
2: Input: ūc, y
3: Output: λ, u
4: State: u, λ, â, η
5: u(0) = u0, λ(0) = λ0, â(0) = â0, η(0) = η0
6: for t = 1, 2, . . . do
7: uc(t) =

(
1 + hθ(t− 1)

)
ūc(t)

8: if u(t− 1) > 0 then
9: â(t) = γâ(t−1)+(1−γ)y(t)/[(1+hθ(t−1))u(t−1)]

10: else
11: â(t) = â(t− 1)

12: e(t) = uc(t)− y(t)
13: cI = cCL/â(t)
14: u(t) = Proj[0,1]

(
u(t− 1) + cIe(t)

)
15: ûopt(t) = ūc(t)/â(t)
16: if (η(t− 1) = −1 and ûopt(t) ≥ ul) or
17: (η(t− 1) = 1 and ûopt(t) ≤ ul) then
18: η(t) = 0

19: if ûopt(t) < ul then
20: η(t) = −1
21: else if ûopt(t) > uh then
22: η(t) = 1

23: λ(t) = Proj[λmin,λmax]

(
δ−η(t)λ(t− 1)

)

A. Example 1
Let the plant be noise free (w(t) ≡ 0), and the controller

be configured by γ = 0.5, τCL = 1.5, τγ = 0.75, δhr = 2.7,
ul = 0, ut = 0.85, uh = 1, λmin = 6.3e− 16, λmax = 1.

A representative closed loop result is shown in Figure 4.
The top-left panel displays the daily budget (black dashed

Fig. 4. Top-left: daily budget (black dashed curve) and intraday cumulative
spend (red solid curve). Bottom-left: adjusted command signal uc(t)
(black dashed curve) and observed spend y(t) (red solid curve). Top-right:
predicted optimal bid rate ûopt(t) (black curve) and bid rate control u(t)
(red curve). Bottom-right: price control signal λ(t).

curve) and the intraday cumulative spend (red solid curve).
It is noted that the campaign spends each daily budget at the
end almost every day of the 17 days long flight in spite of five
budget changes. The bottom-left panel shows the adjusted

command signal uc(t) (black dashed curve), which is the
budget allocated to each sampling interval; and the observed
spend y(t) (red solid curve). As shown, the observed spend
accurately tracks the adjusted command signal. The top-right
panels displays the predicted optimal bid rate ûopt(t) (black
curve) and the bid rate control u(t) (red curve). Note how,
for each budget level, u(t) and ûopt(t) have the same steady-
state value, but that ûopt(t) moves faster. Finally, the bottom-
right panel shows the price control signal λ(t), which in this
example stays at a constant value since the configured ideal
operating regime of the rate control signal [ul, uh] = [0, 1].
Indeed, as long as campaign is able to deliver the budget
using a bid rate u(t) ∈ [0, 1], no adjustment of λ(t) is
triggered. The control system is highly responsive to budget
changes. This is thanks to a fast bid rate feedback controller,
which is made possible by an accurate estimation of the
corresponding plant gain.

B. Example 2
Now assume the plant is subject to noise given by w ∼

Gaussian(0, 0.12), and let the controller be configured by
γ = 0.5, τCL = 1.5, τγ = 0.75, δhr = 2.7, ul = 0.6, ut =
0.85, uh = 1, λmin = 6.3e− 16, λmax = 1

Figure 5. The top-left panel demonstrates how the cam-

Fig. 5. Top-left: daily budget (black dashed curve) and intraday cumulative
spend (red solid curve). Bottom-left: adjusted command signal uc(t)
(black dashed curve) and observed spend y(t) (red solid curve). Top-right:
predicted optimal bid rate ûopt(t) (black curve) and bid rate control u(t)
(red curve). Bottom-right: price control signal λ(t).

paign delivers each daily budget in full almost exactly at the
end of each day. Furthermore, the bottom-left panel shows
how the observed spend y(t) (though being noisy) tracks the
adjusted command signal well. The top-right panels displays
the predicted optimal bid rate ûopt(t) and the bid rate control
u(t). It is noted that ûopt(t) occasionally exceeds one, and
that u(t) almost always operate within [ul, uh] and near the
target bid rate ut. Finally, the bottom-right panel shows the
price control signal λ(t), which is subject to adjustments only
intermittently. For long stretches of time, λ(t) is constant.
Keep in mind that the price control signal u(t), due to (2),
acts like a break pedal. The larger its value, the smaller is
the final bid prices submitted by the campaign for impression
opportunities.
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In summary, the control system is highly responsive to
budget changes and noise, thanks to a fast bid rate feedback
controller, made possible by an accurate estimation of the
corresponding plant gain. Near optimal bidding is achieved
by the price feedback controller that adjusts λ(t) in such a
way that the bid rate control signal operates near one.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a dual lever feedback control algorithm
for optimization and pacing of online advertising campaigns.
It involves a periodic feedforward controller, a plant gain
estimator, and two separate feedback controllers. The first
and fast feedback controller adjusts a throttling lever u(t)
to make an observed spend output y(t) rapidly track a
desired reference signal uc(t). A separate and less aggressive
feedback controller adjust a price control signal λ(t) to drive
the steady-state value of u(t) into a desired operating interval
[ul, uh] (typically near one). The price controller is a dead-
zone controller with hysteresis.

The plant on which the control system operates is pe-
riodic, nonlinear, and stochastic; but the introduction of a
companion throttling control signal creates a linearity that is
exploited for efficient and robust control. Stability results by
the author in prior work has been leveraged to support the
proposed algorithm.

Simulation results demonstrate stability and good perfor-
mance under a wide range of operating conditions, including
a nonlinear plant, significant noise, and budget changes.

Immediate future work includes the experimental val-
idation of the proposed control system. Real advertising
campaigns are difficult to model, hence, simulation results
cannot capture all important and complex behaviors that are
present in the real plant.

Future work also includes the design of a more sophisti-
cated price control algorithm. The algorithm in the present
paper is naive and makes almost no use of information
that may be available about the relationship between λ(t)
and y(t). Incorporating such information, for example via
a price plant gain estimate (an estimate of ∂y(t)/∂λ(t)), is
likely to offer significant improvement in terms of campaign
performance and versatility of the control system. Other fu-
ture work includes identifying the seasonality function h(t),
which was assumed known in this paper, and accounting for
the imperfection of any estimate ĥ(t) by adequate calibration
of the control system design parameters.

Furthermore, since advertisers are becoming increasingly
sophisticated and expect their campaigns to satisfy many
constraints beyond the budget, it is important to generalize
the application of the proposed control system to multi-
constraint optimization problems, and to produce stability
results for this more general setup.
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