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Abstract— This paper presents the design of a dissipativity-
based output feedback control for transient performance im-
provement in linear time-varying discrete-time systems. The un-
certain system dynamics is described in a convex polytope, and
is subjected to bounded external disturbances. The proposed
reduced-order time-varying dynamic controller guarantees that
the system trajectories are bounded below a specified threshold
for a given finite time interval. Moreover, using the notion
of QSR-dissipativity, we aim for the system to simultaneously
satisfy dissipativity to external disturbances within the con-
sidered finite time interval. Sufficient difference linear matrix
inequality (DLMI) conditions are derived to design output
feedback finite-time dissipative controller gains, considering the
augmented form of the closed-loop system-controller dynamics.
The paper unifies the procedure of designing finite-time robust
controllers, as performance indices such as finite-time passivity
and finite L2-gain are special cases of finite-time dissipativity.
Numerical simulations demonstrate the effectiveness of the
proposed scheme in bounding the state trajectories within the
prescribed limit, for a specified finite time interval.

Index Terms— Finite-time boundedness, Dissipativity, Differ-
ence linear matrix inequalities, Output feedback.

I. INTRODUCTION

Robust control techniques are widely used to enhance the
transient and asymptotic performance of dynamical systems,
which are adversely affected by parameter perturbations and
exogenous disturbances. While most of the robust control
techniques aim to ensure the stability of the system in the
asymptotic sense [1], finite-time robust control techniques
improve the behaviour of system trajectories for a specified
time interval, including transients [2]. Such finite-time ro-
bustness analysis is crucial in applications like active sus-
pensions [3], transient performance improvement in power
systems [4], satellites and spacecrafts [5] etc.

To bound the system trajectories during transients in
discrete-time linear systems, the concept of finite-time
boundedness (FTB) is introduced in [6]. According to this,
during undesirable events like faults or sudden exogenous
disturbances, the system trajectories are confined within a
predefined region for a specified finite interval of time. Fol-
lowing this, the works in [7] carried out finite-time bounded
control of discrete-time non-linear systems, with sufficient
conditions for state feedback controller design. Further, nec-
essary and sufficient conditions for the design of discrete-
time state feedback controllers for FTB are presented in
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[8]. Recently, FTB analysis and control synthesis have been
carried out for different classes of discrete-time systems
[9], [10]. However, most of these works are based on a
nominal system model, assuming the availability of all states
for measurement. In practice, the system model parameters
may not be accurate due to unaccounted dynamics or due to
model parameter changes [11]. Furthermore, measuring all
the system states may not always be feasible.

To guarantee the acceptable robust transient performance
of uncertain systems with available measurements, this pa-
per presents the design of reduced-order output feedback
finite-time controllers. Finite-time output feedback control of
linear discrete-time nominal systems is carried out in [12],
leveraging the concept of input-output finite-time stabiliza-
tion. Using observer-based output feedback controllers, FTB
analysis of uncertain discrete-time systems is presented in
[13]. However, such formulation adds constraints of finite-
time detectability [14]. To eliminate such requirements in
output feedback-based finite-time boundedness problems and
to simplify the control design and implementation procedure,
we propose a reduced-order controller formulation, which
can be extended to static output feedback control design.

Besides bounding the system trajectories, to improve the
robust performance of the system in the finite interval, we
consider the system to satisfy dissipative properties [15] to
external disturbances. Incorporating robustness specifications
like finite-time passivity and finite L2-gain, robust con-
trollers for FTB are designed in [16] and [17], respectively.
Using the concept of dissipativity, such concepts can be
unified, and a generalized concept of finite-time dissipativity
can be given with energy-based interpretation. Moreover, as
dissipative systems do not generate energy of their own,
the analysis of finite-time control problems with dissipativity
constraints is important in safety-critical applications [18].

In this work, we generalize the procedure of designing out-
put feedback-based robust controllers for improving finite-
time behaviour in time-varying discrete-time dynamical sys-
tems. For a prescribed finite time interval, the designed
robust reduced-order dynamic controllers ensure the confine-
ment of system trajectories within a specified region, when
subjected to process and measurement disturbances. Since
the polytopic uncertainty description can better represent
parameter perturbations and model changes due to faults than
the norm-bounded uncertainty [19], we consider the time-
varying parameters to lie in a convex polytope. The rate
of supply of energy from adversaries is represented by a
quadratic supply rate, which provides freedom to incorporate
robustness specifications like passivity and finite L2-gain as
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special cases. The main contributions of the paper are:
1) Unlike state feedback-based methods, conditions for

designing output feedback finite-time dissipative con-
trol are given for uncertain time-varying discrete-time
systems, using difference matrix inequalities.

2) By reformulating obtained matrix inequalities,
parameter-independent DLMI conditions are derived
for designing output feedback time-varying controllers,
ensuring finite-time dissipativity of closed-loop system.

We leverage the advantage of an augmented form of
closed-loop system [20], using which, the reduced-order
dynamic control design can be performed as static gains for
the augmented system-controller dynamics.

Notations: The set NT represents the finite discrete-time
interval NT := {k0,k0 + 1, . . . ,k0 + T} and L NT

2 denotes
the discrete-time Euclidean space of all square-summable
functions over NT . In block matrices, ⋆ signifies the blocks
arising from symmetry. Given a matrix X , He(X) := X +XT .
The notation diag(X ,Y ) refers to the block diagonal matrix
with diagonal entries X and Y . Identity and zero matrices of
suitable dimensions are represented by I and 0, respectively.

II. SYSTEM DYNAMICS, PRELIMINARIES AND PROBLEM
FORMULATION

Consider the polytopic uncertain description of a linear
time-varying (LTV) discrete-time system, given by,

xs(k+1) = As(ξ )xs(k)+Bs(ξ )us(k)+Es(ξ )ω(k)

ys(k) =Cs(ξ )xs(k)+Ds(ξ )ω(k)

zs(k) = Fs(ξ )xs(k)+Gs(ξ )us(k)+Hs(ξ )ω(k)
(1)

where, xs(k)∈Rn denote the system states, us(k)∈Rp is the
control input, and ys(k) ∈ Rm and zs(k) ∈ Rq respectively
represent measured and controlled outputs. The system is
subjected to energy bounded external disturbances, ω(k) ∈
W ⊆ Rl over k ∈ NT , i.e., ω(k) ∈ L NT

2 . Moreover, uncer-
tain matrix valued sequences As(ξ ) ∈ Rn×n, Bs(ξ ) ∈ Rn×p,
Es(ξ ) ∈ Rn×l , Cs(ξ ) ∈ Rm×n, Ds(ξ ) ∈ Rm×l , Fs(ξ ) ∈ Rq×n,
Gs(ξ )∈Rq×p and Hs(ξ )∈Rq×l are defined over k ∈NT and
assumed to belong to a convex polytope S with N-vertices,

S =

{
[As(ξ ) Bs(ξ ) Es(ξ )Cs(ξ ) Ds(ξ ) Fs(ξ ) Gs(ξ ) Hs(ξ )]

=
N

∑
i=1

ξi [Asi(k)Bsi(k)Esi(k)Csi(k)Dsi(k)Fsi(k)Gsi(k)Hsi(k)]
}

with ξi > 0, i = 1,2, . . . ,N and ∑
N
i=1 ξi = 1.

Given the system dynamics (1), considering that all the
states are not available for measurement, the control input
us(k) is taken as the output of a reduced-order discrete-time
dynamic controller of the form,

xc(k+1) = Ac(k)xc(k)+Bc(k)ys(k)

us(k) =Cc(k)xc(k)+Dc(k)ys(k)
(2)

with order r ≤ n−m. Here, xc(k)∈Rr are the controller states
and Ac(k) ∈ Rr×r, Bc(k) ∈ Rr×m, Cc(k) ∈ Rp×r and Dc(k) ∈
Rp×m are time-varying discrete-time controller gains.

A. Finite-time Boundedness and Finite-time Dissipativity

Finite-time boundedness deals with the confinement of
system trajectories to a predefined set for a specified finite
time interval, in the presence of external disturbances. By
characterizing the predefined set in terms of ellipsoids, the
FTB of discrete-time systems is defined as follows.

Definition 1. [21] Given a finite time interval NT ,
disturbances ω(k)∈W and a positive definite matrix valued
sequence Ωs(k), the discrete-time LTV uncertain system (1)
with initial conditions satisfying xT

sk0
Θsxsk0

≤ 1, with Θs >

Ωs(k0) is said to be finite-time bounded with respect to
specified parameters (Θs,Ωs(k),S ,W ,NT ), if ∀ ω(k)∈W ,

xT
sk0

Θsxsk0
≤ 1 =⇒ xT

s (k)Ωs(k)xs(k)< 1, ∀k ∈ NT . (3)

Remark 1. FTB is a quantitative property dependent on
various parameters, which are determined based on specific
requirements. These parameters can be chosen to prevent sat-
uration of system states or activation of nonlinear dynamics.

Besides bounding system trajectories, we aim to enhance
system robustness during transients by ensuring dissipativ-
ity to external disturbances. This provides an energy-based
input-output relationship, such that the total energy of the
system does not increase. When the external energy supply
is characterized with a supply rate s(zs(k),ω(k)), the finite-
time dissipativity (FTD) can be characterized as,

Definition 2. The discrete-time dynamics (1) subjected
to ω(k) ∈ W exhibits FTD with respect to supply rate
s(zs(k),ω(k)), over the time interval NT , if it is finite-time
bounded with respect to (Θs,Ωs(k),S ,W ,NT ) and for all
trajectories of xs(k), the controlled output zs(k) satisfies the
inequality,

V (xs(k0 +T ),k0 +T )≤V (xs(k0),k0)+
k0+T−1

∑
k=k0

s(zs(k),ω(k))

(4)
with a storage function V (xs(k),k)≥ 0.

Further, when the supply rate s(zs(k),ω(k)) takes the form
of a quadratic function,

s(zs(k),ω(k))= zT
s (k)Qszs(k)+2zT

s (k)Ssω(k)+ω
T (k)Rsω(k)

(5)
with real matrices Qs = QT

s ∈Rq×q, Rs = RT
s ∈Rl×l and Ss ∈

Rq×l , the condition in (4) is referred to as QSR-dissipativity.
This concept of QSR-dissipativity offers more generalized
conditions for robustness analysis. It encompasses proper-
ties like finite-time passivity and finite L2-gain as special
cases. Accordingly, the weighting matrices in the supply rate
s(zs(k),ω(k)) in (5) of Definition 2 can be chosen as,

1) For finite-time passivity: Qs = 0, Ss =
1
2 I and Rs = 0;

2) For finite-time L2-gain: Qs =−I, Ss = 0 and Rs = γ2I,
with a disturbance attenuation level γ > 0.

Without loss of generality, we assume Qs ≤ 0, such that
discrete-time passivity and finite L2-gain with parameter γ

can be encompassed as special cases of QSR-dissipativity.
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B. Problem Definition
Our aim is to design a reduced-order time-varying con-

troller of the form (2), such that the closed-loop system is
finite-time dissipative.

By associating the controller (2) with system (1), we get
the augmented system-controller dynamics as,

x(k+1) = A(ξ )x(k)+B(ξ )u(k)+E(ξ )ω(k)

y(k) =C(ξ )x(k)+D(ξ )ω(k)

z(k) = F(ξ )x(k)+G(ξ )u(k)+H(ξ )ω(k)
(6)

where, x(k) :=
[
xs(k) xc(k)

]T ∈ Rn+r. Further, the aug-
mented system matrices in (6) can be specified as,

A(ξ ) =
[

As(ξ ) 0
0 0

]
,B(ξ ) =

[
0 Bs(ξ )
I 0

]
,E(ξ ) =

[
Es(ξ )

0

]
,

C(ξ ) =

[
0 I

Cs(ξ ) 0

]
,D(ξ ) =

[
0

Ds(ξ )

]
,F(ξ ) =

[
Fs(ξ ) 0

0 0

]
,

G(ξ ) =

[
0 Gs(ξ )
0 0

]
and H(ξ ) =

[
Hs(ξ )

0

]
.

The output feedback control function u(k) to the aug-
mented dynamics is given by,

u(k) = K(k)y(k) = K(k)(C(ξ )x(k)+D(ξ )ω(k)) (7)

where, K(k) =
[

Ac(k) Bc(k)
Cc(k) Dc(k)

]
is the time-varying discrete-

time controller gain matrix.
For specifying the FTD of the closed-loop system accord-

ing to Definition 2, the parameters for FTB can be chosen
as Θ := diag(Θs,Θc)> 0 and Ω(k) := diag(Ωs(k),Ωc(k))>
0, consisting of weighting matrices for system and con-
troller states. Further, the QSR-dissipativity conditions in
(4) with supply rate (5) are defined in terms of matrices
Q ∈ R(q+r)×(q+r), S ∈ R(q+r)×l and R ∈ Rl×l .

Thus, the problem of finite-time dissipativity analysis and
synthesis for the discrete-time dynamics in (1) with reduced-
order controller (2) can be formally stated as follows.

Problem 1. Consider the discrete-time uncertain LTV system
(1) defined in convex polytopic set S , with the initial
conditions of the augmented dynamics satisfying xT

k0
Θxk0 ≤ 1.

1) Given output feedback control of the form (2), obtain
sufficient difference matrix inequality conditions such
that the closed loop system (6) is finite-time dissipative
with respect to (Θs,Ωs(k),S ,W ,NT ) and given matri-
ces Q, S, R, i.e., ∀ k ∈ NT and ω(k) ∈ W , the system
trajectories satisfy,

xT (k)Ω(k)x(k)< 1 and

V (x(k0 +T ),k0 +T )≤V (x(k0),k0)

+
k0+T−1

∑
k=k0

[
z(k)
ω(k)

]T [Q ⋆
ST R

][
z(k)
ω(k)

] (8)

2) Using the obtained sufficient conditions, derive
parameter-independent difference linear matrix inequal-
ity conditions for the design of reduced-order time-
varying controller gains K(k), such that the closed-loop
system (6) is finite-time dissipative.

III. FINITE-TIME DISSIPATIVE OUTPUT FEEDBACK
CONTROLLER DESIGN FOR DISCRETE-TIME SYSTEMS

In this section, initially, we derive the sufficient conditions
for the discrete-time system to be finite-time dissipative, and
further discuss the design of a reduced-order controller.

A. Finite-time Dissipativity with Output Feedback

Using the conditions for FTD in Definition 2, the follow-
ing lemma describes sufficient conditions for achieving FTD
of uncertain time-varying systems using output feedback.

Lemma 1. Consider the polytopic uncertain system sub-
jected to external disturbances ω(k) ∈ W , described by the
dynamics in (1). Given matrices Q, S, R, Θ and a matrix
sequence Ω(k), the closed-loop system (6) with control func-
tion (7) is finite-time dissipative, if there exists a symmetric
positive definite matrix sequence P(ξ (k)), k ∈NT , and time-
varying control gains K(k) that satisfy the difference matrix
inequality conditions,

P(ξ (k0))< Θ, P(ξ (k))> Ω(k) and
−P(ξ (k)) ⋆ ⋆ ⋆
−ST Γ(ξ ) −He(ϒT (ξ )S)−R ⋆ ⋆

Φ(ξ ) Ψ(ξ ) −P−1(ξ (k+1)) ⋆

Q̂
1
2 Γ(ξ ) Q̂

1
2 ϒ(ξ ) 0 −I

≤ 0

(9)
where, Φ(ξ ) := A(ξ ) + B(ξ )K(k)C(ξ ), Ψ(ξ ) :=
B(ξ )K(k)D(ξ ) + E(ξ ), Γ(ξ ) := F(ξ ) + G(ξ )K(k)C(ξ ),
ϒ(ξ ) := G(ξ )K(k)D(ξ )+H(ξ ) and −Q = (Q̂

1
2 )2.

Proof. From dissipativity constraints in (4), we have,

V (x(k+1),k+1)≤V (x(k),k)+ s(z(k),ω(k)). (10)

For the augmented LTV discrete-time system defined
in polytope S , considering the QSR-supply rate as
s(z(k),ω(k)) = zT (k)Qz(k) + 2zT (k)Sω(k) + ωT (k)Rω(k),
the non-negative storage function can be specified as
V (x(k),k) = xT (k)P(ξ (k))x(k) with P(ξ (k))> 0 [22]. Now,
the condition in (10) can be simplified and written as,

xT (k)
(
Φ

T (ξ )P(ξ (k+1))Φ(ξ )
)

x(k)+ω
T (k)ΨT (ξ )

P(ξ (k+1))Φ(ξ )x(k)+ xT (k)Φ(ξ )P(ξ (k+1))Ψ(ξ )ω(k)

+ω
T (k)ΨT (ξ )P(ξ (k+1))Ψ(ξ )ω(k)− xT (k)P(ξ (k))x(k)

− zT (k)Qz(k)−2zT (k)Sω(k)−ω
T (k)Rω(k)≤ 0. (11)

where, Φ(ξ ) := A(ξ ) + B(ξ )K(k)C(ξ ) and Ψ(ξ ) :=
B(ξ )K(k)D(ξ ) + E(ξ ). Upon substituting z(k) in (6) and
u(k) in (7), the difference matrix inequality conditions to
satisfy (11) can be written as,

[
ΦT (ξ )P(ξ (k+1))Φ(ξ )−P(ξ (k))−ΓT (ξ )QΓ(ξ )

ΨT (ξ )P(ξ (k+1))Φ(ξ )−
(
ϒT (ξ )Q+ST )Γ(ξ )

⋆
ΨT (ξ )P(ξ (k+1))Ψ(ξ )−ϒT (ξ )Qϒ(ξ )−He(ϒT (ξ )S)−R

]
≤ 0

(12)
with Γ(ξ ) := F(ξ ) + G(ξ )K(k)C(ξ ) and ϒ(ξ ) :=

G(ξ )K(k)D(ξ )+H(ξ ). Taking Schur complements, the ma-
trix inequality (12) can be simplified and written as (9).
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For FTB, the state trajectories of the system (6) start-
ing from xT

k0
Θxk0 ≤ 1 are to be confined within the set

xT (k)Ω(k)x(k) < 1, ∀ k ∈ NT . Let the initial stored energy
in the system be V (xk0 ,k0) = xT

k0
P(ξ (k0))xk0 . Provided that

the inequalities in (9) are satisfied, we have,

xT (k)Ω(k)x(k)< xT (k)P(ξ (k))x(k) (since P(ξ (k))> Ω(k))

< xT
k0

P(ξ (k0))xk0 (from (4))

< xT
k0

Θxk0 ≤ 1 (since P(ξ (k0))< Θ)

indicating that the closed-loop system (6) is finite-time
bounded with respect to (Θs,Ωs(k),S ,W ,NT ).

B. Finite-time Dissipative Control Synthesis

Based on the sufficient conditions for FTD presented in
Lemma 1, in the following, we obtain a set of parameter-
independent DLMI conditions for controller design.

We utilize the following lemma to convert the matrix in-
equalities obtained in Lemma 1 into a linear form appropriate
for controller design.

Lemma 2. [19] Let J < 0 and J + LM + MT LT < 0 be
given matrix inequalities with J being a symmetric matrix
and matrices M and L be of appropriate dimensions. Then,
for a scalar β and matrix variable U, the inequality,[

J ⋆
βLT +UM −βHe(U)

]
< 0

is equivalent to the given two matrix inequalities.

By using Lemma 1 and Lemma 2, we state the following
theorem, which presents DLMI conditions for designing
linear time-varying dynamic output feedback finite-time dis-
sipative controllers.

Theorem 1. Consider the linear time-varying discrete-time
dynamical system (1) subjected to disturbances ω(k) ∈ W ,
and defined in polytope S . For given matrices Q, S, R, Θ

and a matrix sequence Ω(k), if there exist a positive definite
matrix sequence Xi(k), i = 1,2, . . . ,N, a scalar β , and time-
varying matrices V (k) and U(k), k ∈NT , that satisfy DLMIs,

Xi(k0)> Θ
−1, i = 1,2, . . . ,N

Xi(k)< Ω
−1(k), i = 1,2, . . . ,N

Λii ≤ 0, i = 1,2, . . . ,N and

Λi j +Λ ji ≤ 0, i < j, i, j,= 1,2, . . . ,N

(13)

with Λi j is specified by (14), then the closed-loop system with
control gains K(k) =V (k)U−1(k) is finite-time dissipative.

Proof. By performing a transformation P(ξ ) = X−1(ξ )
and pre- and post-multiplying the dissipative inequality in
Lemma 1 by diag(X(ξ ), I, I, I), we obtain,

X(ξ (k0))> Θ
−1, X(ξ (k))< Ω

−1(k) and
−X(ξ (k)) ⋆ ⋆ ⋆

−ST Γ(ξ )X(ξ (k)) −He(ϒT (ξ )S)−R ⋆ ⋆
Φ(ξ )X(ξ (k)) Ψ(ξ ) −X(ξ (k+1)) ⋆

Q̂
1
2 Γ(ξ )X(ξ (k)) Q̂

1
2 ϒ(ξ ) 0 −I

≤ 0

(15)

By choosing the control gain K(k) as K(k) =V (k)U−1(k),
we can decompose the inequality (15) as,


−X(ξ (k)) ⋆ ⋆ ⋆

−ST F(ξ )X(ξ (k)) −He(HT (ξ )S)−R ⋆ ⋆
A(ξ )X(ξ (k)) E(ξ ) −X(ξ (k+1)) ⋆

Q̂
1
2 F(ξ )X(ξ (k)) Q̂

1
2 H(ξ ) 0 −I



+He




0
−ST G(ξ )V

B(ξ )V
Q̂

1
2 G(ξ )V

U−1 [C(ξ )X(ξ (k)) D(ξ ) 0 0
]≤ 0.

(16)

The inequality (16) is equivalent to,
−X(ξ (k)) ⋆ ⋆ ⋆

−ST F(ξ )X(ξ (k)) −He(HT (ξ )S)−R ⋆ ⋆
A(ξ )X(ξ (k)) E(ξ ) −X(ξ (k+1)) ⋆

Q̂
1
2 F(ξ )X(ξ (k)) Q̂

1
2 H(ξ ) 0 −I



+He




0
−ST G(ξ )V

B(ξ )V
Q̂

1
2 G(ξ )V

U−1

C(ξ )X(ξ (k))−U(k)C(ξ )
D(ξ )−U(k)D(ξ )

−U(k)C(ξ )
−U(k)G(ξ )


T

+He




0
−ST G(ξ )V

B(ξ )V
Q̂

1
2 G(ξ )V

U−1

C(ξ )X(ξ (k))
U(k)D(ξ )

UC(ξ )
UG(ξ )


T≤ 0. (17)

Further, define the matrices in (17) as,

J :=


−X(ξ (k)) ⋆ ⋆ ⋆

−ST F(ξ )X(ξ (k)) −He(HT (ξ )S)−R ⋆ ⋆
A(ξ )X(ξ (k)) E(ξ ) −X(ξ (k+1)) ⋆

Q̂
1
2 F(ξ )X(ξ (k)) Q̂

1
2 H(ξ ) 0 −I

 ,

L :=

 0
−ST G(ξ )V

B(ξ )V
Q̂

1
2 G(ξ )V

 and M :=U−1

C(ξ )X(ξ (k))−UC(ξ )
D(ξ )−UD(ξ )

−UC(ξ )
−UG(ξ )

T

. By

utilizing Lemma 2, the conditions presented in (17) can be
transformed into a linear matrix inequality, as in (18).

It is worth noting that the matrix variables appearing in
(18) are expressed in terms of the parameter ξ . In order to
convert the inequalities in (18) into parameter-independent
form, we exploit the fact that the system parameters lie
in an N-vertex convex polytope S , and select the stor-
age function P(ξ (k)) as a linear function in ξ [19], i.e.,
P(ξ (k)) = ∑

N
i=1 ξiPi(k). This allows us to reformulate the

matrix inequalities in (18) as a convex combination, i.e.,
N

∑
i=1

ξiXi(k0)> Θ
−1,

N

∑
i=1

ξiXi(k)< Ω
−1(k) and

N

∑
i=1

N

∑
j=1

ξiξ jΛi j ≤ 0
(19)

where, Λi j is as specified in (14). Using the proper-
ties of double convex combination [23], the expression
∑

N
i=1 ∑

N
j=1 ξiξ jΛi j in (19) can be expressed as ∑

N
i=1 ξ 2

i Λii +

∑
N
i=1 ∑

N
i< j ξiξ j (Λi j +Λ ji). By substituting this into (19), the

resulting inequality can be represented as a set of DLMIs
given in (13), which provide sufficient conditions for the
design of controller gains K(k) =V (k)U−1(k).
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Λi j :=


−X j(k) ⋆ ⋆ ⋆ ⋆

−ST (FiX j(k)−GiVC j) −He(HT
i S)−He(ST GiV D j)−R ⋆ ⋆ ⋆

AiX j(k)+BiVC j Ei −CT
i V T GT

j S+BiV D j −X j(k+1)−He(BiVC j) ⋆ ⋆

Q̂
1
2
(
FiX j(k)+GiVC j

)
Q̂

1
2
(
Hi +GiV D j

)
−GT

i V T GT
i S Q̂

1
2 G jVCi +GT

j V T BT
i −I +He(Q̂

1
2 GiV Gi) ⋆

CX j(k)−UCi −βV T GT
i S+Di −UDi βV T BT

i −UCi βV T GT
i Q̂

1
2 −UGi −βHe(U)

 (14)


−X(ξ (k)) ⋆ ⋆ ⋆ ⋆

−ST (F(ξ )X(ξ (k))−G(ξ )VC(ξ )) φ22 ⋆ ⋆ ⋆
A(ξ )X(ξ (k))+B(ξ )VC(ξ ) φ23 −X(ξ (k+1))−He(B(ξ )VC(ξ )) ⋆ ⋆

Q̂
1
2 (F(ξ )X(ξ (k))+G(ξ )VC(ξ )) φ24 Q̂

1
2 G(ξ )VC(ξ )+GT (ξ )V T BT (ξ ) −I +He(Q̂

1
2 G(ξ )V G(ξ )) ⋆

C(ξ )X(ξ (k))−UC(ξ ) φ25 βV T BT (ξ )−UC(ξ ) βV T GT (ξ )Q̂
1
2 −UG(ξ ) −βHe(U)

< 0 (18)

where, φ22 :=−He(HT (ξ )S)−He(ST G(ξ )V D(ξ ))−R, φ23 := E(ξ )−CT (ξ )V T GT (ξ )S+B(ξ )V D(ξ ), φ24 := Q̂
1
2 (H(ξ )+G(ξ )V D(ξ ))−

GT (ξ )V T GT (ξ )S and φ25 :=−βV T GT (ξ )S+D(ξ )−UD(ξ ).

Remark 2. When the dynamical controller order r in (2)
is set to zero, it becomes a static output feedback control
described by the function,

us(k) = Ks(k)ys(k) (20)

where, ys(k) =Cs(ξ )xs(k)+Ds(ξ )ω(k) and Ks(k) = Dc(k)∈
Rp×m. Therefore, the finite-time static output feedback con-
trol design becomes a special case of the proposed method
and follows a similar procedure as outlined in Theorem 1.

IV. NUMERICAL SIMULATIONS

This section presents simulation results that demonstrate
the effectiveness of the proposed controller design.

Example 1. Consider the following discrete-time LTV un-
certain system defined by a 2-vertex convex polytope, with
the parameters,

As1 =

[
0.99+0.05k 0.1
−0.1sin0.5k 0.97

]
, As2 =

[
0.99 0.1

−0.07+0.07k 0.96

]
,

Bs1 =

[
0.4cos0.6k

0.15

]
, Bs2 =

[
0.2

0.06k

]
, Es1 = Es2 =

[
0.3
0.1

]
,

Cs1 =Cs2 =
[
0.9 0.1

]
,Fs1 = Fs2 =

[
0.5 0

]
,

Ds1 = Ds2 =
[
0.1

]
,Gs1 = Gs2 =

[
0.3

]
, and Hs1 = Hs2 =

[
0.1

]
.

Here, since we have one measured output, the order of the
dynamic controller can be either 0 or 1. Hence, it is possible
to design both static and reduced-order output feedback
controllers, providing flexibility in the controller design.

The corresponding parameters for the design of static and
dynamic controllers are selected as, Θ := diag(Θs,Θc) =
3I3, Ω(k) := diag(Ωs(k),Ωc(k)) = diag(0.5I2,0.2), Q =

diag(−1.6,−10), S =
[
0.3 0.4

]T and R = 3. Using the
DLMI conditions derived in Theorem 1 and based on Remark
2, the time-varying control gains are designed over the
interval [1,20], with the scalar variable selected as β = 2.
The simulations are carried out in MATLAB®, on a Core-
i7 CPU with 16GB of RAM, using YALMIP optimization
toolbox [24] and MOSEK solver [25].

The designed time-varying reduced-order control gains
Ac(k), Bc(k), Cc(k) and Dc(k), and the control corresponding

control function us(k) are plotted in Fig. 1(a) and Fig. 1(b),
respectively. With the given CPU specifications, it took 16.42
seconds to design reduced-order control gains.
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Fig. 1: Control with reduced-order dynamic controller

Further, the static output feedback time-varying control
gains are obtained as shown in Fig. 2(a), with the corre-
sponding control function as in Fig. 2(b). In this case, the
time taken for controller design is 14.42 seconds.

The results of numerical simulations, which show the
variation of controlled and uncontrolled weighted system
states, are depicted in Fig. 3. Here, the initial conditions
of augmented system-controller states are chosen as xk0 =[
0.45 −0.28 −0.22

]T , which satisfies xT
k0

Θxk0 ≤ 1 and
the disturbance affecting the system is considered as,

ω(k) =


0.7, 2 ≤ k ≤ 5
0.4, 9 ≤ k ≤ 17
0, otherwise

.
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Fig. 3: Weighted system states, xT
s (k)Ωs(k)xs(k)

When subjected to disturbances, the uncontrolled system
trajectories cross the specified threshold, as evident from Fig.
3(a). By associating the designed reduced-order and static
output feedback control functions, the weighted states are
bounded within the prescribed limit, as shown in Fig. 3(b).
This indicates the effectiveness of the proposed method.

V. CONCLUSION

This paper studies the design of finite-time dissipative
output feedback controllers for uncertain discrete-time linear
time-varying systems. The proposed controller aims to bind
the state trajectories below a specified threshold, while en-
suring dissipativity properties to external disturbances during
transients. We demonstrate the effectiveness of the proposed
controller through numerical simulations on linear polytopic
uncertain system. The proposed approach can be extended
to design decentralized finite-time dissipative controllers for
complex and large-scale systems, where using a decentral-
ized control formulation is more convenient and efficient to
bound the states of individual subsystems.
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