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Abstract— We study the model reduction by moment match-
ing problem for linear systems in a data-driven framework.
We show that reduced-order models can be directly computed
from data without knowledge of the structure of the signal
generator or of its internal state. The reduced-order models
thus obtained match the moments of the unknown underlying
system asymptotically. Our construction provides a simple way
to enforce additional constraints in the reduced-order model.
We demonstrate the applicability of the results using data from
a high-dimensional model of a building.

I. INTRODUCTION

Mathematical models have played a pivotal part in ensur-
ing the efficient operation of large-scale dynamical systems.
These models have been extensively used in the design,
analysis, and subsequent control of such systems. In recent
years, however, the increased complexity in these systems
has made it more difficult to model the underlying pro-
cess accurately, while also demanding large amounts of
computational power once aggregated models are available.
Therefore, it is necessary to obtain simpler models that
can replicate the behavior of the underlying system under
specific operating conditions. The procedure for identifying
such simpler descriptions is called model reduction.

Model reduction algorithms have been extensively used in
various disciplines owing to their rich mathematical structure
and versatility across application domains. These include
large-scale integrated circuit design, where the effects of bil-
lions of transistors need to be captured [1]; weather forecast
models, which deal with large amounts of atmospheric data
[2]; and the modeling of complex mechanical systems, where
the effect of flexible modes is often neglected [3].

Significant attention has been devoted to model reduction
for linear systems. Two classes of methods have predomi-
nantly found popularity: algorithms based on the Singular
Value Decomposition (SVD) and algorithms based on mo-
ment matching methods. The Hankel operator [4] and the
celebrated balanced realization [5] belong to the first group,
whereas methods based on interpolation theory belong to
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the latter group [6]–[8]. Moment matching methods allow
the construction of reduced-order models such that the error
between the underlying system and the reduced-order model
is zero at some points of the complex plane.

Model reduction approaches, typically, rely upon the con-
struction of a high-dimensional mathematical model of the
system to be reduced. However, with the increased complex-
ity of interconnected systems, it is often difficult to derive
such a model. Instead, due to the emergence of sophisticated
sensors and high-performance computing platforms, large-
scale monitoring and collection of data from such systems
is relatively easy [9]. This has led to the inception of data-
driven model reduction approaches that circumvent the need
for obtaining models of the underlying system.

Data-driven model reduction algorithms such as Proper
Orthogonal Decomposition (POD) and Dynamic Mode De-
composition (DMD), which are based on the SVD, have
found extensive usage, among many others, in the domain of
fluid systems [10]–[13]. In the moment matching framework,
a data-driven version of the Loewner framework has been
presented for model reduction using frequency-domain mea-
surements [6]. However, the use of such observables limits
the extension of this procedure to nonlinear systems. As an
alternative, a data-driven algorithm for model reduction by
moment matching based on time-domain measurements has
been presented in [14]. In this method, the moment of the
system is first calculated based on these time-domain ob-
servables, following which reduced-order models are derived.
This procedure requires the knowledge of the structure of the
signal generator that drives the system as well as the knowl-
edge of its internal states. However, in several applications,
only qualitative information may be known about the signal
generator. In addition, since obtaining reduced-order models
is the ultimate objective, it may be unnecessary to compute
the moment of the system as an intermediate step.

To deal with the model reduction problem when only
qualitative information is available about the signal gener-
ator, e.g. that the signal generator has an unknown implicit
representation, we exploit the ideas presented in [7], [14] to
derive reduced-order models directly from input-output data.
The rest of the paper is structured as follows. The steady-
state notion of moment and an algorithm to compute it from
data are revisited in Section II. A procedure for computing
reduced-order models without computing the moment of the
system is introduced and is illustrated via an example in
Section III. Finally, some concluding remarks are presented
in Section IV.
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Notation: We use standard notation. R≥0 denotes the set
of nonnegative real numbers, R>0 denotes the set R≥0 \ {0},
C<0 denotes the set of complex numbers with negative real
part, and C≥0 denotes the set C \C<0. The symbol I denotes
the identity matrix of appropriate dimensions, σ(A) denotes
the spectrum of the square matrix A, and ∥A∥ denotes
the induced Euclidean matrix norm of the matrix A. The
vectorization operator of a matrix A is denoted by vec(A)
and is obtained by stacking A’s columns.

II. PRELIMINARIES

In this section, we first recall the steady-state based
description of moment as described in [7], [15]. We then
revisit the procedure to compute the moment of the system
from data given in [14]. Finally, we introduce a formulation
that allows constructing reduced-order models without the
knowledge of the structure of the signal generator.

A. The steady-state notion of moment

Consider a continuous-time, single-input, single-output
system described by the equations

ẋ = Ax+Bu,

y = Cx,
(1)

with x(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R. Let the associated
transfer function W (s) = C(sI − A)−1B be minimal, i.e.,
the triple (C,A,B) is controllable and observable.

Definition 1: The 0-moment of system (1) at si ∈
C \σ(A) is the complex number η0(si) = C(siI −A)−1B.
The k-moment of system (1) at si ∈ C \σ(A) is the complex
number

ηk(si) =
(−1)k

k!

[
dk

dsk
(
C(sI −A)−1B

)]
s=si

.

The notion of moment for system (1) can be described in
terms of a Sylvester equation, as outlined below.

Lemma 1: [7] Consider system (1), let si ∈ C be
such that si /∈ σ(A), for all i = 1, · · · , η. Then
there exists a one-to-one relation between the moments
η0(s1), · · · , ηk1−1(s1), · · · , η0(sη), · · · , ηkη−1(sη) and the
matrix CΠ , where Π is the unique solution of the Sylvester
equation

AΠ+BL = ΠS, (2)

with S ∈ Rν×ν any non-derogatory matrix with characteris-
tic polynomial

p(s) =

η∏
i=1

(s− si)
ki , (3)

with ν =
∑η

i=1 ki, and the pair (L, S) is observable.
This formulation allows a relationship to be established,

through the Sylvester equation, between the moments of a
system and its steady-state output response, as outlined next.

Theorem 1: [7] Consider system (1). Let si ∈ C be
such that si /∈ σ(A), for all i = 1, · · · , n, and assume that

σ(A) ⊂ C<0. Let S ∈ Rν×ν be any non-derogatory matrix
with characteristic polynomial as defined in (3). Consider the
interconnection of system (1) with the signal generator

ω̇ = Sω,

u = Lω,
(4)

such that the pair (L, S) is observable and
the triple (L, S, ω(0)) is minimal. Then there
exists a one-to-one relation between the moments
η0(s1), · · · , ηk1−1(s1), · · · , η0(sη), · · · , ηkη−1(sη) and the
steady-state output of the interconnected system (1) and (4).

Exploiting Lemma 1 and Theorem 1, the notion of
reduced-order model can be defined as follows. The system
described by the equations

ξ̇ = Fξ +Gu,

ψ = Hξ,
(5)

with ξ(t) ∈ Rν , u(t) ∈ R, and ψ(t) ∈ R, is a model of
system (1) at S ∈ Rν×ν , with S such that σ(S) ∩ σ(A) = ∅,
if σ(S) ∩ σ(F ) = ∅, and

CΠ = HP, (6)

where Π is the unique solution of the the Sylvester equation
(2), such that the pair (L, S) is observable, and P is the
unique solution of the Sylvester equation

FP +GL = PS. (7)

Equation (6) is the so-called moment matching condition. In
addition, system (5) is said to be a reduced-order model of
system (1) if ν < n.

B. Computing moment from data

While deriving reduced-order models, one usually starts
with a high-dimensional model of the underlying system.
This, of course, assumes the knowledge of such a full-
order realization. In practice, however, it may be difficult to
obtain state-space realizations of complex systems. Instead,
it is easier to obtain input-output data from such systems
and then use these data to obtain reduced-order models. We
now recall a data-driven procedure that utilizes input-output
data to compute the moment of the system with subsequent
construction of reduced-order models.

Theorem 2: [14] Let the time snapshots Qk ∈ Rw×nν

and ρk ∈ Rw, with w ≥ nν, be defined as

Qk =


(w(0)T ⊗ C)(eS

T tk−w+1 ⊗ I − I ⊗ eA
T tk−w+1)

...
(w(0)T ⊗ C)(eS

T tk−1 ⊗ I − I ⊗ eA
T tk−1)

(w(0)T ⊗ C)(eS
T tk ⊗ I − I ⊗ eA

T tk)

 ,
and

ρk =


y(tk−w+1)− CeA(tk−w+1)x(0)

...
y(tk−1)− CeA(tk−1)x(0)
y(tk)− CeA(tk)x(0)

 ,
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respectively. Assume that the matrix Qk has full column
rank. Then

vec(CΠk) = (QT
kQk)

−1QT
k ρk. (8)

Equation (8) is solved over a set of sample times given by
Tw
k = {tk−w+1, . . . , tk−1, tk} such that 0 ≤ t0 < t1 < . . . <
tk−w < . . . < tk < . . . < tv . Tw

k is a moving window of w
sample times where w ≥ 0 and v ≥ w. CΠk is the estimate
of the matrix CΠ at Tw

k , meaning that the estimate computed
at time tk uses data sampled from the last w instants of time.

The formulation defined in Theorem 2 requires the knowl-
edge of the system matrices and the initial conditions of the
underlying model for computing the moment of the system.
This requirement can be circumvented by employing the
following approximation.

Theorem 3: [14] Let the time snapshots Q̃k ∈ Rw×ν and
ρ̃k ∈ Rw, with w ≥ ν, be defined as

Q̃k =
[
ω(tk−w+1) . . . ω(tk−1) ω(tk)

]T
,

and

ρ̃k =
[
y(tk−w+1) . . . y(tk−1) y(tk)

]T
.

Assume that the matrix Q̃k has full column rank. Then

vec(C̃Πk) = (Q̃T
k Q̃k)

−1Q̃T
k ρ̃k

is an approximation of the on-line estimate CΠk, namely
there exists a sequence {tk} such that limk→∞(C̃Πk) = CΠ.
Choosing P = I in equations (6) and (7) yields a family
of reduced-order models for system (1) at S that achieve
moment matching [7]. The state-space realization of this
family of reduced-order models is described as in equation
(5) with

F = S −GL, H = CΠ.

C. Problem formulation

The procedure for obtaining reduced-order models de-
scribed in Section II-B requires full information about the
structure of the signal generator via the use of S and L.
However, in a completely data-driven setting, one may only
have access to input-output data and some qualitative knowl-
edge about the signal generator itself. In such situations,
the aforementioned procedure cannot be utilized for model
reduction. To address these issues, consider the following
assumptions and properties.

Assumption 1: System (1) is asymptotically stable, i.e.
σ(A) ⊂ C<0.

Assumption 2: The signal generator defined by equation
(4) is such that σ(S) ⊂ C0 and the matrix S has simple
eigenvalues. Furthermore, the triple (L, S, ω(0)) is minimal.

Assumption 3: The elements of T v
k are selected such that

rank
([
ω(tk−v+1) . . . ω(tk)

])
= ν, for all k.

Assumption 2 guarantees that the signals generated by (4) are
persistently exciting [16]–[18]. Assumption 3 ensures that
Q̃k (defined in the previous section) is a full-rank square
matrix. Similar to Assumption 1, we impose a stability
condition on the reduced-order model (5).

Assumption 4: System (5) is asymptotically stable, i.e.
σ(F ) ⊂ C<0 and the pair (F,G) is controllable.

Finally, the time response of both the full-order and of the
reduced-order models can be obtained as follows.

Proposition 1: [7], [14] Consider the interconnection of
system (1) and the signal generator (4) and suppose that
Assumptions 1 and 2 hold. Then system (1) has a global
invariant manifold described by M = {(x, ω) ∈ Rn ×
Rν |x = Πω)}, that is for all t ∈ R≥0, we have that

x(t)−Πω(t) = eAt(x(0)−Πω(0)). (9)
Proposition 2: [7], [14] Consider the interconnection of

system (5) and the signal generator (4) and suppose that
Assumptions 2 and 4 hold. Then system (5) has a global
invariant manifold described by M = {(ξ, ω) ∈ Rν ×
Rν | ξ = Pω)}, that is for all t ∈ R≥0, we have that

ξ(t)− Pω(t) = eFt(ξ(0)− Pω(0)). (10)

III. DIRECT COMPUTATION OF REDUCED-ORDER
MODELS FROM DATA

In this section, we outline a procedure to directly obtain
reduced-order models from input-output data when system
(1) is driven by an unknown implicit signal generator de-
scribed by equations of the form (4), with u and y as the
only available measurements. More precisely, we show that
reduced-order models can be derived from input-output data
without the knowledge of the structure of the signal generator
or of its internal state. We note again that our formulation
is based on the premise that if the structure of the signal
generator is unknown, the Sylvester equation (7) cannot be
solved, and thus reduced-order models cannot be constructed
using the standard procedure.

A. Batch estimation of reduced-order models

We begin this section by showing how reduced-order
models can be computed from a batch of input-output data.
To begin with, let Hk be the estimate of the matrix H at
Tw
k .
Theorem 4: Consider system (1), system (5), and the

signal generator (4). Suppose that Assumptions 1-4 hold. Let
the time snapshots Rk ∈ Rw×ν and γk ∈ Rw, with w ≥ ν,
be defined as

Rk =


(Pω(tk−w+1))

T

...
(Pω(tk−1))

T

(Pω(tk))
T

 ,
and

γk =


y(tk−w+1)− CeA(tk−w+1)x̄(0)

...
y(tk−1)− CeA(tk−1)x̄(0)
y(tk)− CeA(tk)x̄(0)

 ,
respectively, and x̄(0) = x(0) − Πω(0). Assume that the
matrix Rk has full column rank. Then

vec(Hk) = (RT
kRk)

−1RT
k γk. (11)
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Proof: From equation (6) we have that

CΠ = HP,

which can be rewritten as

CΠω(t) = HPω(t). (12)

From Proposition 1, we know that

x(t) = Πω(t) + eAt(x(0)−Πω(0)),

which leads to

Πω(t) = x(t)− eAt(x(0)−Πω(0)).

Multiplying by C on both sides, we obtain

CΠω(t) = y(t)− CeAtx̄(0).

Using the moment matching condition (12), we have that

HPω(t) = y(t)− CeAtx̄(0). (13)

Finally, we use the Kronecker product and the vectorization
operator to obtain

vec(HPω(t)) = vec(y(t)− CeAtx̄(0)),

which leads to

(Pω(t))Tvec(H) = vec(y(t)− CeAtx̄(0)). (14)

By computing equation (14) at all elements of Tw
k , we obtain

Rkvec(Hk) = γk. (15)

Since by assumption the matrix Rk has full column rank, we
can compute Hk from equation (15), yielding equation (11).

We solve equation (11) over a set of sample times given by
Tw
k . Tw

k is a moving window of w sample times where w ≥ 0
and v ≥ w (see Section II-B). As discussed at the beginning
of this section, the estimate of H computed at time tk uses
data sampled from the last w instants of time.

The result presented in Theorem 4 contains terms that
depend on the system model and the initial conditions of
the underlying system and of the signal generator. However,
by Assumption 1 we know that σ(A) ⊂ C<0, implying that
these terms exponentially decay to zero. We now present an
approximate version of the result presented in Theorem 4.

To this end, suppose that Assumptions 1-4 hold. Let the
time snapshots R̃k ∈ Rw×ν and γ̃k ∈ Rw, with w ≥ ν, be
defined as

R̃k =
[
(Pω(tk−w+1)) · · · (Pω(tk−1)) (Pω(tk))

]T
,

and

γ̃k =
[
y(tk−w+1) · · · y(tk−1) y(tk)

]T
,

respectively. Assume that the matrix R̃k has full column
rank. Then

vec(H̃k) = (R̃T
k R̃k)

−1R̃T
k γ̃k. (16)

Although ostensibly the computation of the term Pω requires
the knowledge of P and ω, as can be seen from equation
(10), one does not need information about either quantity
in practice. This is because by Assumption 4, σ(F ) ⊂ C<0,
which implies that Pω converges to the state of the reduced-
order model asymptotically as shown in the next statement.

Lemma 2: Consider the interconnection of system (5) and
the signal generator (4), and suppose that Assumptions 2-
4 hold. Then for any sequence {tk}, limtk→∞(Pω(tk) −
ξ(tk)) = 0.

Proof: By Proposition 2 we know that, for all t ∈ R≥0,

ξ(t)− Pω(t) = eFt(ξ(0)− Pω(0)).

Therefore, since σ(F ) ⊂ C<0 by Assumption 4, for any
sequence {tk} we obtain

lim
tk→∞

(ξ(tk)− Pω(tk)) = lim
tk→∞

eFtk(ξ(0)− Pω(0)) = 0.

Therefore, one can use the state of the reduced-order model
as a proxy for Pω in equation (16). In fact, one can control
the speed of convergence of Pω and ξ by appropriately
selecting the eigenvalues of F . We now show that H̃k

converges to H .
Lemma 3: Consider system (1), system (5), and the signal

generator (4). Suppose that Assumptions 1-4 hold. Then there
exists a matrix H̄ such that limk→∞ H̃k = H̄ .

Proof: By Assumptions 1 and 2, there exists a matrix
H̄ such that the steady-state output response yss of the
interconnection of system (1) with the signal generator (4)
is given by yss(t) = H̄Pω(t), for all t ≥ 0. By substituting
γssk = R̃kvec(H̄) in equation (16), we obtain

lim
k→∞

vec(H̃k) = (R̃T
k R̃k)

−1R̃T
k γ

ss
k = vec(H̄),

hence the claim.
We are now ready to state and prove the main result of this
section.

Theorem 5: Let H be the solution of equation (6). Sup-
pose that Assumptions 1-4 hold. Then there exist sequences
{tk} such that limk→∞ H̃k = H .

Proof: From equation (13) we have

HPω(tk) = y(tk)− CeAtk x̄(0). (17)

Similarly, from equation (16) we have

H̃kPω(tk) = y(tk). (18)

Using equations (17) and (18), we obtain

(H̃k −H)Pω(tk) = CeAtk x̄(0).

By Assumptions 2-4, there exist sequences {tk} with
limk→∞ tk = ∞, such that for any ti ∈ {tk}, Pω(ti) ̸= 0
(see [19]). Therefore, since σ(A) ⊂ C<0 by Assumption 1,
we obtain

lim
k→∞

(H̃k −H)Pω(tk) = lim
k→∞

CeAtk x̄(0) = 0.

By Assumption 3 and Lemma 3, we obtain

lim
k→∞

(H̃k −H) = lim
k→∞

(H̄ −H) = 0.

This implies that H̃k asymptotically converges to H .
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B. Online estimation of reduced-order models

As seen in equation (16), the computation of vec(H̃k)
at each time instant involves the inversion of a matrix of
dimension ν × ν. If the number of interpolation points (and
correspondingly, the size of the reduced-order model) is
large, this procedure may not be computationally efficient.
Therefore, we now introduce a recursive version of (16) that
alleviates this issue.

Theorem 6: Let αk = Pω(tk) and assume that Φk =
(R̃T

k R̃k)
−1 and Υk = ((R̃T

k−1R̃k−1)
−1 + αkα

T
k )

−1 are full
rank for all t ≥ tr, where tr > tw. Given vec(H̃r), Φr, αr,
and Υr, the recursive least-square formulation for vec(H̃k)
for all t ≥ tr is given by

vec(H̃k) = vec(H̃k−1) + Φkαk(y(tk)− αT
k vec(H̃k−1))

− Φkαk−w(y(tk−w)− αT
k−wvec(H̃k−1)),

(19)

where

Φk = Υk −Υkαk−w(α
T
k−wΥkαk−w − I)−1αT

k−wΥk,
(20)

and

Υk = Φk−1 − Φk−1αk(I + αT
kΦk−1αk)

−1αT
kΦk−1. (21)

Proof: The proof of this result is similar to that of the
online algorithm described in [14], and is therefore omitted.

We note that the matrices that need to be inverted in the
recursive formulation are in fact scalars, which can be
computed easily and more efficiently as compared to the
computation in the batch formulation. Even if the number
of interpolation points (and correspondingly, the size of the
reduced-order model) were to be increased, matrix inversions
would not be affected. If one has knowledge about the
structure of the signal generator, P and ω (and consequently
Pω) are obtained readily. In the case in which the structure
of the signal generator is unknown, one can use ξ in its stead
as Pω converges to ξ asymptotically, as shown in Lemma 2.

When compared to existing results in the literature (see
[14] for example), our results are advantageous on three
fronts while maintaining the same computational benefits.
First, using existing methods, one cannot construct reduced-
order models if the signal generator is not known while,
in our work, we do not need to know the structure of the
signal generator or its internal state. Secondly, in our method,
there is no need to compute the moment of the full-order
system as an intermediate step while obtaining reduced-order
models. Finally, in our formulation, both F and G are free
parameters that can be chosen freely to preserve properties
of the underlying system such as matching with prescribed
eigenvalues, matching with prescribed relative degree, etc.
We conclude this section with an example.

C. Example: Hospital building model

In this section, we apply the results developed in the
previous sections to the model of the Los Angeles Hospital

building. This building has 8 floors, each having three
degrees of freedom [14], [20]. The model of this building
can be represented in state-space form such as (1), with
n = 48. The motion of the first coordinate is the output of
the system. As part of the simulation environment, we design
the implicit signal generator such that the interpolation points
are ± 5.22 i, ± 13.8 i,± 25.2 i, corresponding to ν = 6.
Similarly, we set the parameter L of the signal generator to
L =

[
1 1 1 1 1 1

]
. We note that the quantities S, L, and ω are

not exposed to our algorithm. The only observables that we
utilize are u and y. In the remainder of this example, we show
how one can match the dynamics of the underlying system
by exploiting the structure of the reduced-order model.

1) A naive reduced-order model: In the first part of
this example, we choose our reduced-order model with the
assumption that we do not know anything about the dynamics
of the underlying system. Therefore, without any other prior
information about the full-order model, our reduced-order
model is naively chosen with

F =


−1 0 0 0 0 0
0 −2 0 0 0 0
0 0 −3 0 0 0
0 0 0 −4 0 0
0 0 0 0 −5 0
0 0 0 0 0 −6

 ,

G =
[
1 1 1 1 1 1

]T
.

(22)
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Fig. 1. Bode plot of the building model (solid blue line) and the estimated
reduced-order model (dashed orange line) presented in Section III-C.1. The
green dots indicate the interpolation points.

We apply the result presented in Theorem 6 for estimating the
reduced-order model from u and y. The estimation procedure
is terminated when ||H̃k+1 − H̃k|| is below a user-specified
threshold. Figure 1 shows the Bode plot of the actual building
model and the resulting reduced-order model along with the
interpolation points (marked with green dots). As can be

3431



seen, the moment of the reduced-order model coincides with
that of the underlying system at the interpolation points even
though the dynamics of both systems significantly differ at
other frequencies. To improve matching, we can incorporate
prior knowledge of the underlying system in the reduced-
order model, as we show next.

2) Matching with prescribed eigenvalues: If we have prior
knowledge about the underlying system, we can integrate
this knowledge in our reduced-order model using the results
presented in the previous section. Specifically, in this part, we
demonstrate how we can create a reduced-order model with
prescribed eigenvalues. Suppose that from previous knowl-
edge or other experiments, we are able to ascertain that the
building model has eigenvalues at −0.27 ± 7.63 i, −0.40 ±
17.55 i,−0.61 ± 26.45 i (the original building model has
48 complex eigenvalues, six of which are shown here). We
can now very easily construct our reduced-order model to
include this information. We design a new matrix F , defined
in (22), such that its eigenvalues are the ones that we want to
match while keeping G to be the same. Following the result
presented in Theorem 6, we run the estimation procedure as
we did in the first part of this example. Figure 2 shows the
Bode plot of the building model and the resulting reduced-
order model, with a newly designed F , along with the
interpolation points (marked with green dots).

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

M
a
g
n
it
u
d
e
 (

d
B

)

10
-1

10
0

10
1

10
2

10
3

Frequency (rad/s)

-200

-100

0

100

P
h
a
s
e
 (

d
e
g
)

Fig. 2. Bode plot of the building model (solid blue line) and the estimated
reduced-order model (dashed orange line) presented in Section III-C.2. The
green dots indicate the interpolation points.

It is evident from Figure 2 that incorporation of this
additional information in the construction of the reduced-
order model greatly improves the shape of its frequency
response when compared to the original building model
itself. Similarly other properties of the full-order system can
be preserved easily by utilizing the results that we have
presented in this paper.

IV. CONCLUSION

We have presented a data-driven procedure to compute
reduced-order models directly from input-output data with-

out necessitating the need to compute the moment of the
underlying system. The reduced-order models thus obtained
asymptotically match the moments of the high-dimensional
full-order system to be reduced. In addition, our formulation
allows an easy way of enforcing additional constraints on the
reduced-order model. The results have been presented in a
batch formulation as well as in a recursive one. The recursive
formulation overcomes computational challenges that may be
encountered in the batch formulation. Finally, we highlight
the advantages in our formulation when compared to existing
methods.
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