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Abstract— Hybrid systems are dynamical systems with
continuous-time and discrete-time components in their dynam-
ics. When hybrid systems are defined on a principal bundle
we are able to define two classes of impacts for the discrete-
time transition of the dynamics: interior impacts and exterior
impacts. In this paper we define hybrid systems on principal
bundles, study the underlying geometry on the switching surface
where impacts occur and we find conditions for which both
exterior and interior impacts are preserved by the mechanical
connection induced in the principal bundle.

I. INTODUCTION

Hybrid systems are dynamical systems with continuous-
time and discrete-time components in their dynamics. These
dynamical systems are capable of modeling various physical
systems, such as multiple UAV systems [1], bipedal robots
[2] and embedded computer systems [3], [4], among others.

Simple hybrid systems are a type of hybrid systems
introduced in [5] denoted as such because of their simple
nature. A simple hybrid system is characterized by a tuple
H = (X ,S, X,∆) where X is a smooth manifold, X is a
smooth vector field on X , S is an embedded submanifold of
X with co-dimension 1 called the switching surface (or the
guard), and ∆ : S → X is a smooth embedding called the
impact map (or the reset map). This type of hybrid system
has been mainly employed for the understanding of walking
gaits in bipeds and insects [2], [6], [7]. In the situation
where the vector field X is associated with a mechanical
system (Lagrangian or Hamiltonian), alternative approaches
for unilateral constraints and hybrid systems with symmetries
have been considered in [8], [9], [10], [11], [12], [13].

We consider here the role of connections in understanding
hybird systems on manifolds. Roughly speaking, a connec-
tion tells us how a quantity associated with a manifold
changes as we move from one point to another - it “connects”
neighboring spaces. In terms of fiber bundles, a connection
tells us how movement in the total space induces change
along the fiber. An important connection for analyzing the
dynamics and control of mechanical systems is the mechan-
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ical connection which is defined in terms of the momentum
map associated with a Lie group of symmetries.

The following motivating example shows the interplay
between symmetries, mechanical connection on principal
bundles and the role of impacts by studying the underlying
geometry of the switching surface and preservation properties
of the impact map.

A. Motivating example: pendulum on the cart

We begin with a case study: the pendulum on a cart.
Details on the mathematical background are given below. The
configuration space for this system (see Fig. 1) is Q = S1×R
with Lagrangian

L(θ, x, θ̇, ẋ) =
1

2

(
mℓ2θ̇2 + 2mℓẋθ̇ cos θ + (M +m)ẋ2

)
+mgℓ cos θ.

m

M

θ

x

ℓ

Fig. 1. The pendulum on the cart.

The underlying metric is

g = mℓ2dθ ⊗ dθ +mℓ cos θ (dx⊗ dθ + dθ ⊗ dx)

+ (M +m)dx⊗ dx.

If we let s ∈ G = R and denote its action on Q by
s.(θ, x) = (θ, x+ s), then the Lagrangian is invariant under
the tangent lift of left translations, that is, L(θ, x, θ̇, ẋ) =
L(θ, x + s, θ̇, ẋ). The configuration space has the structure
of a principal R-bundle,

π : Q = S1 × R → S1

(θ, x) 7→ θ

and the vertical space is

V(θ,x) = kerTπ(θ,x) = spanR

(
∂

∂x

)
⊂ T(θ,x)Q.
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The horizontal space arises from the mechanical connection,
A : TQ→ R

A(θ,x)(θ̇, ẋ) =
1

M +m

(
(M +m)ẋ+mℓθ̇ cos θ

)
,

as the locked inertia tensor (see [14] for instance) I : R → R
is simply I = (M +m). The resulting horizontal space is

H(θ,x) = kerA(θ,x) = spanR

(
∂

∂θ
− mℓ cos θ

M +m

∂

∂x

)
.

We note that the momenta (which will be useful later) are

pθ = mℓ2θ̇ +mℓẋ cos θ,

px = mℓθ̇ cos θ + (M +m)ẋ.

Impacts can be imposed on this system in two qualitatively
distinct ways depending on the geometry of the guard:
interior and exterior impacts. As an abuse of notation, we
say that the guard S ⊂ Q rather than S ⊂ X = TQ.

1) Interior Impacts: Suppose that the pendulum on the
cart impacts at the location θ = α. In this case, the impact
surface is S = {α}×R ⊂ Q. Notice that the impact surface
is a lift over the base space, S = π−1(α). In this case, the
(elastic) impact map is given by

∆̃ :

pθ 7→ −pθ +
2mℓ

M +m
px cos θ,

px 7→ px.
(1)

In velocity coordinates, the impact map is

∆ :

 θ̇ 7→ −θ̇

ẋ 7→ ẋ+
2mℓ

M +m
θ̇ cos θ

(2)

In particular, the mechanical connection is conserved:
∆∗A = A|S .

2) Exterior Impacts: Suppose that the cart impacts a wall
at the location x = z. In this case, the impact surface is
S = S1 × {z}. Unlike before, the surface is no longer a lift
of something in the base space. In this case, the (elastic)
impact map is given by

∆̃ :

pθ 7→ pθ

px 7→ −px +
2

ℓ
pθ cos θ

In velocity coordinates, the impact map is

∆ :

 θ̇ 7→ θ̇ +
2

ℓ
ẋ cos θ

ẋ 7→ −ẋ
(3)

Unlike the interior case, the mechanical connection is no
longer preserved: ∆∗A ≠ A.

Remark 1: Preservation of the connection can be advan-
tageous as it can allow one to reduce the system. Likewise,
breaking this symmetry has the advantage of introducing an
added level of controllability to the system.

The problem we are interested in studying in this paper
consists of finding conditions for which both exterior and
interior impacts are preserved by the mechanical connection

A and studying in general hybrid systems on principal
bundles.

We note that while this work is concerned with controls
and the distinction between interior and exterior impacts the
related work [15] focuses on reduction by symmetries in
both, the continuous-time dynamics and the impact dynam-
ics.

B. Structure of the paper:

In Section II we review the geometric formalism for
mechanical systems on differentiable manifolds, in particular,
for Lie groups, and the Weierstrass-Erdmann corner condi-
tions. Section III introduces hybrid mechanical systems and
their conserved quantities together with a discrete Noether
theorem for hybrid systems. In Section IV we define hybrid
systems on principal bundles and we describe the subjacent
geometry on the switching surface. Finally in Section V
we introduce exterior and interior impacts and study under
which conditions the mechanical connection is preserved
across impacts. Conclusions remarks and thoughts about
future directions close the paper.

II. PRELIMINARIES ON THE GEOMETRIC FORMULATION
OF MECHANICAL SYSTEMS

This section introduces conventional mathematical notions
to describe simple mechanical systems on differentiable
manifolds which can be found in [14] and [16], for instance.

Let Q be a differentiable manifold with dim(Q) = n with
local coordinates denoted by qi. Its tangent and cotangent
bundles are given by TQ and T ∗Q with induced coordinates
(qi, q̇i) and (qi, pi) respectively. The tangent and cotangent
spaces at a point q are denoted by TqQ and T ∗

qQ.
The dynamics of a mechanical system can be determined

by the Euler-Lagrange equations associated with a La-
grangian function L : TQ → R. A mechanical Lagrangian
is given by L(q, q̇) = K(q, q̇) − V (q), where K : TQ →
R is the kinetic energy and V : Q → R the potential
energy. The kinetic energy is given by K(q, q̇) = 1

2 ||q̇||
2
q ,

where ||·||q denotes the norm at TqQ defined by some
(pseudo)Riemannian metric on Q. In particular, a mechanical
Lagrangian will be called kinetic if V = 0.

The equations describing the dynamics of the system are
given by the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
,

with i = 1, . . . , n; a system of n second-order ordinary
differential equations.

Let M and N be smooth manifolds. For each p-form α and
each vector field X on M , ιXα denotes the interior product
of α by X . For a smooth map F : M → N , its tangent
map TF : TM → TN will be called its pushforward. The
pullback of differential forms by this map will be denoted
by F ∗. Unless otherwise stated, sum over paired covariant
and contravariant indices will be understood.

We denote FL : TQ → T ∗Q the Legendre transform
associated with L; in the case of a mechanical Lagrangian,
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FL(u)(v) = ⟨u, v⟩q and is a diffeomorphism. This transfor-
mation relates the Lagrangian and Hamiltonian formalisms.
Define the Hamiltonian function H : T ∗Q → R as
H(q, p) = pT q̇(q, p) − L(q, q̇(q, p)), where we have used
the inverse of the Legendre transformation to express q̇ =
q̇(q, p). Trajectories obey Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

A Hamiltonian is said to be mechanical if its associated
Lagrangian is mechanical.

A. Variational Corner Conditions

As the continuous dynamics (Euler-Lagrange) are vari-
ational, we will define the impact to be variational as
well. This is realized by the Weierstrass-Erdmann corner
conditions (see §4.4 of [17] or §3.5 of [18]). Suppose that
at some undetermined time, t∗, an impact occurs q(t∗) ∈ S.
Variations in the impact time lead to energy conservation
while variations in the impact location result in momentum
conservation along the surface, i.e.

FL · δq
∣∣∣∣t+
t−

+ (L− ⟨FL, q̇⟩) · δt
∣∣∣∣t+
t−

= 0.

As δq ∈ TS and δt ∈ R is arbitrary, the above condition can
be written as:

FL+ − FL− = α · dh,
L+ − ⟨FL+, q̇+⟩ = L− − ⟨FL−, q̇−⟩,

(4)

where S = {q ∈ Q : h(q) = 0} is given by the level set of
a smooth function h : Q → R, and the multiplier α is set
so both equations are satisfied. The superscripts denote the
values immediately pre- and post-impact, e.g.

FL+ = lim
t↘t∗

FL(q(t), q̇(t)),

FL− = lim
t↗t∗

FL(q(t), q̇(t)).

These corner conditions have a clearer interpretation in the
Hamiltonian setting:

p+ = p− + α · dh,
H+ = H−.

(5)

i.e. energy at impacts is conserved and the change in momen-
tum is perpendicular to the impact surface which is precisely
specular reflection.

B. Lie group actions

Let G be a finite dimensional Lie group and Q a smooth
manifold. A left-action of G on Q is a smooth map ψ : G×
Q→ Q such that ψ(e, g) = g and ψ(h, ψ(g, q)) = ψ(hg, q)
for all g, h ∈ G and q ∈ Q, where e is the identity of the
group G and the map ψg : Q→ Q given by ψg(q) = ψ(g, q)
is a diffeomorphism for all g ∈ G.

For a Lie group G, let g be its Lie algebra, g := TeG. Let
Lg : G → G be the left-translation of the element g ∈ G
given by Lg(h) = gh for h ∈ G. Left-translation is a left-
action of G on itself [19]. Its tangent map (i.e, the lineariza-
tion or tangent lift) is denoted by ThLg : ThG → TghG.

Similarly, the cotangent map (cotangent lift) is denoted by
T ∗
hLg : T ∗

hG→ T ∗
ghG. It is well known that the tangent and

cotangent lifts are Lie group actions (see [19], Chapter 6).
A Lagrangian function L : TG → R is said to be

invariant under the tangent lift of left translations if L(g, ġ) =
L(Lhg, TgLhġ)

Let ψ : G×Q→ Q be a Lie group action. ψ is said to be a
free action if it has no fixed points, that is, ψg(q) = q implies
g = e. The Lie group action ψ is said to be a proper action if
the map ψ̃ : G×Q→ Q×Q given by ψ̃(g, q) = (q, ψ(g, q)),
is proper, that is, if K ⊂ Q × Q is compact, then ψ̃−1(K)
is compact.

C. Principal Bundles

The action of a group on a manifold leads to the notion
of a principal bundle.

Definition 1: A fiber bundle is a triple (E, π,M) where
π : E → M is a surjective map with the property that for
all m ∈M , there exists an open neighborhood m ∈ U ⊂M
such that there is a diffeomorphism

π−1(U) ∼= U × F,

where F is said to be the fiber of the bundle.
In the special case where the fiber is a Lie group, additional
structure can be imposed on the fiber bundle.

Definition 2: Let (E, π,M) be a fiber bundle with fiber
G (a Lie group). This is a principal G-bundle if G acts
on E such that it preserves the fibers and acts freely and
transitively on each fiber.
Let Φ : G × Q → Q, (g, q) 7→ Φg(q) be a free and proper
left action of a Lie group G on a manifold Q. Thus we can
define the principal bundle π : Q → M := Q/G, where M
is endowed with the unique manifold structure for which π
is a submersion (see [20]). M := Q/G is called the shape
space in mechanics.

D. Momentum Maps and the Mechanical Connection

Momentum maps capture in a geometric way conserved
quantities associated with symmetries. The momentum map
is related to the so-called mechanical connection by the
locked inertia tensor as defined below. Roughly speaking, a
connection tells us how a quantity associated with a manifold
changes as we move from one point to another - it “connects”
neighboring spaces. In terms of fiber bundles, a connection
tells us how movement in the total space induces change
along the fiber.

Let G be a finite-dimensional Lie group acting on the
cotangent bundle by the cotangent lift of left translations.
Denote the corresponding infinitesimal action of g on T ∗Q
by ξ 7→ ξT∗Q, a map of g to X(T ∗Q), the space of vector
fields on T ∗Q. We write the action of g ∈ G on z ∈ T ∗Q
as simply gz, the vector field ξT∗G is obtained at z by
differentiating gz with respect to g in the direction of ξ at
g = e. Explicitly,

ξT∗G(z) =
d

dϵ
(exp(ϵξ) · z)

∣∣∣
ϵ=0

.
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A map J : T ∗Q → g is called a momentum map if
X⟨J,ξ⟩ = ξT∗G for each ξ ∈ g, where ⟨J, ξ⟩(z) = ⟨J(z), ξ⟩.
Noether’s theorem states that if H is a G-invariant Hamilto-
nian function on T ∗G then J is conserved on trajectories of
the Hamiltonian vector field XH .

The momentum map is closely related to the mechanical
connection. Let ⟨⟨·, ·⟩⟩ be the group-invariant metric induced
by the invariant Lagrangian. For each q ∈ Q define the locked
inertia tensor to be the map I(q) : g → g∗ defined by

⟨I(q)η, ζ⟩ = ⟨⟨ηQ(q), ζQ(q)⟩⟩.

We define the mechanical connection on the principal bundle
Q→ Q/G to be the map As : TQ→ g given by

As(q, v) = I(q)−1(J(q, v));

that is, As is the map that assigns to each (q, v) the
corresponding angular velocity of the locked system.

One can check that As is G-invariant and As(ξQ(q)) = ξ,
and the horizontal space of the connection is given by Hq =
{(q, v)|J = 0} ⊂ TqQ and the vertical space is given by
Vq = {ξQ(q)|ξ ∈ g}.

III. HYBRID MECHANICAL SYSTEMS

Hybrid dynamical systems are dynamical systems charac-
terized by their mixed behavior of continuous and discrete
dynamics where the transition is determined by the time
when the continuous flow switches from the ambient space
to a co-dimension one submanifold. This class of dynamical
systems is given by an 4-tuple, H = (X ,S, z,∆). The pair
(X ,z) describes the continuous dynamics as ẋ(t) = z(x(t)),
where X is a smooth manifold and z a C1 vector field on
X . Additionally, (S, ∆) describes the discrete dynamics as
x+ = ∆(x−) where S ⊂ X is a smooth submanifold of
co-dimension one called the switching surface.

The hybrid dynamical system describing the combination
of both dynamics is given by

Σ :

{
ẋ = z(x), x ̸∈ S
x+ = ∆(x−), x− ∈ S.

(6)

A solution of a hybrid dynamical system may experience a
Zeno state if infinitely many impacts occur in a finite amount
of time. To exclude these types of situations, we require the
set of impact times to be closed and discrete, as in [2], so
we will assume implicitly throughout the remainder of the
paper that ∆(S)∩S = ∅ (where ∆(S) denotes the closure of
∆(S)) and that the set of impact times is closed and discrete.

Definition 3: A simple hybrid system H = (X ,S, z,∆)
is said to be a simple hybrid Lagrangian system if it is
determined by HL := (TQ,SL, XL,∆L), where XL is
the Lagrangian vector field associated with the Lagrangian
system determined by L, SL is the switching surface, a
submanifold of TQ with co-dimension one, and ∆L : SL →
TQ is the impact map described by the variational corner
conditions (4), which is a smooth embedding.

The simple hybrid Lagrangian system generated by HL is
given by

ΣL :

{
υ̇(t) = XL(υ(t)), if υ−(t) /∈ SL,
υ+(t) = ∆L(υ

−(t)), if υ−(t) ∈ SL,
(7)

where υ(t) = (q(t), q̇(t)) ∈ TQ.
In a similar fashion, one can define simple hybrid Hamil-

tonian systems associated with a Hamiltonian function H :
T ∗Q → R through the 4-tuple HH = (T ∗Q,SH , XH ,∆H)
where XH is the Hamiltonian vector field associated with the
Hamiltonian system determined by H , SH is the switching
surface, a submanifold of T ∗Q with co-dimension one, and
the smooth embedding ∆H : SH → T ∗Q is the impact map
given by the variational corner conditions (5).

A. Hybrid Noether theorem

Definition 4 ([15]) Let (X , S, z,∆) be a hybrid dynamical
system. A function f on X is called a hybrid constant of the
motion if it is preserved by the hybrid flow, namely, f ◦φH

t =
f . In other words, z(f) = 0 and f ◦ ∆ = f ◦ i, where
i : S ↪→ X is the canonical inclusion.

There is a natural lift ψT∗Q of the action ψ to T ∗Q, the
cotangent lift, defined by (g, (q, p)) 7→ (T ∗ψg−1(q, p)). By a
hybrid action on the simple hybrid Hamiltonian system HH

we mean a Lie group action ψ : G×Q→ Q such that
• H is invariant under ψT∗Q, i.e. H ◦ ψT∗Q = H ,
• ψT∗Q restricts to an action of G on SH ,
• ∆H is equivariant with respect to the previous action,

namely

∆H ◦ ψT∗Q
g |SH

= ψT∗Q
g ◦∆H .

Definition 5 ([15]) A momentum map J will be called a
generalized hybrid momentum map for HH if, for each
regular value µ− of J,

∆H

(
J|−1

SH
(µ−)

)
⊂ J−1(µ+), (8)

for some regular value µ+. In other words, for every point
in the switching surface such that the momentum before the
impact takes a value of µ−, the momentum will take a value
µ+ after the impact. That is, the switching map translates
the dynamics from one level set of the momentum map into
another. In particular, when µ+ = µ− for each µ− (i.e., ∆H

preserves the momentum map), J is called hybrid momentum
map (see [21]).

Given an action in the Lie algebra such that it preserves
the Hamiltonian function and is equivariant with respect to
the impact map. The hybrid Noether theorem states that for
all ξ ∈ g, the generalized momentum map Jξ is a hybrid
constant of the motion.

IV. HYBRID MECHANICAL SYSTEMS ON PRINCIPAL
BUNDLES

As an impact system has the added structure of the impact
surface, the corresponding principal bundle requires more
structure as well. In addition of the surface, S, a choice of
metric is also needed for the corner conditions (4).
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Definition 6: A G-impact system is a tuple
(E,M, π,S, L) where

1) π : E →M is a G-principal bundle,
2) S ⊂ E is an embedded, codimension 1 submanifold,
3) L : TE → R is a mechanical Lagrangian invariant

under the tangent lift of left translations.
Impacts take place on TE|S (on the Lagrangian side) or
T ∗E|S (on the Hamiltonian side). Strictly speaking, these
sets are the guards, rather than S. These two maps are related
by the fiber derivative:

TE|S TE

T ∗E|S T ∗E

∆

FL FL

∆̃

Throughout, ∆ will represent the impact map on the veloc-
ities while ∆̃ will be the impact map on the momenta.

Definition 7: The impact surface, S, is vertical if S =
π−1(Σ) for some embedded, codimension 1 submanifold
Σ ⊂ M . The impact surface S is horizontal if (TS)⊥ ⊂ V .
Here, V ⊂ TE is the vertical space given by

Vx = {v ∈ TxE : Tπ(v) = 0} .
Lemma 1: S is vertical if and only if S is invariant under

the group action of left translations, i.e. h.S = S for all
h ∈ G.

Proof: If S is vertical, it is clearly invariant under the
group action of left translations (as the group action preserve
fibers). Suppose that S is invariant under the group action
then S must be vertical as the group acts transitively on each
fiber.

Proposition 1: The variational corner conditions, (5), are
equivalent to (

Id× ∆̃
)∗
ϑH = i∗ϑH , (9)

R× T ∗E|S R× T ∗E

R× E

Id×∆̃

Id×π Id×π
(10)

such that the diagram is commutative. Here, ϑH = pi ·dqi−
H · dt ∈ Ω1(R× T ∗E) is the action form

Proof: Suppose that S is given (locally) by the vanish-
ing of the last coordinate, qn = 0. Then, (9) in coordinates
is equivalent to

H+dt+ = H−dt−,

p+1 dq
1+ + . . .+ p+n−1dq

n−1+ =

p−1 dq
1− + . . .+ p−n−1dq

n−1−.

Commutativity of (10) means that qk+ = qk
− and t+ = t−.

These conditions are precisely (5) as dh = dqn.
Proposition 2: The variational corner conditions for a me-

chanical Lagrangian with Riemannian metric g are equivalent
to ∆∗ω = ω|S and ∆∗g = g|S (along with the positions
being fixed, q+ = q−) where ω ∈ Ω2(TE) is the pull-back
of the canonical symplectic form on T ∗E via the metric.

Proof: Again, suppose that S is described by qn = 0.
The first equality states that

n−1∑
k=1

dqk
+ ∧ dp+k =

n−1∑
k=1

dqk
− ∧ dp−k

This means that the only momentum that can change during
impacts is pn. The second equality follows from conservation
of (kinetic) energy.

V. INTERIOR VS EXTERIOR IMPACTS

An exterior impact preserves the inner dynamics while an
internal impact preserves the outer dynamics.

Definition 8: An impact is interior if the impact surface
is vertical. An impact is exterior if π(S) = M , the whole
shape space.
Notice that the impact surface being horizontal is more
restrictive than the impact being exterior. Properties of ver-
tical/horizontal impact surfaces are shown in the following
two theorems.

Theorem 1: The impact surface being horizontal is equiv-
alent to Tπ ◦∆ = Tπ.

Proof: As S is horizontal, we have (TS)⊥ ⊂ V . This
implies that v+ − v− ∈ V , i.e. Tπ(v+) = Tπ(v−).

Remark 2: The statement that Tπ ◦ ∆ = Tπ means
that the impact reduces to the identity on the shape space.
As such, an impact is unobservable from dynamics on the
shape variables. This condition is equivalent to the following
commutative diagram:

TE|S

TM E M

TE

π∗

∆
π

π∗

(11)

Theorem 2: The following are equivalent:
1) S is vertical,
2) S is G-invariant, i.e. for any h ∈ G, h.S = S,
3) The mechanical connection is preserved across im-

pacts, ∆∗A = A|S .
Proof: The equivalence of (1) and (2) follows from

Lemma 1. The equivalence of (2) and (3) is the hybrid
Noether theorem.

Remark 3: Preservation of the connection is equivalent to
the following diagram being commutative:

T ∗E|S T ∗E

TE|S TE g∗

g

∆̃

JS
J

∆

AS

FL

A

FL

I

(12)
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In some sense, the diagrams (11) and (12) are opposites
of one another. For interesting examples, we want S to be
neither vertical nor horizontal.

A. Interpretation for the Pendulum on a Cart

The internal impact, S = {α} × R, is vertical. However,
the external impact, S = S1 × {z} is not horizontal. It can
be seen, for example, that the impact map (3) is not the
identity on the θ̇ component which contradicts the conclusion
of Theorem 1. For an impact to be horizontal, the impact
surface must be a level-set of the function

f(θ, x) =
mℓ

M +m
sin θ + x. (13)

However, this function is the integral of the mechanical
connection, i.e., A = 0 implies that f is constant. In order
to have impacts, we need A ≠ 0.

The impact map with impact condition (13) is

pθ 7→ pθ + ε
mℓ

M +m
cos θ

px 7→ px + ε

with ε = −2px. This impact reverses the connection:

A(θ,x)

(
∆(θ̇, ẋ)

)
= −A(θ,x)

(
θ̇, ẋ

)
.

Let α = A(θ0,x0)(θ̇0, ẋ) be the value of the connection on
the initial conditions. In velocity coordinates, we have

θ̇ 7→ θ̇, ẋ 7→ ẋ− 2α, α 7→ −α.

The reversal of the connection is typical in low-dimensional
examples as made clear in the following proposition.

Proposition 3: For a G-impact system with dim(G) = 1
and S horizontal, we have ∆∗A = −A|S .

Proof: As dim(G) = 1, (TS)⊥ = V . Let (q, q̇) ∈
TE|S be the state immediately before impact and A(q, q̇) =
ξE for ξ ∈ g ∼= R. In particular, v+−v− ∝ ξE . This provides
us with

A(q̇+) = A(q̇−) +A
(
−2

⟨q̇−, ξE⟩
⟨ξE , ξE⟩

ξE

)
= ξ − 2

⟨q̇−, ξE⟩
⟨ξE , ξE⟩

ξ

= −ξ = −A(q̇−).

VI. CONCLUSIONS AND FUTURE WORK

We have defined hybrid systems on principal bundles,
studied the underlying geometry on the switching surface
where impacts occur, and found conditions for which both
exterior and interior impacts are preserved by the mechanical
connection induced in the principal bundle.

For future work, we wish to extend our analysis to explic-
itly time-dependent systems in the context of cosymplectic
geometry. Note that given S ⊂ E×R of codimension 1 such
that πt(S) ⊂ E is smooth for all t, time-dependent vertical
remains vertical but that is not the case for horizontal. In
particular, one has the following observation that will be

crucial in our further studies to extend this paper to the time-
dependent situation: let S ⊂ E × R be a time-dependent
impact surface. If πt(S) ⊂ E is vertical for all t, then the
mechanical connection is preserved across impacts.
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