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Abstract— In this paper, we provide a theoretical framework
that separates the control and learning tasks in a linear system.
This separation allows us to combine offline model-based
control with online learning approaches and thus circumvent
current challenges in deriving optimal control strategies in
applications where a large volume of data is added to the
system gradually in real time and not altogether in advance.
We provide an analytical example to illustrate the framework.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1], [2] has emerged
as an adaptive method to control systems [3] with

unknown dynamics [4]. There have also been research efforts
on developing learning approaches using Bayesian analysis
to address such problems [5]. Other approaches over the
years have focused on direct or indirect RL methods in-
cluding robust learning-based [6], [7], learning-based model
predictive control [8]–[10] on autonomous racing cars [11],
real-time learning [12], [13] of powertain systems with
respect to the driver’s driving style [14], [15], learning for
traffic control [16] for transferring optimal policies [17], [18],
decentralized learning for stochastic games [19], learning
for optimal social routing [20] and congestion games [21],
and learning for enhanced security against replay attacks in
cyber-physical systems [22].

The implications of the strategies derived using a model,
which is typically different from the actual system, have been
reported in [23]. A recent paper [24] proposed approximate
learning of an information state to address problems when
the dynamics of the actual system are not known. Other
efforts have combined adaptive control with RL to derive
control strategies in real time [25]. Space constraints prevent
us from discussing the complete list of papers reported in the
literature in this area. Two survey papers [26], [27], however,
include a comprehensive review of the RL approaches.

In some applications, we encounter a volume of data
gradually incorporated into the system. To derive the optimal
control strategy in such applications, we typically use a
model [28]. However, model-based control might not effec-
tively facilitate optimal solutions partly due to the existing
discrepancy between the model and the actual system. On
the other hand, supervised learning approaches might not
always facilitate robust solutions using training data derived
offline. Similarly, RL approaches might impose undesired
implications on the system’s robustness.
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In this paper, we investigate how to circumvent these chal-
lenges at the intersection of learning and control. We derive
sufficient statistics that can represent the system’s growing
data. This sufficient statistics is called information state of
the system and takes values in a time-invariant space. This
information state can be used to derive separated control
strategies, which are related to the separation between the
estimation of the information state and the derivation of
the control strategy. Given this separation, for any control
strategy at time t, the evolution of the information state of
the system does not depend on the control strategy at t but
only on the realization value of the control at t [29]. Thus,
the evolution of the information states is separated from the
choice of the current control strategy. Hence, the optimal
control strategy is derived offline using the information state,
which can be learned online using standard techniques [30],
[31] while data are incorporated into the system. This ap-
proach departs from traditional model-based and supervised
(or unsupervised) learning approaches. The framework could
effectively facilitate optimal solutions in a wide range of
applications where a large volume of data is added to the
system gradually in real time and not altogether in advance,
such as emerging mobility systems, mobility markets, smart
power grids, power systems, social media platforms, robot
cooperation, and the Internet of Things.

The structure of the paper is organized as follows. In
Section II, we present the formulation of the optimal control
problem. In Section III, we introduce the separated control
strategies. In Section IV, we illustrate the framework with
a simple analytical example. Finally, we draw concluding
remarks in Section V.

II. PROBLEM FORMULATION

A. Notation

In our exposition, we denote by E[·] the expectation of
random variables, by P(·) the probability of an event, and
by p(·) the probability density function. We denote by Eg[·],
Pg(·), and pg(·) that the expectation, probability, and proba-
bility density function, respectively, depending on the choice
of the control strategy g. Random variables are denoted
with upper case letters, and their realizations with lower
case letters, e.g., for a random variable Xt, xt denotes its
realization. In some occasions, we denote the expected value
of a random variable with lower case letter, e.g., E[Xt] = xt.
Subscripts denote time. The shorthand notation X0:T denotes
the the vector of random variables (X0, . . . , XT ), and the
shorthand notation x0:T denotes the vector of their realization
(x0, . . . , xT ).
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Fig. 1: The proposed framework on separating learning and
control, where the separated control strategy is applied to
both the actual system and the system’s model in parallel.

B. Modeling Framework

We consider a linear system in which a volume of data is
added to the system gradually and not altogether in advance.
We aim to find sufficient statistics that can be used to
compress the increasing data of the system without loss of
optimality [32]. These statistics are a conditional probability
of the system’s state at time t ∈ R≥0 given all data available
up until t, which is called the information state of the system.
We use this information state to derive separated control
strategies. By deriving separated control strategies, we can
derive the optimal control strategy offline with respect to the
information state and then use learning methods to learn the
information state online.

In particular, in our framework illustrated in Fig. 1, we
seek to use the actual linear system that we wish to optimally
control online, in parallel with a model of the system
that is available. Let Xt, t = 0, 1, . . . , T , T ∈ N, be a
random variable that corresponds to the state of the system’s
model and X̂t, t = 0, 1, . . . , T , be a random variable that
corresponds to the state of the actual system. Both Xt and
X̂t are defined on an appropriate probability space and take
values in Rn, n ∈ N. The control Ut of the actual system
is a random variable defined on the same probability space
and takes values in Rm, m ∈ N. Given an initial state X0,
the model of the linear system is

Xt+1 = AtXt + BtUt + DtWt, t = 0, 1, . . . , T − 1, (1)

where At,Bt, and Dt are matrices of appropriate dimensions,
and Wt ∈ Rr, r ∈ N, is a random variable that corresponds
to the external, uncontrollable disturbance. Given the same
initial state X0, the actual system is represented by

X̂t+1 = ÂtX̂t + B̂tUt + D̂tWt, t = 0, 1, . . . , T − 1, (2)

where Ât, B̂t, and D̂t are matrices of appropriate dimensions.
The sequence {Wt; t = 0, 1, . . . , T − 1} is a sequence of

independent random variables independent of the initial state
X0.

At the time t = 0, 1, . . . , T − 1, we make an observation
Yt ∈ Rp, p ∈ N, of the model’s output described by the
observation equation

Yt = CtXt + EtZt, (3)

where Ct,Et are matrices of appropriate dimensions, and
Zt ∈ Rs, s ∈ N, is a random variable that represents the
sensor’s noise. Similarly, at time t, we make an observation
Ŷt ∈ Rp, p ∈ N, of the actual system, described by the
observation equation

Ŷt = CtX̂t + EtZt, (4)

Note {Zt}, t = 0, . . . , T − 1, is a sequence of independent
random variables that are also independent of {Wt}, t =
0, . . . , T − 1, and the initial state X0.

A control strategy g = {gt} of the system yields a decision

Ut = gt(Ŷ0:t, U0:t−1), t = 0, . . . , T − 1, (5)

where the measurable function gt is the control law. The
feasible set of the control strategies is G, i.e., g ∈ G.

Problem 1 [Actual linear system]: Derive the optimal
control strategy g∗ ∈ G which minimizes the following cost
of the actual system,

Ĵ(g) = Eg

[
T−1∑
t=0

ct(X̂t, Ut) + cT (X̂T )

]
, (6)

where the expectation in (6) is taken with respect to the joint
probability distribution of X̂t and Ut imposed by the control
strategy g ∈ G; ct(·, ·) : X × Ut → R is the cost function
of the system at t, and cT (·) : X → R is the cost function
at T . The probability distribution of the primitive random
variables X0, {Wt}, {Zt}, the cost functions {ct(·, ·)} for
t = 0, . . . , T − 1 and cT (·), and the matrices Ct,Et for t =
0, . . . , T −1 are all known. However, the matrices Ât, B̂t, D̂t

are not known for t = 0, . . . , T − 1.

III. SEPARATING LEARNING AND CONTROL TASKS

Let g = {gt; t = 0, . . . , T − 1}, g ∈ G, be a control
strategy which yields a decision Ut = gt(Y0:t, U0:t−1) using
the model of the linear system. We establish an information
state by using in parallel the system’s model and the actual
system as shown in Fig. 1.

The probability density function p(Xt, X̂t | Y0:t, U0:t−1)
is the information state (defined formally next), denoted
by Πt(Y0:t, U0:t−1)(Xt, X̂t). To simplify notation, in what
follows, the information state Πt(Y0:t, U0:t−1) (Xt, X̂t) at t
is denoted by Πt without the arguments, which will be used
only if it is required in our exposition.

Definition 1. The information state, Πt(Y0:t, U0:t−1)
(Xt, X̂t), is (a) a function of (Y0:t, U0:t−1), and (b) its
evolution Πt+1(Y0:t+1, U0:t)(Xt+1, X̂t+1) at the next step
t+ 1 depends on Πt(Y0:t, U0:t−1)(Xt, X̂t), Yt+1, and Ut.
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Theorem 1. The information state Πt(Y0:t, U0:t−1)(Xt, X̂t)
does not depend on the control strategy g ∈ G. Furthermore,
there exists a function ϕt such that

Πt+1(Y0:t+1, U0:t)(Xt+1, X̂t+1)

= ϕt

[
Πt(Y0:t, U0:t−1)(Xt, X̂t), Yt+1, Ut

]
, (7)

for all t = 0, 1, . . . , T − 1.

The result of Theorem 1 is equivalent to the result of
[33, Theorem 2] when the system’s information structure is
classical [34], [35] and the controller has perfect recall [29],
[36].

Definition 2. A control strategy g ∈ G, g = {gt}, t =
0, . . . , T − 1, is called separated if gt depends on Y0:t =
(Y0, . . . , Yt) and U0:t−1 = (U0, . . . , Ut−1) through the
information state, i.e., Ut = gt

(
Πt(Y0:t, U0:t−1)(Xt, X̂t)

)
.

Let Gs ⊆ G denote the set of all separated control strategies.

Since the dynamics of the actual system are not known, we
cannot solve Problem 1. Thus, to obtain the optimal strategy
in Problem 1, we formulate the following problem that we
solve offline using the system’s model (1).

Problem 2: Derive offline the optimal separated strategy
g∗ ∈ Gs to minimize the following cost function

J(g; x̂0:T ) = Eg

[
T−1∑
t=0

[
ct(Xt, Ut) + β · |Yt+1 − Ŷt+1|2

]
+ cT (XT )

]
,

or, using (3) and (4),

J(g; x̂0:T ) = Eg

[
T−1∑
t=0

[
ct(Xt, Ut) + β · |Xt+1 − X̂t+1|2

]
+ cT (XT )

]
, (8)

where β adjusts the units of the norm accordingly, while
the norm penalizes the discrepancy between the expected
values of the state of the system’s model and the state of
the actual system. Since we solve (8) offline using model
(1), no information about the actual system is available, and
thus the expected values x̂0:T = (x̂0, . . . , x̂T ) of the states
X̂0:T = (X̂0, . . . , X̂T ) of the actual system are not known.
Hence, when we derive the optimal control strategy g∗, it is
parameterized with respect to all possible values x̂0:T .

Next, to obtain offline the optimal separated control
strategy in Problem 2, we use the information state
Πt(Y0:t, U0:t−1)(Xt, X̂t). It can be shown [33] that we
can derive a classical dynamic program decomposition with
respect to Πt to yield a separated control strategy, namely, a
control strategy g = {gt}, t = 0, . . . , T−1 where gt depends
on Y0:t+1 and U0:t only through the information state, i.e.,
Ut = gt

(
Πt(Y0:t, U0:t−1)(Xt, X̂t)

)
.

The separated control strategy is derived offline, thus, it is
parameterized with respect to the potential expected values

x̂0:T of the state X̂t of the actual system. Then, we apply the
parameterized strategy to the actual system and the system’s
model in parallel (Fig. 1), and we collect data from both. Us-
ing these data, we compute Πt(Y0:T , U0:T−1)(Xt+1, X̂t+1)
online.

Proposition 1. The information state Πt(Y0:t, U0:t−1)(Xt,
X̂t) of the system illustrated in Fig. 1 can be represented as
a function of p(Xt | Y0:t, U0:t−1), p(X̂t | Ŷ0:t, U0:t−1), and
p(Ŷ0:t | U0:t−1).

Proof. Recall

Πt(Y0:t, U0:t−1)(Xt, X̂t) = p(Xt, X̂t | Y0:t, U0:t−1). (9)

Next,

p(Xt, X̂t | Y0:t, U0:t−1)

=
p(X̂t | Xt, Y0:t, U0:t−1) · p(Xt, Y0:t, U0:t−1)

p(Y0:t, U0:t−1)

=
p(X̂t | U0:t−1) · p(Xt, Y0:t, U0:t−1)

p(Y0:t, U0:t−1)

= p(X̂t | U0:t−1) · p(Xt | Y0:t, U0:t−1). (10)

In the second equality, we used the fact that X̂t does not
depend on Xt and Y0:t, and in the third equality, we applied
Bayes’ rule.

Next, we write the first term in (10) as follows

p(X̂t | U0:t−1) =
∑
Ŷ0:t

p(X̂t | Ŷ0:t, U0:t−1) · p(Ŷ0:t | U0:t−1).

(11)

Substituting (11) into (10), the result follows.

Remark 1. The conditional probability p(Xt | Y0:t, U0:t−1)
can be obtained easily using the model offline. The condi-
tional probability p(X̂t | Ŷ0:t, U0:t−1) can be obtained from
the Kalman filter to estimate X̂t first, and then through recur-
sive equations starting from the initial prior p(X̂0 | Ŷ0, U0).
The conditional probability p(Ŷ0:t | U0:t−1) can be obtained
using standard approaches [30], [31]. Ongoing research fo-
cuses on enhancing our understanding of the computational
implications in learning p(Ŷ0:t | U0:t−1) in real time.

As we operate both the actual system and the model
using the separated control strategy (Fig. 1), we compute
p(X̂t | Ŷ0:t, U0:t−1) and learn p(Ŷ0:t | U0:t−1) that allows us
to compute the information state Πt(Y0:t, U0:t−1)(Xt, X̂t)
(the conditional probability (p(Xt | Y0:t, U0:t−1) is known
a priori from the model). Next, we show that when the
information state Πt(Y0:t, U0:t−1)(Xt, X̂t) becomes known,
then the separated control strategy is optimal for the actual
system.

Theorem 2. Let g ∈ Gs be an optimal separated control
strategy parameterized with respect to x̂0:T , derived offline
using the system’s model, that minimizes the following cost
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function,

J(g; x̂0:T ) := Eg

[
T−1∑
t=0

[
ct(Xt, Ut) + β · |Xt+1 − X̂t+1|2

]
+ cT (XT )

]
, (12)

in Problem 2. Then, if p(Xt, X̂t | Y0:t, U0:t−1) becomes
known, then g is also optimal for Problem 1,

Ĵ(g) = Eg

[
T−1∑
t=0

ct(X̂t, Ut) + cT (X̂T )

]
. (13)

Proof. Suppose that the minimum value of the cost function
cT (XT ) occurs at XT = xT ∈ Rn. Hence,

cT (XT = xT ) = cT (X̂T = xT ). (14)

Suppose that the minimum value of the cost function
ct(Xt, Ut) at t = 0, . . . , T − 1 occurs at Xt = xt ∈ Rn

and corresponds to the optimal control Ut = u∗
t . Then,

the minimum value in the one-time-step cost in (12) at
t = 0, . . . , T − 1 is when the expected value of the cost
function is ct(xt, u

∗
t ) and E[|Xt+1 − X̂t+1|2] = 0, hence

min
ut

Eg
[
ct(Xt, ut) + β · |Xt+1 − X̂t+1|2

]
= ct(xt, u

∗
t ).

(15)

Since at each time t = 0, . . . , T − 1, the separated
control strategy g ∈ Gs yields a control input u′

t =
gt
(
p(xt, x̂t | y0:t, u0:t−1)

)
such that

u′
t = argmin

ut

E
[
ct(Xt, ut) + β · |Xt+1 − X̂t+1|2

]
= argmin

ut

ct(xt, u
∗
t ), (16)

this implies that u′
t = u∗

t .
By summing up all minimum expected values of the cost

function ct(·, ·) at each t = 0, . . . , T − 1 and cT (·) at t = T
corresponding to g ∈ Gs, we obtain (13).

IV. ILLUSTRATIVE EXAMPLE

In this section, we present a simple example of deriving
the optimal control strategy for a linear system by separating
the learning and control tasks. The purpose of the example
is to demonstrate in simple steps the proposed framework.
The primitive random variables, i.e., the initial state, X0,
and disturbance, W0, of the system, are Gaussian random
variables with zero mean, variance 1, and covariance 0.5.
The state of the actual system is denoted by X̂t, t = 0, 1, 2.
The evolution of the system is described by the following
equations

X̂0 = X0,

X̂1 = X̂0 + U0 +W0 = X0 + U0 +W0,

X̂2 = X̂1 + U1. (17)

We assume that we have a complete observation of the
state, i.e.,

Ŷt = X̂t, t = 0, 1, 2. (18)

A control strategy g = {gt; t = 0, 1}, g ∈ G, where gt is
the control law, yields the control action Ut, t = 0, 1, of the
system, i.e.,

U0 = g0(Ŷ0) = g0(X̂0) = g0(X0), (19)

U1 = g1(Ŷ0:1, U0) = g1(X̂0:1, U0) = g1(X0, X̂1, U0). (20)

We seek to derive the optimal control strategy g∗ ∈ G
of the system represented in (17) which minimizes the
following expected cost:

J(g) = min
u0∈U0,u1∈U1

1

2
Eg

[
(X̂2)

2 + (U1)
2
]
. (21)

We pretend that the dynamics of the system in (17) (the
actual system) are not known, but we have available the
following model that can be used to obtain g ∈ G:

X0 = X0,

X1 = 3X0 + 2U0 + 2W0,

X2 = 3X1 + 3U1, (22)

with

Yt = Xt, t = 0, 1, 2. (23)

From (17) and (22), we note that there exists a discrepancy
between the actual system and the model that is available.

A. Optimal Control Strategy

First, we obtain the optimal control strategy g∗ ∈ G of the
actual system using (17).

The cost for the actual system (17) is

J(g) = min
u0∈U0,u1∈U1

1

2
Eg

[
(X̂2)

2 + (U1)
2
]

= min
u0∈U0,u1∈U1

1

2
Eg

[
(X̂1 + U1)

2 + (U1)
2
]

= min
u0∈U0,u1∈U1

1

2
Eg [(X0 + U0 +W0 + U1)

2 + (U1)
2
]
.

(24)

If the dynamics of the actual system given in (17) were
known, then we could use (24) to derive the optimal control
strategy g∗ ∈ G. Since the primitive random variables are
Gaussian with zero mean, variance 1, and covariance 0.5,
we can use the linear least-squares estimator to compute the
unique optimal solution of (24), which is

U0 = −1

2
X0, U1 = −1

4
X0 −

1

2
W0. (25)
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B. Solution Through Separation Between Learning and Con-
trol

In this section, we consider that the dynamics of the actual
system (17) are not known, but we have the model (22) of
the system available. Using this model, we can obtain the
optimal control strategy by applying the framework presented
in Section III. More specifically, we use (22) and seek to
derive the separated control strategy g ∈ Gs, g = {gt; t =
0, 1}, where the control laws are g0

(
P(X0, X̂0 | Y0)

)
and

g1
(
P(X1, X̂1 | Y0, Y1, U0)

)
, that minimizes the following

cost (see Theorem 2),

J(g; x̂0:2)

= min
u0∈U0,u1∈U1

1

2
Eg[(X2)

2 + (U1)
2

+ β(X1 − X̂1)
2 + β(X2 − X̂2)

2) | X0, X1, U0

]
. (26)

From (22) and taking β = 1, (26) becomes

J(g; x̂0:2)

= min
u0∈U0,u1∈U1

1

2
Eg

[
(3X1 + 3U1)

2 + (U1)
2

+ (X1 − X̂1)
2 + (X2 − X̂2)

2) | X0, X1, U0

]
= min

u0∈U0,u1∈U1

1

2
Eg

[(
3(3X0 + 2U0 + 2W0) + 3U1

)2
+ (U1)

2 + (X1 − X̂1)
2 + (X2 − X̂2)

2) | X0, X1, U0

]
.

(27)

The cost in (27) becomes equal to the original cost in (24), if
the control action U0 and U1 make the last two terms equal
to zero, i.e.,

Eg[X1 − X̂1] = Eg[3X0 + 2U0 + 2W0 − X̂1 | X0] = 0,
(28)

Eg[X2 − X̂2] = Eg[3X1 + 3U1 − X̂2 | X0, X1, U0] = 0.
(29)

From (28), it follows that

Eg[U0] = Eg
[X̂1 − 3X0 − 2W0

2
| X0

]
= g0

(
p(X0, X̂0 | X0)

)
. (30)

Similarly, from (29), it follows that

Eg[U1] = Eg
[X̂2 − 3X1

3
| X0, X1, U0

]
= Eg

[X̂2 − 3(3X0 + 2U0 + 2W0)

3
| X0, X1, U0

]
= Eg

[X̂2 − 9X0 − 6U0 − 6W0

3
| X0, X1, U0

]
= g1

(
p(X1, X̂1 | X0, X1, U0)

)
. (31)

Thus, U0 and U1 in (30) and (31), respectively, are
parameterized with respect to the expected values of the state
of the actual system, i.e., x̂0 = x0, x̂1 and x̂2, and make the
last two terms in (27) vanish.

Next, we use the control actions U0 and U1 derived
by the separated control strategies g0

(
p(X0, X̂0 | X0)

)
and g1

(
p(X1, X̂1 | X0, X1, U0)

)
in (30) and (31), respec-

tively, to control both the actual linear system (17) and
the model (22) (see Fig. 1). As we operate both sys-
tems, we compute the information states p(X0, X̂0 | X0)
and p(X1, X̂1 | X0, X1, U0). However, from Proposi-
tion 1, we know that to compute p(X0, X̂0 | X0) and
p(X1, X̂1 | X0, X1, U0), it is sufficient to compute the con-
ditional probabilities p(X0 | X0), p(X1 | X0, X1, U0), and
p(X̂0 | X̂0, X̂1, U0), and to learn p(X̂0, X̂1 | U0, U1). Once
we compute these conditional probabilities, the expected
values of U0 and U1 in (30) and (31) become known.

By substituting (30) in (27), we obtain

J(g; x̂0:2) = min
u0∈U0,u1∈U1

1

2
Eg

[(
3(3X0 + 2

X̂1 − 3X0 − 2W0

2

+ 2W0) + 3U1

)2
+ (U1)

2 | X0, X1, U0

]
= min

u0∈U0,u1∈U1

1

2
Eg

[(
3X̂1 + 3U1

)2
+ (U1)

2

| X0, X1, U0

]
= min

u0∈U0,u1∈U1

1

2
Eg

[(
3(X0 + U0 +W0) + 3U1

)2
+ (U1)

2 | X0, X1, U0

]
. (32)

However, at t = 0, we do not consider U1 and X1. Thus,
the last equation becomes

min
u0∈U0

1

2
Eg

[(
3(X0 + U0 +W0)

)2 | X0

]
. (33)

The optimization problem above is to choose for each value
X0 the best estimate, in a mean squared error sense, of (X0+
U0 + W0), which yields U0 = − 1

2X0 which is the same
solution as in (25). By substituting (31) into the model (22),
we obtain

X2 = 3X1 + 3
X̂2 − 9X0 − 6U0 − 6W0

3
= 3(3X0 + 2U0 + 2W0) + X̂2 − 9X0 − 6U0 − 6W0

= X̂2, (34)

hence the expected total cost J(g; x̂0:2) in (26) becomes

J(g; x̂0:2) = min
u0∈U0,u1∈U1

1

2
Eg

[
(X̂2)

2 + (U1)
2)
]

= min
u0∈U0,u1∈U1

1

2
Eg

[
(X̂1 + U1)

2 + (U1)
2)
]
.

(35)
The minimum in (35) at time t = 1 can be found by taking

the partial derivative with respect to U1 which yields

Eg
[(
X̂1 + U1 + U1

)]
= Eg

[(
X0 + U0 +W0 + U1 + U1

)]
= 0 (36)

that results in the same solution U1 = − 1
4X0 − 1

2W0 as in
(25).
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V. CONCLUDING REMARKS

In this paper, we presented a theoretical framework that
provides a data-driven approach for linear systems at the
intersection of learning and control. The framework separates
the control and learning tasks which allows us to combine
offline model-based control with online learning approaches
and thus circumvent current challenges in deriving optimal
control strategies. One feature that distinguishes the frame-
work presented here from other learning-based or combined
learning and control approaches reported in the literature
is that the large volume of data added to the system is
compressed to sufficient statistics, without loss of optimality,
that takes values in a time-invariant space. Hence, as the
volume of data added to the systems increases, the domain
of the control strategies does not increase with time. On-
going research investigates the computational implications
of learning the information state. In our exposition, we
restricted attention to centralized control systems. A potential
future research direction includes expanding the framework
to decentralized systems [37].
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