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Patrick Scheffe1 , Student Members, IEEE, and Bassam Alrifaee , Senior Member, IEEE

Abstract— In the domain of Connected and Automated Ve-
hicles (CAVs), small-scale testbeds bridge expensive testing in
the real world and computer simulations. Meanwhile, they
offer educational opportunities for students to acquire hands-
on experience in areas like control, vehicle dynamics, trajectory
planning, and real-time software. At RWTH Aachen University,
we, the Cyber-Physical Mobility Group, built a small-scale
testbed, the open-source and remotely accessible Cyber-Physical
Mobility Lab (CPM Lab). We use it for one undergraduate
course, one graduate course, and an international competition.
Our literature research indicates that no similar publicly
available testbed offers continuous educational applications for
all academic levels, including postgraduate students.

This paper presents (i) an educational umbrella concept
designed to create a course portfolio suitable for undergraduate,
graduate, and postgraduate needs, (ii) updates to the course
concepts with an emphasis on previous publications, and
(iii) lessons learned to develop an education portfolio based on
small-scale testbeds. We base our results on evaluations con-
ducted over four years involving over 370 students participating
in our courses. Our findings indicate that small-scale testbeds
can help students become more invested in the topic and may
motivate them beyond course requirements.

Index Terms— Cyber-Physical Systems, Mobility, Small-scale
Testbeds, Education, Competition

OPEN MATERIAL

CPM Academy cpm-remote.de/academy
Networked Control
of Vehicles

cpm.embedded.rwth-aachen.de/course

CPM Olympics cpm-remote.de/olympics

I. INTRODUCTION

A. Motivation

Small-scale testbeds bridge the gap between expensive
real-world testing and computer simulations. They offer a
more cost-effective solution for rapid prototyping applica-
tions for Connected and Automated Vehicles (CAVs) com-
pared to real-world test vehicles while producing a more
realistic testing environment than simulations. Additionally,
small-scale testbeds offer opportunities for practice-driven
bottom-up education, enabling students to gain hands-on
experience in topics like control, vehicle dynamics, trajec-
tory planning, and real-time software. Our yearly evaluation
shows that, on average, around 90% (see Fig. 1) of students
who take our courses are interested or highly interested
in these topics. However, designing courses that cater to
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undergraduate and graduate students’ diverse skill levels and
needs can be challenging. Furthermore, conducting CAV
simulations demands high-performance computer hardware,
which can pose a financial obstacle for many students.

Within the Cyber-Physical Mobility (CPM) Group at
RWTH Aachen University, we built the CPM Lab [1], a
small-scale testbed focusing on CAVs and their applica-
tions in education. For instance, our small-scale vehicles
(µCars) feature replaceable controllers, empowering students
to explore control of vehicle dynamics. We launched our
courses in 2019 and published our original concepts two
years later [2]. Since then, the courses evolved, guided by
feedback collection over the past four years. In 2023, we have
integrated our testbed into three educational applications: one
undergraduate-level course, a graduate-level course, and an
international competition. Our literature research indicates
that no similar publicly available testbed offers continuous
educational applications for all academic levels, including
postgraduate students.

In this paper, we present an umbrella concept that unifies
our courses, and we present updates to the course concepts
based on the feedback gathered over four years. Additionally,
we provide lessons learned for implementing similar testbeds
in educational settings derived from feedback from over 370
students participating in our courses. Our results show that
the students appreciate the courses’ practice-driven focus,
which often motivates them to extend their efforts beyond
the course requirements.

B. Related Work

Literature research reveals several examples exploring the
educational uses of other small-scale testbeds comparable
to the CPM Lab. F1TENTH, for instance, offers a com-
prehensive, open-access course with materials and grad-
ing criteria on its website [3]. This course accommodates
an individual track and material for educators, although
hardware must be purchased separately. Additionally, they
describe an undergraduate-level course in [4]. A preprint
study involving F1TENTH reports increased student engage-
ment and improved comprehension of relevant topics [5].
The Robotarium states in the original paper [6] that many
submissions are for educational use, but the authors do not
provide specific references or open-access course materials.
Duckietown, on the other hand, offers online videos and
lecture materials with solutions linking to multiple university
courses where it has been integrated [7]. The IDS Scaled
Smart City also serves educational purposes, although the
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authors refrain from outlining specific course details in the
available publications [8]. While comparable to the CPM
Lab, some testbeds like the MiniCity [9] do not mention any
education uses in publicly available information.

There are many more examples of robots or car-like robots
used in education, like the small-scale racing platforms MIT
RACECAR [10] and Amazon DeepRacer [11] or the educa-
tional concepts presented in [12], where the authors present
three different use cases for the education of Advanced
Driver Assistance Systems (ADAS) applications. However,
most literature focuses on single-agent applications. In con-
trast, the abovementioned tesbeds concentrate on multi-agent
robot systems.

Moving beyond testbeds for car-like robot systems, we
also find various applications in other domains. For instance,
a systematic review focuses on using Unmanned Aerial
Vehicles (UAVs) in education [13]. This study surveys 43
papers, revealing that integrating UAVs into educational
contexts increases students’ learning interest and fosters a
stronger sense of responsibility among learners. Another
source provides a detailed account of five distinct courses,
each supported by a remote learning platform [14]. Notably,
only one of these courses utilizes a physical robot, while the
others rely on simulations. All the described courses employ
gamification techniques to engage students and enhance their
interest in the subject matter. Feedback is collected through
final questionnaires to assess the effectiveness of the lectures.
Furthermore, in [15], the authors present a comprehensive
simulation-based course, emphasizing the teaching of com-
mon tasks related to UAVs.

All these applications illustrate the growing diversity of
educational technologies and approaches used to increase
students’ engagement in various domains. Some testbeds
comparable to the CPM Lab provide educational resources
catering to undergraduate and graduate students. We further
extend these educational provisions to postgraduate students,
offering continuous learning opportunities across all aca-
demic levels. Additionally, the prevailing literature often
focuses on the course concepts without incorporating updates
or lessons learned from the supervision of the courses.

C. Cyber-Physical Mobility Lab

In [1], we introduced the Cyber-Physical Mobility Lab
(CPM Lab) as an open-source, small-scale testbed for rapid
prototyping of CAV applications. It features 20 car-like
robots called µCars [16] with Ackermann steering and on-
board sensors. We provide one external computation unit for
each vehicle, allowing for distributed computation with up
to 20 participants. The Indoor Positioning System [17] han-
dles environmental perception with a camera-based detection
system that localizes LEDs mounted on vehicles.

The vehicles send and receive messages using the Data
Distribution Service (DDS), supporting all programming
languages with a DDS implementation, including but not
limited to MATLAB, Python, and C++. We support three
different modes of sending commands to our µCars: (i) the
direct command mode, in which the planner provides the

control inputs for the actuators, (ii) the planner provides a
path and the vehicle’s current speed in the path-tracking
mode, and (iii) in trajectory mode, the planner provides
trajectories composed of a path and the speed along the path.

D. CPM Remote

We launched the Cyber-Physical Mobility Lab Remote
Access (CPM Remote) [18], a web-based platform that
provides remote access to the CPM Lab and server-side
simulations, to overcome the limitations imposed by physical
testbeds. The server-side simulations eliminate the need for
users to invest in expensive hardware. Besides, it provides
a library named CPM Routing, which acts as an interface
between users and the CPM Lab. The library encompasses
essential functions such as obstacle detection, vehicle state
retrieval, and navigation on a map. With all these features,
CPM Remote enables two of our educational applications,
namely CPM Academy and CPM Olympics, which will be
elaborated in Sections II-B and II-D, respectively.

E. Contribution of this Paper

This paper introduces an educational umbrella concept
outlining the differences in teaching undergraduate and
graduate students with our CPM Lab. We explore use
cases for small-scale testbeds, including project-based and
competition-based approaches, as well as using gamification.
Our evaluation highlights the strengths and weaknesses of
our educational approach and demonstrates how our course
portfolio improved over time based on student feedback. Fur-
thermore, we provide lessons learned for educators interested
in creating their own testbed-based courses.

F. Paper Structure

We present the umbrella concept that creates a common
thread for our course portfolio in Section II. In the same
section, we present each education application and depict
the students’ feedback and how this changed the respective
application. After that, we present our lessons learned from
the past years in Section III. Finally, we conclude our
findings in Section IV.

II. EDUCATIONAL APPLICATION

A. Umbrella Concept

The user base of the CPM Lab comprises three distinct
target groups, each with unique capabilities and objectives.
Undergraduate students, typically entering with foundational
programming knowledge, seek to enhance their understand-
ing of programming paradigms, focusing on concepts like
shortest paths, scheduling, and optimization. Graduate stu-
dents share similar objectives but with more advanced skills,
enabling them to tackle complex control challenges. Post-
graduate students possessing in-depth knowledge of planning
and control, prioritize practical experimentation in real-world
scenarios to test various CAV applications.

Our university’s guidelines for undergraduate and
graduate-level courses emphasize the varying depth of pro-
cess dimensions, employing Bloom’s Taxonomy as defined
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TABLE I
BLOOM’S TAXONOMY COGNITIVE PROCESS DIMENSIONS LISTED IN

ASCENDING ORDER BASED ON [19].

Dimension Description
Remember Retrieve relevant knowledge from long-term memory.
Understand Construct meaning from instructional messages, includ-

ing oral, written, and graphical communication.
Apply Carry out or use a procedure in a given situation.
Analyze Break material into constituent parts and determine how

parts relate to one another and to an overall structure or
purpose.

Evaluate Make judgments based on criteria and standards.
Create Put elements together to form a coherent or functional

whole reorganize elements into new pattern or structures.

0 10 20 30 40 50 60 70 80 90 100

Goals

Structure

Concept

Interest

Application*

Alignment*

Strongly Agree Agree Undecided Disagree Strongly Disagree

Fig. 1. Course evaluation based on approximately 260 questionnaires.
The students rated: provision of clear goals, structure of the learning
material, concept of the course, personal interested in the course, application
of knowledge, and alignment of content to the accompanying lecture. *
Questions from practice sessions based on more then 100 questionnaires.

by Table I. Undergraduate courses focus on the lower pro-
cess dimensions “Remember”, “Understand”, and “Apply”.
In contrast, graduate and postgraduate courses expand to
“Analyze”, “Evaluate”, and “Create”. Incorporating these
terms into course descriptions ensures alignment with the re-
quired cognitive skills: foundational understanding and prac-
tical application for undergraduates and problem analysis,
mathematical derivation, problem evaluation, and solution
assessment for graduate and postgraduate courses.

RWTH Aachen University conducts biannual evaluations
via questionnaires to maintain course quality and adherence
to guidelines. As shown in Fig. 1, these evaluations provide
insight into the students’ perspectives. Around 90% express
high or very high interest in the courses, while elements
such as course structure, clear objectives, and the overall
concept garner positive evaluations from 70% or more of the
students, rated as good or very good. These results confirm
the favorable reception of our pratice-driven course concept.

In the upcoming sections, we will: (i) Describe individ-
ualized educational applications designed for specific target
groups. (ii) Share insights derived from questionnaires re-
ceived from approximately 260 students. (iii) Outline the
course modifications made over four years and demonstrate
how these changes are reflected in the feedback. (iv) Summa-
rize the conclusions drawn, consolidated as lessons learned
in Section III.

B. Undergraduate Students

The first application is an annual software development
course tailored for undergraduate students, spanning a single
semester. We divide the students into small groups of four
to five students each. This course exposes students to real-
world challenges they must solve in a scrum [20] setting.
They engage in the development of a package delivery
service, addressing various NP-hard problems, including
the renowned traveling salesman problem. In contrast to
other courses in the curriculum, which emphasized concep-
tual understanding, our bottom-up [21] approach prioritizes
the practical implementation and application of theoretical
paradigms. The current course iteration categorizes these
problems into nine levels of increasing difficulty, employing
a didactic approach grounded in gamification principles [22].
This strategy facilitates progress assessment by the course
supervisor, based on the levels attained by each team. At the
time of writing, a total of 119 students took the course.

The course’s objectives have remained centered on cre-
ating a package delivery service across different semesters,
but the course format has evolved. Initially, we tasked the
students with coding the delivery functionality from scratch,
without a provided code skeleton, and conducted on-campus
testing in the CPM Lab. This approach presented two major
challenges. First, the CPM Lab has limited physical space,
and only one team at a time can conduct tests. Second, the
supervisor must check the student’s progress manually.

Amid the covid-19-pandemic, course format adaptations
were prompted by restrictions on on-campus meetings and
the availability of a pre-release version of CPM Remote.
Testing and development transitioned to CPM Remote, ac-
companied by the provision of a basic code skeleton to guide
students’ work. The course continued to enroll 20 students,
organized into teams of five students each. Evaluations from
this year suggested a decline in course ratings across the
board. However, it is challenging to attribute this solely to
a drop in course quality, as less than half of the students
completed the questionnaires.

The latest revision introduced the CPM Academy [23]
in 2021. We enrolled 30 students in 2021 and 35 stu-
dents in 2022, as a level-based system and automated
feedback simplified student management and reduced the
need for supervision. Despite the increase in student num-
bers per semester, we had yet to reach the limitations of
CPM Remote. CPM Remote, functioning within a cloud
environment, provides scalable capacity, ensuring that the
platform itself does not impose any real restriction on the
number of participants. Instead, limitations stem from the
supervisor’s ability to effectively oversee a larger number of
participants. Students are now required to achieve specific
goals to progress to the next level, and supervisors no longer
need to manually assess students’ progress, allowing for the
increase to 35 in the latest iteration.

When comparing the evaluation results between the initial
term in 2019 and the most recent regular term in 2022,
no significant differences emerged in the evaluations. This
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observation led us to the conclusion that, for undergraduate
students, there are no discernible advantages associated with
on-campus work. Quite the opposite, students explicitly high-
lighted in their feedback their preference for the flexibility
afforded by CPM Remote. This flexibility allows them to
work from any computer, at any location worldwide, and
at any time, aligning with their preferences and schedules.
Moreover, students particularly appreciate receiving clear
objectives without being constrained to specific solutions.

In the academy, students progress through nine levels,
each serving specific educational objectives. The introduc-
tory level, level one, provides students with a foundational
understanding by introducing the code base and providing
them with a navigation function for CAVs. It emphasizes
the cognitive skills of “Remember” and “Understand”.

In levels two and three, students are tasked with imple-
menting collision avoidance algorithms, where they must
dynamically control the vehicle to prevent collisions. They
have the flexibility to choose avoidance strategies, such
as braking, evading, or rerouting, introducing a dynamic
control challenge in response to real-time scenarios. As
the levels progress to four through six, the focus shifts to
optimizing package delivery, resembling the Multiple Online
Traveling Salesperson Problem. Control complexities raises
from simple pickups in level four to incorporating packet
counts and vehicle size limitations in levels five to six. Each
level adds intricacy to the optimization problem, demanding
more and more sophisticated control strategies. Moreover,
the entire problem necessitates online problem-solving, as
package properties are randomly determined during runtime,
emphasizing the need for adaptive and dynamic control
solutions. The course culminates in levels seven to nine,
where vehicles face fuel consumption and refueling require-
ments, while packets are assigned profit and deadlines. These
new variables target the “Apply” and “Analyze” dimension,
thereby deepening their understanding of the problem.

In summary, our evaluation of the undergraduate course
yielded several key insights: (i) Students favor flexibility over
constant on-campus work, valuing the ability to manage their
time independently. (ii) Students value collaborative group
work and using tools like Gitlab. (iii) Students appreciate
the real-world applicability of the course content. (iv) The
structured level system, with clear objectives and progress
monitoring, is well-received. (v) Students find value in
observing their working solutions reach key milestones in
the physical testbed. (vi) Despite annual documentation im-
provements, students express concerns about its sufficiency.

C. Graduate Students

The graduate-level course Control and Perception in Net-
worked and Autonomous Vehicles (CPNAV) is our ad-
vanced class for applications in CAVs for Computer Sci-
ence, Computational Engineering Science, and Automation
Engineering students. This course combines theory of multi-
agent decision-making with practice-driven exercises in the
CPM Lab. In the lecture, we teach the Sense-Plan-Act
paradigm, the basics of Model Predictive Control (MPC),

and Networked Control Systems (NCS), in a top-down [21]
approach, focusing on central and distributed MPC. After-
ward, in our testbed, the students apply this knowledge in
teams of one engineering and one computer science students
in a bottom-up [21] manner. At the time of writing, 150
students took the course in total since 2019.

In the initial two course iterations, we scheduled the
exercise as a two-week block following the lecture. However,
student feedback from the first year revealed their preference
for practical work but dissatisfaction with the block place-
ment due to its proximity to the exam period. We moved the
exercise to run in parallel with the lecture to address this
issue. Since this adjustment, feedback about the placement
has been consistently positive as it enables students to
apply knowledge recently learned in practical settings while
keeping their exam preparation time unencumbered.

In 2021, we extended the practice-driven exercise duration
in the CPM Lab to eight days and introduced checkpoints for
students’ progress. This extension was primarily prompted
by the challenges posed by students’ low-performing hard-
ware. Although we provide a Virtual Machine (VM) for the
exercise, it often demands more computational power than
some students can access. Since some students could not
work outside the exercises, we extended the exercise time
without increasing the content. This issue prompted us to
develop CPM Remote and augment the exercise duration to
ensure students have access to high-performance hardware
or suitable alternatives. The addition of checkpoints ensured
equitable grading based on students’ progress..

In 2022, we experimented with a new approach, offering
lecture content through prerecorded videos and in-person
Q&A sessions. However, student feedback indicated a pref-
erence for in-person lectures over recorded videos. Despite
the option of in-person Q&A sessions, students struggled to
stay motivated when relying solely on video content. As a
result, we have returned to providing traditional, in-person
lectures for the current iteration of the course.

We keep the number of students low for two primary
reasons. Firstly, maintaining a small class size ensures that
every student can access the physical testbed, a feature highly
valued by students. Expanding the number of students would
necessitate alternate on-site visits every other week due
to physical space constraints, reducing the total time each
student spends on-site. Secondly, a smaller class size pro-
motes a closer student-lecturer relationship, which students
frequently highlight as a positive aspect in our feedback.
The willingness of the lecturer to engage in discussions is
mentioned in eleven out of fourteen positive comments from
the 2021 questionnaire. In conclusion, we observed that a
limited number of students enhances engagement with the
lecturer and extends practical on-site work.

The initial two days of the exercise provide an essential
introduction to the testbed, emphasizing students’ under-
standing of the unique testbed environment and promoting
independent problem-solving. This preparation serves to re-
duce the need for future supervisor interventions. After this,
the third day focuses on model identification. While students
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have acquired the necessary theoretical knowledge for model
identification, practical application reveals significant chal-
lenges in obtaining high-quality models from data recorded
from physical systems. This experience necessitates careful
consideration of data and preprocessing methods to ensure
accurate motion prediction, targeting the “Analyze” dimen-
sion of Bloom’s taxonomy. The exercise descriptions present
goals rather than step-by-step guidance, requiring students to
synthesize knowledge from prior studies and lectures. The
motion model developed on day two forms the foundation
for implementing MPC on a single and multiple vehicles.
Initially, students focus on controlling a single vehicle, which
should adhere closely to a provided speed profile. While
seemingly straightforward mathematically, this step allows
students to familiarize themselves with tuning parameters in
MPC and assess the quality of their motion model. The final
objective is for students to construct a platoon with five or
more vehicles. They commence with a central computation
approach, solving the control problem as one optimization
problem for all vehicles. Progressing further, they transition
to a distributed computation approach, where each vehicle
solves its own optimization problem while communicating
with others. This final goal can be archived in multiple ways
and requires students to “Evaluate” all possible solutions,
spanning the “Remember”, “Understand”, and “Apply” levels
as taught in the theoretical lecture.

We integrated five flipped classrooms into the traditional
theoretical lecture format. In these 30-minute sessions, stu-
dents prepare materials, present a lecture, and guide the
post-lecture discussion. Feedback from students has predom-
inantly praised this approach, with the occasional critique
centering on language barriers or minor slide inconsisten-
cies, promptly addressed through clarifications by the lec-
turer. Remarkably, we have encountered minimal negative
feedback regarding flipped classrooms across four years of
implementation, signifying their effectiveness in fostering
deeper student engagement with course materials.

In summary, our evaluation of the practical course for
graduate students revealed several key findings: (i) Students
like the placement of practice-driven exercises right after
the theoretical lecture as it allows for direct practical un-
derstanding. (ii) Students like the interactive lecture contents
like flipped classrooms and open discussions and value a
close student-lecturer relationship. (iii) Students appreciate
the small class sizes, close interaction with the lecturer and
in-person lecture over prerecorded videos. (iv) Students like
having clear goals to work towards and having intermediate
goals like checkpoints. At the same time, it makes grading
easier as a team’s progress can be objectively quantified.
(v) Students often do not have access to sufficient hardware
to execute a simulation for CAV applications. They need
sufficient time with on-campus hardware or an alternative
solution like CPM Remote.

D. Postgraduate Students

CPM Olympics [24] is an annual motion planning compe-
tition tailored to postgraduate students, offering a platform

for benchmarking motion planning algorithms for CAV. The
participants, often recent or near-graduates, exhibit diverse
needs and backgrounds, making a structured, guided ex-
perience akin to the CPM Academy less feasible. Instead,
at this level, participants opt in deliberately, motivated by
intrinsic interest in the field. Our focus has shifted toward
fostering interest in the platform itself, emphasizing the value
proposition in relation to the effort invested.

The CPM Olympics distinguishes itself from comparable
platforms in three key ways. Firstly, it offers a standardized
set of benchmarks that facilitate objective comparisons be-
tween different solutions. Secondly, it features a growing set
of real-world scenarios to challenge motion planners. Lastly,
the competition rewards the best-performing solutions with
cash prizes and a possibility to present their solution at a
conference workshop.

The evaluation of submitted planners involves two as-
pects. Firstly, there are mandatory requirements like collision
avoidance. Failure to meet these requirements results in
a zero score for the scenario. Successfully meeting these
requirements paves the way for a more detailed evaluation
that assesses performance metrics such as energy efficiency
and travel time. This application focuses on the highest of
Bloom’s taxonomy levels, “Create”, as every scenario is
different, and a single motion planner should solve all.

The inaugural CPM Olympics in 2022 featured a total
prize pool of $3,000. This competition garnered 79 registra-
tions, with active participation from nearly 30% of users,
as indicated by an average of 3.5 submitted planners per
participant. The workshop was held at the IEEE Intelligent
Vehicle Symposium (IV) in Anchorage, Alaska. Building on
this success, the second edition doubled the prize money.

III. LESSONS LEARNED

This section provides the lessons learned from the educa-
tional applications presented in the previous section. We ad-
dress key aspects such as testbed utilization, providing web-
based interfaces, scheduling of practice-driven exercises, and
promoting active student interaction.

Use testbed space effectively. Our feedback and compa-
rable literature suggest that working with simulations and
occasional on-campus visits, especially at key milestones,
engages undergrad students as effectively as constant on-
campus work. Graduate-level courses benefit from small
classes that allow constant on-campus work, especially for
tasks involving direct interaction with physical robots, such
as motion model creation or low-level hardware work.

Provide a platform like CPM Remote. Despite ad-
vancing hardware, many students rely on outdated or low-
performing systems that hinder the execution of CAV simula-
tions. We propose creating a web-based platform with server-
side execution to overcome hardware limitations and allow
students to participate in a course they would otherwise not
be capable of attending.

Strategically schedule practice-driven exercises. Clus-
tering practice-driven exercise in a block can reduce engage-
ment and create a stressful work environment. Instead, spread
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placement across the semester and position the exercise right
after the theoretical lecture to apply the gained knowledge.

Promote active student interaction. Use interactive ele-
ments like flipped classrooms for collaborative learning and
a deeper understanding of the lecture material. Encouraging
students to collaborate will help them to solve complex
problems and can be further assisted by an open student-
lecturer relationship.

Creating intermediate goals. Create intermediate goals
like the levels in CPM Academy, the checkpoints in CPNAV,
or the difference scenarios on the CPM Olympics. Students
value having a clear goal and find it rewarding to pass those
goals. Additionally, it makes grading easier and fair as the
supervisor can objectively assess a team’s progress.

Offer in-person lectures. While videos allow students
to pace themselves and access course content from any-
where, our feedback has shown that they are best utilized
as supplementary resources rather than the primary basis for
instruction. Students may face challenges in self-motivation
and have questions that require immediate answers, making
in-person lectures a more effective choice.

IV. CONCLUSION

In summary, we showed that the CPM Lab has proven its
worth as an educational resource over the past four years,
while ongoing course adaptations aim to optimize the learn-
ing experience. Our implementation across diverse student
groups provides hands-on experience for all education levels,
starting with undergrad students and finishing with postgrad-
uate students. We provide lessons learned for other institutes
to create their course portfolio and learn from the experience
we gathered. For undergrad students who come in touch with
CAV for the first time, it is more important to have easy
access and a guided experience with gamification aspects to
increase engagement with the topic. On the other hand, for
graduate students, engaging deeply with the knowledge with
tools like flipped classrooms provides opportunities to target
the higher taxonomy dimensions “Analyze” and “Evaluate”.
We could not gain such conclusions for postgraduate students
as their needs and goals are too broad to cover in a single
application. However, the CPM Olympics provides a tool to
compare motion planners for CAVs with real-world scenarios
objectively.
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[17] M. Kloock, P. Scheffe, I. Tülleners, J. Maczijewski, S. Kowalewski,
and B. Alrifaee, “Vision-based real-time indoor positioning system for
multiple vehicles,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 446–
15 453, 2020, 21st IFAC World Congress.

[18] A. Mokhtarian and B. Alrifaee, “CPM Remote: A remote access to the
cpm lab,” in 2022 8th International Conference on Control, Decision
and Information Technologies (CoDIT), vol. 1, 2022, pp. 1124–1129.

[19] L. W. Anderson and D. R. Krathwohl, A taxonomy for learning, teach-
ing, and assessing: A revision of Bloom’s taxonomy of educational
objectives: complete edition. Addison Wesley Longman, Inc., 2001.

[20] A. Jurado-Navas and R. Munoz-Luna, “Scrum methodology in higher
education: Innovation in teaching, learning and assessment.” Interna-
tional Journal of Higher Education, vol. 6, no. 6, pp. 1–18, 2017.

[21] R. Sun, Bottom-Up Learning and Top-Down Learning. Boston, MA:
Springer US, 2012, pp. 479–481.

[22] K. Kapp, The gamification of learning and instruction: game-based
methods and strategies for training and education. John Wiley &
Sons, 2012.

[23] A. Mokhtarian, L. Hegerath, and B. Alrifaee, “CPM Academy: A
Remote Platform for Teaching Current Topics in Networked and Au-
tonomous Driving,” 2023, accepted in IEEE Conference on Decision
and Control.
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