
Gain-scheduling control synthesis with inescapability conditions for
nonlinear systems under input saturation

Antonio Gonzalez and Antonio Sala

Abstract— This paper proposes a novel methodology to de-
sign a gain-scheduled state-feedback control law for nonlinear
systems subjected to input saturation constraints and bounded
external disturbances. The overall goal is disturbance rejection
understood as determining the smallest possible inescapable
set starting from zero initial conditions. The control design
is addressed via iterative algorithms based on Linear Matrix
Inequalities, which are obtained from the application of H1
star norm together with small gain argumentations. Numerical
simulations are provided to show the effectiveness of the
proposed method.

I. INTRODUCTION

Stability analysis and stabilization is an essential corner-
stone in the study of dynamical systems due to its relevance
in control engineering applications. An important notion in
this framework is the notion of inescapable set, which can
be defined as a certain subset of the state space region such
that all trajectories starting from the origin remain inside.
If disturbances are present, the above-mentioned trajectories
must consider worst-case disturbance trajectories, converting
the problem statement to a disturbance rejection one.

The estimation of inescapable sets is strongly related to
peak-to-peak bounding [1]. As discussed in [2], the optimal
controller minimising the L1-induced norm (induced peak to
peak) of continuous-time linear systems cannot be expressed
in terms of LMIs, but a suboptimal controller can however
be obtained with LMIs (well, BMIs including an auxiliary
decay rate). Hence, the inescapability of some ellipsoids can
be ensured for any disturbance signal with the proper control
synthesis, provided that its maximum value is bounded. Non-
LMI set-based manipulations (shooting) may also be used
to determine inescapable sets [3] for uncertain nonlinear
systems under some quasi-convexity assumptions (which
include polytopic ones), but they scale poorly to higher
dimensions.

In the case of nonlinear dynamical systems, under mild as-
sumptions (continuous first derivatives) they can modeled as
a quasi-LPV (q-LPV) system by embedding the nonlinearity
into an uncertainty ball ∆(x).

The basic idea of q-LPV modeling is extracting the
nonlinearities η = φ(x,z) as algebraic equations η = ∆(x)z
if such factorisation can be actually carried out (maybe it
is non-unique and different performance can be eked out
from different q-LPV models, see [4]). If the rest of model
equations are linear, they can be expressed in LFT form [5],
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[6], [7]. In order to bound the gain of ∆ (which is usually
needed in stability analysis LMIs) we must assume that
x∈Ω, where Ω is a predefined compact modeling region. If ∆

is comprised of several nonlinearities in block-diagonal form,
then individual bounds to each of the blocks end up building
a polytopic bound on the whole nonlinearity structure. Note
that the larger Ω is, the wider the bounds of ∆ will be,
evidently.

Note, however, that such q-LPV model is, in general, only
locally valid in Ω. Therefore, it must be ensured that the tra-
jectories do not exit the modeling region Ω when discussing
quasi-LPV stability or disturbance rejection problems.

The key advantage of resorting to linear parameter-varying
(LPV) framework is that the use of linear methods can be
applied to the control design of nonlinear systems or time-
varying systems [8], but at the expense of some degree of
conservatism. Quasi-LPV models with no rational depen-
dence on ∆ are also called Takagi-Sugeno (TS) models [9],
[10] or plainly ‘polytopic’ ones [11]. Those with rational
dependence can be consider in descriptor [12], [13] or LFT
form, equivalent if differentiability index of the descriptor
representation is unity. The use of rational dependence can
diminish the number of vertices of polytopic boundings and
reduce some of the conservatism in the modeling phase with
respect to non-rational TS options.

The objective of this paper is to provide a state-feedback
control methodology based on Linear Fractional Transfor-
mation (LFT) modeling with the objective of achieving the
smallest inescapable set around the origin without reaching
the input saturation level [14], [15], for a given nonlinear
system. To this end, an iterative algorithm based on LMIs
is proposed to address the control synthesis. As a large Ω

results in conservatisms, the iterations include a varying-
size modeling region, so that the final modeling region is
coincident with the proven inescapable ellipsoid. So, the
contribution of this paper is the adaptation of the sector
nonlinearity bound, together with the presence of actuator
saturation in a gain-scheduled state feedback.

The structure of the paper is as follows: next sec-
tion discusses preliminary definitions, notation and problem
statement; Section III discusses the main theorem stating
some matrix inequality conditions for inescapability in a
disturbance-rejection problem; Section IV discusses the use
of that theorem to find the ‘smallest’ inescapable set; ex-
amples are provided in Section V; last, a conclusion section
closes the paper.
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II. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider a nonlinear time-invariant system such that
it can be expressed as the LFT interconnection of some linear
dynamics with a block-diagonal nonlinear operator, in the
form:

ẋ = Ax+Bu+Fw+Gη , (1)
η = ∆(x)z,

z = HAx+HBu+HF w+HGη ,

where ∆(x) = diag(δ1(x)I1, ...,δp(x)Ip) with δ j(x) : Rn →
R, j = 1, ..., p being individual nonlinearities, and I1, . . . Ip
being identity matrices of appropriate dimensions. Vector
x ∈ Rn denotes the state of the system, u ∈ Rm will be a
vector of manipulated inputs, and w ∈Rq stands for a dis-
turbance input. There is no loss of generality in assuming the
equilibrium point under zero inputs to be x= 0, and ∆(0)= 0,
as any other value for ∆(0) can be embedded in the linear
equations. The system matrices A,B,F,G,HA,HB,HF ,HG are
assumed to be time-constant and known.

We will consider that there exists input saturation so
uT (t)u(t)≤ 1 must be fulfilled, and that the disturbance input
is bounded so wT (t)w(t)≤ 1 for all t ≥ 0.

We will assume that functions δ j are continuous, thus
bounded in a given compact set Ω of the state-space region
containing an open neighborhood of the setpoint x = 0.
Denoting such bound γ j =maxx∈Ω|δ j(x)|, j = 1, ..., p, system
(1) can be rewritten as:

ẋ = Ax+Bu+Fw+GΓη̄ , (2)
η̄ = ∆̄(x)z,

z = HAx+HBu+HF w+HGΓη̄ ,

where Γ = diag(γ1I1, ...,γpIp). Note that ∆̄(x) =
diag(δ1(x)/γ1I1, ...,δp(x)/γpIp) attains a maximum L2
gain of unity, because it is a diagonal matrix gain whose
elements range in [−1,1] for x∈Ω. This kind of construction
is denoted as LPV-embedding in literature [16] when the
actual “shape” of ∆̄(x) is disregarded, and robust stability
and performance are proven for all ∆ such that ‖∆‖2→2 ≤ 1.
Note that the scaling matrix Γ depends on the modeling
region Ω.
Example: consider the system:

ẋ =−x+
(

sin(x)
1−0.1sin(x)

)
︸ ︷︷ ︸

f (x)

x+
(

1+
x

1+0.3x

)
︸ ︷︷ ︸

g(x)

u+w. (3)

Given Ω : x/|x| ≤ π , the above system can be written in the
form (2) as:

A =−1, B = 1, F = 1, (4)

G =
[
1 1

]
, HA =

[
1
0

]
,

HB =

[
0
1

]
, HF =

[
0
0

]
, HG =

[
0.1 0
0 −0.3

]
,

Γ =

[
1 0
0 π

]
, ∆(x) =

[
sin(x) 0

0 1
π

x

]
.

A. Problem statement
Our goal will be a disturbance-rejection one, from this

definition below.
Definition 1. A set W ⊂ Ω will be said to be inescapable
under a nonlinear state-feedback control law u = ν(x) if
x(0) ∈ W implies x(t) ∈ W for all t for all admissible
disturbance trajectories w(t) if said closed-loop control law
is used in (2).

Ideally, we wish to obtain the inescapable set of ’minimum
size’ containing the origin. Given the inherent conservatism
of LMIs, it will just be an ellipsoidal estimate of it with, say,
minimum length of largest semiaxis.

In particular, the objective of this paper is presenting a
methodology based on bilinear matrix inequalities (BMI)
to design a gain-scheduled controller such that, given the
disturbance constraints, there exists an inescapable set around
the origin in closed loop such that input does not saturate;
we will try to minimise the radius of a sphere containing it.

III. MAIN RESULT: NONLINEAR STATE-FEEDBACK
CONTROL

Now, let us first assume that a given, fixed, modeling
region Ω has been used to express a nonlinear system in
the form (2). Let us propose the following non-linear state-
feedback control law for system (2) on the form:

u = K1x+K2ηu, (5)
ηu = ∆(x)zu,

zu = K3x+K4ηu,

where ∆(x) is defined in (2). Note that (5) can be expressed
as the following rational expression on ∆:

u =
(

K1 +K2 (I−∆(x)K4)
−1

∆(x)K3

)
x. (6)

Theorem 1. The closed-loop system (2) with controller (5)
renders the ellipsoid xT Q−1x < 1 inescapable with uT u ≤
1, ∀t ≥ 0 if there exist α > 0 and matrices Q > 0,E1,E2,
Y1,Y3, and K2, K4 such that the following matrix inequalities
hold: 

Π1 F Π2E1 Π3
(∗) −αI 0 Π4
(∗) (∗) −E1 E1Π5
(∗) (∗) (∗) −E1

< 0, (7)


Q 0 Y T

3 Y T
1

(∗) E2 E2KT
4 E2KT

2
(∗) (∗) E2 0
(∗) (∗) (∗) I

≥ 0,

Π1 = He(AQ+BY1)+αQ,

Π2 =
[
GΓ BK2Γ

]
,

Π3 =
[
QHT

A +Y T
1 HT

B Y T
3
]
,

Π4 =
[
HT

F 0
]
,

Π5 =

[
ΓT HT

G 0
0 KT

4

]
, (8)
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where Ei are suitable multipliers satisfying Ei∆̄= ∆̄Ei, i= 1,2
being ∆̄ = I2⊗∆. Moreover, the control gains K1,K3 in (5)
are obtained as K1 = Y1Q−1, K3 = Y3Q−1.

Remark 1: For the above theorem to be valid, suitable
matrix inequality conditions must be added to the above
inequalities to ensure that the ellipsoid in the statement of
Theorem 1 is contained in Ω, depending on the shape of Ω,
omitted for brevity.
Proof: Given any matrix P = PT > 0, consider the Lyapunov
function:

V = xT Px > 0 (9)

Let η = [ηT
1 , ηT

2 ] and z = [zT
1 , zT

2 ]. For any w such that
wT w≤ 1, if the condition

V̇ +λ1
(
xT Px−1

)
+λ2

(
1−wT w

)
(10)

+ zT E −1
1 z−η

T E −1
1 η < 0

holds for some scalars λ1,λ2 > 0, then the closed-loop
system is inescapable for any x satisfying xT Px < 1 and
any time-varying operator ∆ satisfying ||∆||∞ < 1 for some
scaling matrix of approppriate dimensions E1 such that
E1∆ = ∆E1 (scaled small gain theorem). Choosing λ1 = λ2 =
α , one has that (10) is true ∀x,w if and only if

Π̃1 PF PΠ2 Π̃3
(∗) −αI 0 Π4
(∗) (∗) −E −1

1 Π5
(∗) (∗) (∗) −E1

< 0, (11)

Π̃1 = He(PA+PBK1)+αP,

Π̃3 =
[
HT

A +KT
1 HT

B KT
3
]
.

Pre-and post multiplying the above matrix inequality by
diag

(
P−1, I,E1, I

)
, and denoting Q = P−1, Y1 = K1Q, Y3 =

K3Q the equivalent condition given in the first matrix in-
equality in (7) is obtained.

The second matrix inequality in (7) is obtained from the
input saturation condition, which comes from the constraint:

λ3
(
xT Px−1

)
+
(
1−uT u

)
− zT E −1

2 z+η
T E −1

2 η ≥ 0, (12)

for some E2 such that E2∆ = ∆E2, which means that ∀x
satisfying xT Px < 1 the control input u verifies uT u ≤ 1.
Choosing λ3 = 1, the above inequality is true if

P 0 KT
3 KT

1
(∗) E −1

2 KT
4 KT

2
(∗) (∗) E2 0
(∗) (∗) (∗) I

≥ 0. (13)

Pre-and post multiplying the above matrix inequality by
diag

(
P−1,E2, I, I

)
, and denoting Q = P−1, Y1 = K1Q, Y3 =

K3Q the equivalent condition given in the second matrix
inequality in (7) is obtained. �.

The following corollary allows to design a non-scheduled
feedback controler u = K1x, as a particular case of the above
theorem.
Corollary 1. Given a scalar α > 0, the closed-loop system
(2) with (5) is inescapable in the ellipsoid xT Q−1x < 1

∀w / wT w ≤ 1, ∀t ≥ 0 satisfying uT u ≤ 1, ∀t ≥ 0 if there
exist matrices Q> 0,E ,Y such that the following LMIs hold:

Π1 F GΓE Π3
(∗) −αI 0 HT

F
(∗) (∗) −E E ΓT HT

G
(∗) (∗) (∗) −E

< 0,
[

Q Y T

(∗) I

]
≥ 0,

(14)

Π1 = He(AQ+BY )+αQ, Π3 = QHT
A +Y T HT

B ,

where E is a scaling satisfying E ∆ = ∆E . Moreover, the
control gain is obtained as K = Y Q−1. �

The root of the algorithm in next section will be using
Theorem 1; in order to numerically find a solution we can
resort to a BMI solver or, if K2 and K4 and α are fixed, to
an LMI solver. Implementation may involve, hence, iterated
LMIs. Nevertheless, BMI implementation details are out of
the scope of this work.

IV. MINIMISING INESCAPABLE SET SIZE FOR NONLINEAR
SYSTEM

There may be two specific problems to be solved with
the above theorem, by appending extra LMIs and posing
objective functions as follows:

a) Stabilization: Maximising ρ subject to Q ≥ ρI
would obtain the inescapable ellipsoid E with largest mini-
mum semiaxis.

b) Disturbance rejection from x = 0: Minimizing ρ

subject to Q≤ ρI would obtain the “minimum radius” inside
where there exists an inescapable set if initial conditions are
at the origin. (Problem 1)

Variations of the above problems using volume as objetive
function to maximise/minimise may be also thought of,
details omitted for brevity.

However, if Ω were ‘fixed’, as required by Theorem 1,
we would have a single q-LPV model and the result of the
above optimizations, even if valid in a q-LPV setup, would
be conservative from the nonlinear systems point of view,
as Ω must forcedly be larger (or equal) than the proven
ellipsoids, but if it is larger it means that the bounds for
∆(x) are conservative. Ideally, the modeling region Ω should
be “equal” to the proven inescapable ellipsoid.

In order to solve these problems, Theorem 1 assumes a
fixed modeling region Ω. However, the matrix inequality
conditions may render infeasible due to:
• Excessively small Ω, so minimum inescapable sets (it

size is not zero due to disturbance inputs) are too large
to fit in it.

• Excessively large Ω so q-LPV bound Γ increases too
much and/or saturation conditions for robust stabiliza-
tion get too restrictive.

So, we may think in changing the modeling region size
to better approach the “true” minimum and maximum in-
escapable sets of the original nonlinear systems via q-LPV
techniques.

Regarding the first ‘stabilization’ problem, well, if a q-
LPV model in Ω renders Theorem 1 feasible, then the esti-
mated largest inescapable ellipsoid will be the one such that
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it is tangent to the boundary of Ω. This problem is somehow
well studied in literature. Thus, in this work, we will delve
into the details of how to address the second (disturbance
rejection) problem with changing modeling region.

A. Minimising inescapable set from origin: iterative algo-
rithm

Starting from a large modeling region Ω may include
alternate equilibrium points or attractors so the “minimal”
inescapable set from the origin may not be obtained. On the
other hand, as commented above, disturbance variation may
render infeasible a too small modeling region.

So, our proposal for this disturbance-rejection problem
will be removing the geometric conditions of xT Q−1x ≤ 1
being inside Ω and starting with Ω = {0}, the origin, i.e.,
Γ = 0; then, feasibility of Theorem 1 should be checked.

As trajectories with ∆ = 0 will be a subset of those of the
q-LPV system (2), the minimum inescapable ellipsoid for a
certain modeling region Ωi such that Ωi⊇Ωi−1 will be larger
than that from Ωi−1 because Γ will be more restrictive.

Thus, starting from Ω0 = {0}, the following iterative
algorithm is proposed, where the control synthesis problem
will be addressed by iteratively modifying the modeling
region in multiple steps, since γ̄ depends on the modeling
state-space region Ω.

The proposed algorithm reads as follows:

[Algorithm 1]
• Step 1: Set i= 0. Solve Problem a) choosing Γ(i) = Γ=

0. Set Qi+1 = Q.
• Step 2: Set i=i+1. Obtain γ

(i)
j = maxx∈Ωiδ j(x), j =

1, ..., p where Ωi = {x ∈Rn/xT Q−1
i x≤ 1}.

• Step 3: Solve Problem a) with the constraint Q > Qi

choosing Γ(i) = Γ = diag(γ i
1, ..,γ

(i)
p ).

• Step 4: If an unfeasible solution is obtained in Step 3,
stop iterating without a feasible control. Otherwise, go
to Step 5.

• Step 5: If max1≤ j≤p|γ(i)j − γ
(i−1)
j | ≤ ε with a prescribed

tolerance ε > 0, then go to step 6. Otherwise, go to Step
2.

• Step 6: Expand modeling region Ω by a small enough
factor ξ >= 1, and check feasibility of conditions in
Theorem 1.

Note that, in the above algorithm, the geometric conditions
discussed in Remark 1 must be omitted in step 3, in order
for the ellipsoids to increase size until convergence. Indeed,
condition Q > Qi just indicates that the ellipsoid in next
iteration must be larger than the one in previous iteration, to
generate a sequence of nested modeling regions Ωi for the
q-LPV approximation of the underlying nonlinear system.
However, the last step (step 6) is the only one in which
these geometric conditions must be present, in order to find
an actually valid solution of Theorem 1.

Note also that no solution is guaranteed: the actual system
may be unstable or LMI/BMI might not be able to prove
its stability as they are only sufficient conditions. Indeed,

increasing the size of Ω increases the bounds γ j, j = 1, ..., p,
thus inescapable sets get larger and, well, algorithm may not
converge if the system is more and more difficult to control
as we get far away from the origin. Thus, we are not leaving
the realm of ‘sufficient but not necessary’ inescapability
conditions, as obviously expected.

V. SIMULATION EXAMPLE

Consider system (2) with matrices

A =

[
−1 0.5
−0.9 −0.02

]
, B =

[
1
0

]
, F =

[
1 0.15

0.3 −0.15

]
,

G =

[
1 0

0.5 0.1

]
, HA =

[
1 0.2

0.1 0

]
, (15)

HB =

[
0.3
0.1

]
, HF =

[
0.1 0.2
0 0.1

]
, HG =

[
0.3 0.15
−0.45 0

]
,

where ∆(x) = σ · (diag(sin(0.1x1),0.9x2)) and σ is a fixed
scalar that determines the ”size” of nonlinearities.

Of course, σ = 0 would mean considering just an LTI
system. In order to show the behavior of the proposed
algorithm with respect to the size of nonlinearities we will
consider three cases: σ = 2.0, σ = 5.5 and σ = 6.8, from
‘more linear’ to ‘more nonlinear’, informally speaking. Let
us analyse the results of each of them.

a) Case 1 (σ = 2.0): By means of Algorithm 1 we
obtain the smallest inescapable set which corresponds to the
dash-dotted black ellispoid depicted in Fig 1. The rest of
inner ellispoids corresponds to the evolution at each iteration
as long as the modeling region is updated with the obtained
inescapable set in previous steps, with the following styles:
solid-red line for iteration 1, solid-blue line for iteration
2, solid-magenta line for iteration 3, solid-black line for
iteration 4. It can be seen that the smallest inescapable set is
not significatively increased after iterations. This fact can be
expected due to the small size of nonlinear terms in this case.
The external radius of the inescapable ellipsoids (namely ρ)
is also depicted as a function of α in Figure 2 for each
iteration (with the same styles used in Fig. 1), where the
search range in α has been set in the interval 1.9≤α ≤ 3. Of
course, our goal is minimising such external radius (largest
semiaxis) so we chose the value of α that makes such radius
minimum, indicated with the markers in the referred figure.
Thus, the actually proven evolution of ρ at each iteration of
Algorithm 1 has been depicted in Figure 7 (solid red line),
which summarises the evolution of all three cases.

b) Case 2 (σ = 5.5): In this case, the smallest in-
escapable set (dash-dotted black ellispoid depicted in Figure
3) is obtained after 8 iterations by Algorithm 1. In compari-
son to Case 1, it can be appreciated that more iterations are
necessary due to the influence of the existing nonlinearities,
which increase the difficulty of the control problem as
modeling region gets larger. The rest of inner ellispoids
corresponds to the evolution at each iteration (legend omitted
for brevity and illustration clarity). The parameter ρ is also
depicted as a function of α in Figure 4, for each iteration
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-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.1

-0.05

0

0.05

0.1

Fig. 1: Evolution of the inescapable set at each iteration
by Algorithm 1 with different style lines to denote said
evolution at each iteration of Algorithm 1. The black-dashed
line denotes the inescapable set with σ = 2.0.

2 2.2 2.4 2.6 2.8 3
0.15

0.2

0.25

0.3

0.35

0.4

Fig. 2: Evolution of ρ as a function of α in Algorithm 1 for
the case σ = 2.0. Each coloured line denotes said evolution
at each iteration of Algorithm 1. The dash marks denote the
minimum ρ at each iteration, which is the objective of our
optimization.

(with the same styles and search range of α as used in Fig.
2). The evolution of ρ at each iteration of Algorithm 1 has
been depicted in Figure 7 in solid green line, where the
reached value is bigger than Case 1, as well as the size of the
smallest inescapable set because, evidently, the larger family
of models arising from the q-LPV embedding forcedly makes
the optimal solution set to be larger. For further illustration,
the size bound on the two nonlinearities as iterations progress
appears in Figure 5.

c) Case 3 (σ = 6.8): In this case, the inescapable
ellipsoids obtained after each iteration do not converge, as
can be seen in Figure 6. Indeed, after 4 iterations no feasible
solution is found for any value of α . This fact reveals that
Algorithm 1 is unable to find a stabilizing controller on
the form (5) due to the influence of large nonlinear terms
and, possibly, saturation constraints. As no valid solution is
obtained, the equivalent to figures 2 and 4 is not shown for
brevity. The evolution of ρ at each iteration of Algorithm 1
has been depicted in Fig. 7 (solid blue line), but the value of
ρ increases as iterations probress until no feasible solution is
found so blue line there can be thought to be ‘infinite’ from
iterations 5 onwards.

-0.5 0 0.5
-0.2

-0.1

0

0.1

0.2

Fig. 3: Evolution of the inescapable set at each iteration by
Algorithm 1. The black-dashed line denotes the inescapable
set with σ = 5.5.

2 2.2 2.4 2.6 2.8 3
0.15

0.2

0.25

0.3

0.35

0.4

Fig. 4: Evolution of ρ as a function of α in Algorithm 1 for
the case σ = 5.5. Each coloured line denotes said evolution
at each iteration of Algorithm 1. The dash marks denote the
minimum ρ at each iteration.

1 2 3 4 5 6 7 8

iter

0

0.05

0.1

0.15

0.2

i

1

2

Fig. 5: Evolution of γ1,γ2 inside the modeling region Ωi with
respect to each iteration i = 1,2, ... in Algorithm 1 (Example
1) for the case σ = 5.5.
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.3

-0.2

-0.1

0

0.1

0.2

Fig. 6: Evolution of the inescapable set at each iteration
by Algorithm 1 with different style lines to denote said
evolution at each iteration of Algorithm 1. No convergence
was achieved with σ = 6.8: system was ‘too non-linear’.

1 2 3 4 5 6 7 8
iter

0.1

0.2

0.3

0.4

0.5
=2.0
=5.5
=6.8

Fig. 7: Evolution of ρ inside the modeling region Ωi with
respect to each iteration i = 1,2, ... in Algorithm 1 for the
three cases: σ = 2.0, σ = 5.5 and σ = 6.8.

Detail/discussion on the evolution of Algorithm 1: In
all cases, the first iteration of Algorithm 1 is performed
assuming Ω = 0, that is to say, forcing all nonlinear terms to
be zero (γ1 = 0, γ2 = 0). As a result, the inescapable set with
minimum external radius ρ is obtained (solid-red line in Fig.
1) corresponding to the linear system. Thus, first iteration is
coincident in all three cases as only the linearised model at
the origin is used in the matrix inequality conditions.

The second step has been performed assuming that Ω

is the inescapable ellispoid (solid-red line) obtained in the
previous step. In Case 2, for instance, we obtain γ1 =
0.0389,γ2 = 0.1148 (see Fig. 5). Algorithm 1 is executed
until the increment between the external radius ρ of the
two last consecutive inescapable ellipsoids is less than a
prescribed tolerance (Case 1, 2) or no feasible solution is
found for any value of α (Case 3) in the search range.

VI. CONCLUSIONS

This paper has presented a BMI methodology to estimate
the ‘minimum-size’ inescapable set from the origin for a
given nonlinear system under bounded disturbances and
saturation. Matrix inequalities are stated from a quasi-LPV
model; scaled-small-gain and norm-bound considerations
have been discussed instead of polytopic vertex enumeration.

As conservatism of q-LPV models depends on modeling
region size, an iterative algorithm adapting the said modeling

region size as iterations progress has been presented. An
academic example illustrates the results of the proposed
methodology.
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