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Abstract— This paper studies the construction of symbolic
models for switched systems based on a multirate multiscale
setting. We focus on switched systems with all incrementally
stable subsystems. First, using multiple Lyapunov functions
and mode-dependent average dwell-time, sufficient conditions
are derived for incremental stability of switched systems,
which lays a foundation for the construction of the symbolic
models. Second, based on the multirate multiscale setting and
bounded dwell-time constraints, multirate multiscale symbolic
models are constructed for switched systems. The approximate
bisimulation relation is established between the original system
and the constructed symbolic model. Finally, the proposed
construction method is illustrated via a numerical example from
obstacle avoidance problems of robotic systems.

I. INTRODUCTION

Switched systems are dynamic systems consisting of a
family of finite subsystems and a switching signal that
orchestrates the switching among them [1]. Switched systems
can be used to model numerous engineering systems, such as
networked control systems , mechanical systems and multi-
agent systems; see [1]–[4] and references therein. Since some
switching strategies may result in instability of the overall
system and some subsystems may be unstable, many efforts
have been made to investigate under which switching signals
or strategies the stability and stabilization of the overall
system are guaranteed. In the literature, numerous results
can be found on stability analysis and controller design of
switched systems; see, e.g., [1]–[4].

In recent years, considerable research has focused on char-
acterization of dynamic systems that admit symbolic models,
which are discrete approximations of these dynamics, result-
ing from replacing equivalent (sets of) continuous states by
discrete symbols; see [5]–[7]. Using the symbolic models,
one can deal with controller synthesis problems efficiently
via techniques developed in the fields of supervisory control
[8] or algorithmic game theory [9]. Since there exists an
inclusion or equivalence relationship between the original
system and the symbolic model, the synthesized controller
is guaranteed to be correct by design and thus the formal ver-
ification can be reduced or neglected [10]. To construct the
symbolic model, the key is to find an equivalence relation on
the state space of dynamic systems. The equivalence relation
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leads to a new system, which is on the quotient space and
shares the properties of interest with the original system. In
the literature, many works can be found on symbolic models
for switched systems; see [11]–[16]. However, some more
general scenarios, including the case where the switching
intervals are neither multiples nor factors of the sampling
period and the case where some subsystems are unstable,
have not been considered in previous works, which motivates
us to study this topic further.

In this paper, we focus on symbolic models of switched
systems with all incrementally stable subsystems. To this
end, our first contribution is to establish sufficient conditions
for incremental stability of switched systems. The stability
conditions are established based on mode-dependent average
dwell-time (MDADT) [17] and multiple Lyapunov functions.
Note that for the first time, the MDADT is applied to ad-
dress the incremental stability of switched systems, and thus
reduces the conservatism caused by the average dwell-time
(ADT) [4], [14] and bounded dwell-time [18]. In particular,
the switching intervals are neither constant nor the same for
all subsystems, it is necessary to use the MDADT to measure
the switching intervals of each subsystem. Furthermore, the
derived stability conditions lay a solid foundation for the
abstraction construction afterwards.

With the incremental stability of switched systems, multi-
rate multiscale symbolic model is constructed such that the
approximate bisimulation relation is established between the
original system and the symbolic model, which is the second
contribution of this paper. The construction is based on
the multirate multiscale setting and the dwell-times of each
subsystem are bounded, which results in a novel abstraction
construction method for switched systems. In comparison to
previous works, the proposed construction method is more
general from two perspectives. In terms of dwell-times, the
commonly-used assumption, which claims that the sampling
period is a multiple or factor of the constant dwell-time [12],
[14], is not relaxed here, and thus the constructed symbolic
model is general enough to recover those in [12], [14],
[19] as special cases. In terms of the construction approach,
the multirate multiscale setting in [12] is implemented, and
thus the constructed symbolic model is more practical and
can deal with some phenomena like fast/slow switching and
asynchronous switching.

The remainder of this paper is organized below. Prelim-
inaries are stated in Section III. Stability conditions are
derived in Section IV. Symbolic model is constructed in
Section V. A numerical example is given in Section VI.
Conclusion and future work are presented in Section VII.
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II. PRELIMINARIES

Let R := (−∞,+∞); R+ := [0,+∞); N :=
{0, 1, 2, . . .}; and N+ := {1, 2, . . .}. Rn denotes the n-
dimensional Euclidean space. Given x ∈ Rn, xi denotes
the i-th element of x, and ∥x∥ denotes the infinity norm of
x. The closed ball centered at x ∈ Rn with radius ε > 0
is defined by B(x, ε) = {y ∈ Rn : ∥x − y∥ ≤ ε}. ⌈·⌉ is
the ceiling operator and ⌊·⌋ is the floor operator. Given a
function f : R+ → Rn, ∥f∥ is the supremum norm on R+;
f(t−) := lim sups→0− f(t+s); f |τ means the restriction of
f to [0, τ ]. C(R,Rn) is the set of all continuous functions
from R to Rn. A function α : R+ → R+ is of class K if
it is continuous, zero at zero, and strictly increasing; α(t) is
of class K∞ if it is of class K and unbounded. A function
β : R+ × R+ → R+ is of class KL if β(s, t) is of class K
for each fixed t ∈ R+ and decreases to zero as t → ∞ for
each fixed s ∈ R+. Given two sets A,B ⊂ Rn, a relation
R ⊂ A × B is a map R : A → 2B defined by b ∈ R(a) if
and only if (a, b) ∈ R. R−1 denotes the inverse relation of
R, i.e., R−1 := {(b, a) ∈ B ×A : (a, b) ∈ R}.

Definition 1 ( [12]): A transition system is a quintuple
T = (X,X0,U,∆,Y) with: (i) a state set X; (ii) a set of
initial states X0 ⊆ X; (iii) an input set U; (iv) a transition
relation ∆ ⊆ X×U×X×Y; (v) a output set Y. The system T
is said to be metric, if the set of outputs Y is equipped with
a metric d, and symbolic if X and U are finite or countable.

A transition (x, u, x′, y) ∈ ∆ is denoted by (x′, y) ∈
∆(x, u). That is, the system T can evolve from the state
x to the state x′ under the input u and produce the output
y. The set of enabled inputs at the state x is defined as
enab(x) := {u ∈ U : ∆(x, u) ̸= ∅}. For each x ∈ X and
each u ∈ enab(x), if ∆(x, u) has exactly one element, then
T is deterministic. In this case, let (x′, y) = ∆(x, u).

Definition 2 ( [20]): Let Ti = (Xi,X0
i ,U,∆i,Y), i =

1, 2, be two metric transition systems and the output set
Y be equipped with the metric d. Let ε > 0, a relation
R ⊆ X1 × X2 is said to be an ε-approximate bisimulation
relation (ε-ABR) between T1 and T2, if for all (x1, x2) ∈ R
and all u ∈ U,
(i) for each (x′

1, y1) ∈ ∆1(x1, u), there exists (x′
2, y2) ∈

∆2(x2, u) such that d(y1, y2) ≤ ε and (x′
1, x

′
2) ∈ R.

(ii) for each (x′
2, y2) ∈ ∆2(x2, u), there exists (x′

1, y1) ∈
∆1(x1, u) such that d(y1, y2) ≤ ε and (x′

1, x
′
2) ∈ R.

We denote by T1 ≃ε T2 if there exists an ε-ABR R
between T1 and T2 such that R(X1) = X2 and R−1(X2) =
X1.

III. SWITCHED SYSTEMS

The class of switched systems to be studied and some
related preliminaries are introduced in this subsection.

Definition 3 ( [12]): A switched system is a quadruple
Σ = (Rn,L,L, F ) with a state space Rn; a finite set of
modes L = {1, . . . , L} with finite L ∈ N; a switching signal
set L ⊆ S(R+,L) with S(R+,L) as the set of piecewise
constant functions from R+ to L, which are continuous
from the right-hand side and have finite discontinuities on

any bounded set in R+; and a collection of vector fields
F = {f1, . . . , fL} indexed from the mode set L. For each
l ∈ L, fl : Rn → Rn is locally Lipschitz continuous.

For the switched system Σ, a switching signal is a function
σ : R+ → L, whose discontinuities are called switching time
instants. The switching time instant sequence is denoted by
T := {t1, t2, . . .}, which is assumed to be strictly increasing.
A piecewise continuously differential function x : R+ → Rn

is said to be a trajectory of Σ, if it is continuous and there
exists a switching signal σ(t) ∈ L such that for all t ≥ 0, x
is continuously differentiable and satisfies

ẋ(t) = fσ(t)(x(t)). (1)

We use x(t, x, σ) to denote the point reached at time t ≥ 0
from the initial x ∈ Rn under the switching signal σ ∈ L.

For the switched system Σ, Zeno phenomena are excluded
due to the strict increase of the sequence T . To measure the
frequency of the discontinuities, a mode-dependent average
dwell-time (MDADT) is introduced as follows.

Definition 4 ( [17]): Consider a switching signal σ(t) and
any interval (t′, t) with t > t′ > 0. For the l-th subsystem,
l ∈ P, Nσl(t

′, t) is the number of the activation times in
(t′, t), and Tl(t′, t) is the length of all time intervals which
are in (t′, t) and where the l-th subsystem is active. If there
exist N0l, τal > 0 such that,

Nσl(t
′, t) ≤ N0l + τ−1

al Tl(t′, t), ∀t > t′ > 0, (2)

then N0l is called the mode-dependent chatter bound, and τal
is called the mode-dependent average dwell-time (MDADT).

IV. INCREMENTAL STABILITY

To construct symbolic models, we need to guarantee that
the system Σ is incrementally stable, which is defined below.

Definition 5 ( [12]): The switched system Σ is incremen-
tally globally uniformly asymptotically stable (δ-GUAS), if
there exists β ∈ KL such that for all x1, x2 ∈ Rn, σ ∈ L,

|x(t, x1, σ)− x(t, x2, σ)| ≤ β(|x1 − x2|, t), ∀t ≥ 0. (3)

If (3) holds for a given l ∈ L, then the l-th subsystem is
incrementally globally asymptotically stable (δ-GAS).

Definition 6 ( [14]): The smooth functions Vl : Rn ×
Rn → R+ are multiple δ-GUAS Lyapunov functions for Σ,
if there exist α1l, α2l ∈ K∞ and ρl > 0 such that for all
x1, x2 ∈ Rn and all l ∈ L,

α1l(∥x1 − x2∥) ≤ Vl(x1, x2) ≤ α2l(∥x1 − x2∥), (4)
∂Vl(x1, x2)

∂x1
fl(x1) +

∂Vl(x1, x2)

∂x2
fl(x2) ≤ −ρlVl(x1, x2).

(5)

In addition, for each l ∈ L, Vl is the δ-GAS Lyapunov
function for the subsystem Σl.

Theorem 1: Consider the switched system Σ =
(Rn,L,L, F ). If for all l ∈ L,
(A.1) each subsystem Σl admits a δ-GAS Lyapunov function

Vl : Rn × Rn → R+;
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(A.2) for each p ∈ L, there exists µl ≥ 1 such that

Vl(x1, x2) ≤ µplVp(x1, x2), ∀x1, x2 ∈ Rn; (6)

(A.3) the MDADTs satisfy τal > ρ−1
l ln(maxp∈L{µpl}),

then the switched system Σ is δ-GUAS.
Proof: We prove Theorem 1 by constructing a function

β ∈ KL in (3). For all t ∈ [tk, tk+1), k ∈ N+, σ(t)
is a constant in L. From (A.1), all subsystems admit δ-
GAS Lyapunov functions. Integrating (5) from tk to any
t ∈ [tk, tk+1) yields

Vσ(t)(x(t, x1, σ),x(t, x2, σ))

≤ e−ρσ(tk)(t−tk)Vσ(tk)(x(tk, x1, σ),x(tk, x2, σ)). (7)

Taking t → tk+1, we have from (7) that

Vσ(t−k+1)
(x(t−k+1, x1, σ),x(t

−
k+1, x2, σ))

≤ e−ρσ(tk)(tk+1−tk)Vσ(tk)(x(tk, x1, σ),x(tk, x2, σ)). (8)

At the switching time instant tk ∈ T , we obtain from (A.2),
(8) and the continuity of the system state that

Vσ(tk+1)(x(tk+1, x1, σ),x(tk+1, x2, σ))

≤ µσ(tk)σ(tk+1)Vσ(t−k+1)
(x(t−k+1, x1, σ),x(t

−
k+1, x2, σ))

≤ µσ(tk)σ(tk+1)e
−ρσ(tk)(tk+1−tk)

× Vσ(tk)(x(tk, x1, σ),x(tk, x2, σ)). (9)

Iterating (9) from 0 to any t ∈ [tk, tk+1), k ∈ N, we get

Vσ(t)(x(t, x1, σ),x(t, x2, σ))

≤ µσ(tk−1)σ(tk)e
−ρσ(tk)(t−tk)

×
∏

0≤ti<tk

µσ(ti−1)σ(ti)e
−ρσ(ti)

(ti+1−ti)V0

=
∏

0≤ti≤t

µσ(ti)σ(ti+1)e
−ρσ(ti)

(ti+1−ti)e−ρσ(t)(t−tk)V0

≤
∏L

l=1
µ
Nσl(0,t)
l e−ρlTl(0,t)α2σ(0)(∥x1 − x2∥)

≤ e
∑L

l=1(lnµlNσl(0,t)−ρlTl(0,t))α2σ(0)(∥x1 − x2∥), (10)

where µl = maxp∈L{µpl}, V0 := Vσ(0)(x1, x2) and the
second “≤” holds due to (5). Moreover, for the right-hand
side of (10), we have that

lnµlNσl(0, t)− ρlTl(0, t)
≤ lnµl(N0l + τ−1

al Tl(0, t))− ρlTl(0, t)
= N0l lnµl + (τ−1

al lnµl − ρl)Tl(0, t), (11)

where the “≤” holds due to (2).
Let π :=

∑L
l=1 lnµlN0l and ϖl := τ−1

al lnµl−ρl. Hence,
π is a constant and ϖl < 0 from (A.3). From (10) and (11),
we have that for all t ≥ 0, Vσ(t)(x(t, x1, σ),x(t, x2, σ)) ≤
exp(π +

∑L
l=1 ϖlTl(0, t))α2σ(0)(∥x1 − x2∥), combining

which with (A.1) yields that for all σ(t) ∈ L, all x1, x2 ∈ Rn

and all t ≥ 0,

∥x(t, x1, σ)− x(t, x2, σ)∥ ≤ β(∥x1 − x2∥, t), (12)

where β(v, s) := α−1
1 (e(π+

∑L
l=1 ϖlTl(0,s))α2(v)), α1(v) :=

minl∈L α1l(v) and α2(v) := maxl∈L α2l(v). As a result, the
switched system Σ is δ-GUAS.

In Theorem 1, multiple Lyapunov functions are applied
here, and condition (A.1) is a considerable relaxation to the
cases in [12], [15] based on common Lyapunov function.
Condition (A.2) is to measure the jumps of multiple Lya-
punov functions caused by the switching. µpl is related to
the currently-activated subsystem and the subsystem to be
activated, and thus µpl depends on the system modes. Hence,
condition (A.3) is mode-dependent, and each subsystem has
its own ADT, which provides a flexibility for the design
of the switching strategy. Condition (A.3) can be written
equivalently as τal > ρ−1

l ln(maxp∈L{µlp}). If µpl is only
related to the currently-activated subsystem (or the subsystem
to be activated), then we can change µpl to µp (or µl), and
further condition (A.3) is reduced to τal > ρ−1

l lnµl such
that the δ-GUAS is guaranteed for the system Σ.

The following assumption is made on multiple Lyapunov
functions [12], [14]. For each l ∈ L, assume that there exist
γl ∈ K∞ such that, for all x1, x2, x3 ∈ Rn,

|Vl(x1, x2)− Vl(x1, x3)| ≤ γl(∥x2 − x3∥). (13)

As shown in [14], this assumption is not restrictive if we are
interested in dynamic systems on bounded subsets of Rn,
which is generally the case in practice.

V. MULTIRATE MULTISCALE SYMBOLIC MODEL

The main results of this paper are presented in this section,
and multiscale symbolic models are constructed for switched
systems in two different cases. For this purpose, we start with
the discretization of switched systems.

A. Multirate Time Discretization of Switched Systems

To derive the time-discretization of the switched system Σ,
the sampling technique is applied and the sampling period is
assumed to be τ > 0, which is a design parameter. Besides
the sampling technique, we need to study the constraints
on activation durations of all subsystems. To this end, we
first assume that the switching is determined by a self-
triggered controller [21], which selects the system mode and
the corresponding activation duration. Next, we establish the
set from which the self-triggered controller can choose the
activation durations, and the following assumption is made.

Assumption 1: The dwell-times of all subsystem are
bounded in [τmin, τmax] with τmax ≥ τ ≥ τmin > 0.

From Assumption 1, the dwell-times of each subsystem
can be neither too short (which is impractical and may
cause chattering or Zeno phenomena) nor too long (which is
reduced to a single system [5], [22]), but is usually limited
within a bounded interval. Hence, Assumption 1 relaxes the
conditions in [11], [14], [18], [19]. From Assumption 1, the
boundedness of dwell-times implies the boundedness of all
MDADTs by considering the extreme cases. That is, τmin

and τmax are respectively the lower and upper bounds of
the MDADTs. In this way, we can impose the conditions in
Theorems 1-2 on the choice of τmin. In addition, [τmin, τmax]

2801



is for all MDADTs, and the boundedness of all dwell-times
are unknown and cannot be computed, which results in the
difficulties in the abstraction construction.

Based on the sampling period, the interval [τmin, τmax] is
approximated via the following set

Θ1 := {θs = 2−sτ : s ∈ {−N2, . . . , N1}},

where N1, N2 ∈ N+ satisfy 2−(N1+1)τ < τmin ≤ 2−N1τ
and 2N2τ ≤ τmax < 2(N2+1)τ . Since the set Θ1 is to
approximate the continuous-time interval [τmin, τmax] based
on the sampling period, the activation durations from Θ1 may
be too coarse to extract enough information on the interval
[τmin, τmax]. As a result, we need to further refine Θ1 to
obtain more admissible activation durations. To this end, the
sampling period is approximated via the following set:

Θ2 := {θs = 2−sτ : s ∈ Na := {0, . . . , N1}},

which consists of dyadic fractions of the sampling period
τ > 0 up to some scale parameter N1 ∈ N. With Θ1 and Θ2,
the interval [τmin, τmax] is approximated via the following set

Θτ := {θs = 2−N1kτ : k ∈ Nτ},

where Nτ := {1, . . . , ⌈2N1(τmax − τmin)/τ⌉}.
With the sampling period τ and the set Θτ , the time

discretization of the switched system Σ is described as a
transition system Tτ (Σ) := (X1,X0

1,U1,∆1,Y1), where,
• the state set is X1 = Rn × L;
• the set of initial states is X0

1 = Rn × L;
• the input set is U1 = L×Θτ ;
• (z′, y) = ∆1(x, u) if and only if, for any z = (x, l) ∈

X1 and u = (l′, θs) ∈ U1,
– for θs ≤ τ , z′ = (x′, l′) and y = x|θs(·, x, l′) with

x′ = x(θs, x, l
′);

– for θs > τ , z′ = (x′, l′) with x′ = x(θs, x, l
′), and

y = (x,x(τ, x, l′), . . . ,x(rτ, x, l′)),
where r := ⌊(θs − ω)/τ⌋ ∈ Na, and ω > 0 is
sufficiently small;

• the output set is Y1 := Y11 ∪ Y12, where Y11 :=
∪θs∈Θ2

C([0, θs],Rn) and Y12 := ∪r∈Na
R(r+1)×n.

In the transition system Tτ (Σ), the state is augmented
as (x, l) ∈ X1 to include the state x ∈ Rn and the active
mode l ∈ L. The constant ω > 0 is introduced to avoid
that x′ is included in the output y when θs = kτ , k ∈ N.
The transition relation has two cases: θs ≤ τ and θs > τ .
In these two cases, the evolution of the state is of the same
mechanism, and the difference lies in the outputs. In the first
case, θs ∈ Θa := Θτ ∩ Θ2, and the output is a piecewise
continuous function. In the second case, θs ∈ Θb := Θτ \Θ2,
and the output is a finite sequence of discrete-time states. As
a result, we can distinguish short durations (i.e., θs ≤ τ ) from
long durations (i.e., θs > τ ) via the outputs. This setting
is suitable in controller synthesis with continuous-time or
hybrid specifications. Note that the dwell-time constraints
are fulfilled by construction in these two cases.

The transition system Tτ (Σ) is non-blocking and deter-
ministic. Moreover, Tτ (Σ) is metric when the set of outputs
Y1 is equipped with the following metric:

• for y ∈ C([0, θs1 ],Rn) and y′ ∈ C([0, θs2 ],Rn) with
θs1 , θs2 ∈ Θ2,

d(y, y′) =

{
∥y − y′∥, if θs1 = θs2 ,

+∞, otherwise;
(14)

• for y ∈ R(r1+1)×n and y′ ∈ R(r2+1)×n,

d(y, y′) =

{
max

1≤j≤r1
∥yj − y′j∥, if r1 = r2,

+∞, otherwise.
(15)

B. Symbolic Model

For the time discretization Tτ (Σ), a multiscale symbolic
model is constructed in this subsection. To this end, we first
approximate the state set Rn by a sequence of multiscale
embedded lattices [Rn]2−sη with s ∈ Na, where [Rn]2−sη :=
{q ∈ Rn : qi = ki2

1−sη, ki ∈ Z, i ∈ {1, . . . , n}}, where
η > 0 is called the state space sampling parameter. Note
that [Rn]η ⊆ . . . ⊆ [Rn]2−N1η . We associate a multiscale
quantizer Qs

η : Rn → [Rn]2−sη such that Qs
η(x) = q if and

only if for x = (x1, . . . , xn) ∈ Rn,

qi − 2−sη ≤ xi ≤ qi + 2−sη, ∀i ∈ {1, . . . , n}. (16)

Based on geometrical considerations, we can verify that ∥x−
Qs

η(x)∥ ≤ 2−sη for a given s ∈ Na and all x ∈ Rn.
In the following, the multiscale symbolic model of the

switched system Tτ (Σ) is constructed as the transition
system Tτ,η(Σ) = (X2,X0

2,U2,∆2,Y2), where,
• the state set is X2 = [Rn]2−N1η × L;
• the set of initial states is X0

2 = [Rn]η × L;
• the input set is U2 = L×Θτ ;
• (w′, y) = ∆2(w, u) if and only if, for w = (q, l) ∈ X2,

u = (l′, θs) ∈ U2 and y ∈ Y2,
– for u ∈ L×Θa, w′ = (q′, l′) with

q′ = Qs
η(x(θs, q, l

′)), y = x|θs(·, q, l′); (17)

– for u ∈ L×Θb, w′ = (q′, l′) with

q′ = Qs′

η (x̄
′), ((x̄′, l′), y) = ∆1(q, u), (18)

where s′ := arg{s′ ∈ Na : θs′ = mod (θs −
ω, τ) ∈ Θ2} with sufficiently small ω > 0;

• the output set is Y2 = Y1.
The system Tτ,η(Σ) is symbolic, nonblocking, and de-

terministic. In addition, Tτ,η(Σ) is metric when the set of
outputs Y2 is equipped with the metric given in (14)-(15).
Since the controller can choose a duration from the set Θτ ,
the control period is in a multirate setting. In addition, the
abstract state is based on the multiscale quantizer Qs

η with
s ∈ N . Hence, the symbolic model Tτ,η(Σ) is multirate
multiscale. Such a multirate multiscale setting can be applied
to deal with both fast switching (i.e., short durations) and
long durations. In particular, if the switched system is close
to unsafe sets in a safety controller synthesis or when not
all subsystems are δ-GAS, then the fast switching case is
essential to be studied; long durations of stable subsystems
can be used to reduce the effects of unstable subsystems (if
exist) on the whole system.
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C. Verification of Approximate Bisimulation Relation

The following theorem establishes the conditions to guar-
antee the ε-ABR between the systems Tτ (Σ) and Tτ,η(Σ).

Theorem 2: Consider the δ-GUAS switched system Σ.
Let Assumption 1 and (13) hold. Given the precision ε > 0,
if there exist τ, η > 0 such that

η ≤ min
l∈P

{
min
s′∈N

min
θs∈Θτ

2s
′
γ−1
l ((1− e−ρlθs)α1l(ε)),

α−1
2l (α1l(ε))

}
, (19)

then Tτ (Σ) ≃ε Tτ,η(Σ).
Proof: We define the relation R := {((x, l1), (q, l2)) ∈

X1 × X2 : l1 = l2 = l ∈ L, Vl(x, q) ≤ α1l(ε)}. Next, we
prove that R is an ε-ABR between Tτ (Σ) and Tτ,η(Σ).
From (16), ∥x − q∥ ≤ 2−sη for all s ∈ {0, . . . , N1},
and Vl(x, q) ≤ α2l(2

−sη) ≤ α1l(ε), which implies that
η ≤ α−1

2l (α1l(ε)) as in (19). In the following, based on the
relation between θs and τ , the proof is divided into two cases:
the case θs ≤ τ and the case θs > τ .

Case 1: θs ∈ Θa. Let (z, w) = ((x, l1), (q, l2)) ∈ R.
Let u = (l′, θs) ∈ U1, (z′, y) = ∆1(x, u) and (w′, v) =
∆2(q, u), where z′ = (x′, l′) and w′ = (q′, l′). Since θs ∈
Θa, we have from (5) that for all t ∈ [τmin, θs],

Vl′(x(t, x, l
′),x(t, q, l′)) ≤ e−ρl′ tVl′(x, q) (20)

≤ Vl′(x, q) ≤ α1l′(ε).

From (4) and (20), we yield that, for all t ∈ [τmin, θs],

∥y(t)− v(t)∥ = ∥x(t, x, l′)− x(t, q, l′)∥
≤ α−1

1l′ (Vl′(x(t, x, l
′),x(t, q, l′)))

≤ α−1
1l′ (Vl′(x, q)) ≤ ε. (21)

That is, d(y, v) ≤ ε. Since q′ = Qs
η(x(θs, q, l

′)), we have
from (13) that

|Vl′(x
′, q′)− Vl′(x

′,x(θs, q, l
′))| ≤ γl′(∥q′ − x(θs, q, l

′)∥)
≤ γl′(2

−sη),

which implies

Vl′(x
′, q′) ≤ Vl′(x

′,x(θs, q, l
′)) + γl′(2

−sη)

= Vl′(x(θs, x, l
′),x(θs, q, l

′)) + γl′(2
−sη)

≤ e−ρl′θsVl′(x, q) + γl′(2
−sη),

where the second “≤” holds from (20). Hence, we have
Vl′(x

′, q′) ≤ e−ρl′θsα1l′(ε) + γl′(2
−sη) ≤ α1l′(ε), where,

the first “≤” holds due to (x, q) ∈ R, and the second “≤”
holds from (19). We thus conclude that (z′, w′) ∈ R.

Case 2: θs ∈ Θb. Let (z, w) = ((x, l1), (q, l2)) ∈ R, we
have l1 = l2 = l and Vl(x, q) ≤ α1l(ε). Let r := ⌊θs/τ⌋ ∈ N
and θs′ = θs − rτ ∈ Θ2. Similarly to (20), we obtain that
for all k ∈ {0, . . . , r},

Vl′(x(kτ, x, l
′),x(kτ, q, l′)) ≤ e−kτρl′Vl′(x, q)

≤ Vl′(x, q) ≤ α1l′(ε).

Similarly to (21), we conclude that for all k ∈ {0, . . . , r},
d(yk, vk) ≤ ε with yk := x(kτ, x, l′) and vk := x(kτ, q, l′),
which further implies that d(y, v) ≤ ε.
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Fig. 1. The state trajectory of the system Σ with the initial state x0 =
(0, 3). The black region is the obstacle.

Since θs = θs′ + rτ , we have that

Vl′(x
′, q′)

= Vl′(x(θs′ ,x(rτ, x, l
′), l′),Qs′(x(θs′ ,x(rτ, q, l

′), l′)))

= Vl′(x(θs′ ,x(rτ, x, l
′), l′),x(θs′ ,x(rτ, q, l

′), l′))

+ γl′(2
−s′η)

≤ e−θsρl′Vl′(x, q) + γl′(2
−s′η).

Thus, we have from (19) that (z′, w′) ∈ R.
From the above analysis for two different cases, we

conclude that R is an ε-ABR for Tτ (Σ) and Tτ,η(Σ).
Theorem 2 implies that the state space sampling parameter

η is upper bounded in (19) to achieve the ε-ABR. The
upper bound is related to system modes, and exists since
1 − e−ρlθs > 0 holds for all θs ∈ Θτ . Hence, given the
parameters τ > 0 and N1, N2 ∈ N, there exists η > 0 such
that (19) holds for any desired precision ε > 0.

VI. NUMERICAL EXAMPLE

We here borrow the same example as in [14]. Consider
a two-dimensional switched affine system with two modes
(i.e. n = 2, L = 2) given by

Σ : ẋ(t) = Ap(t)x(t) +Bp(t),

with A1 =
[−0.5 1

−2 −0.5

]
, B1 =

[−0.25
−2

]
, A2 =

[−0.25 2
−1 −0.25

]
and B2 =

[
0.25
1

]
. These two subsystems are δ-GAS. For the

switched system Σ, we consider a control design problem
such that the following specification is satisfied: the trajec-
tory of the switched system Σ is within the state space X
while avoiding the obstacle O ⊂ X. Assume that the obstacle
O contains the equilibrium points of all subsystems, and thus
the specification cannot be achieved by neither the subsystem
Σ1 nor the subsystem Σ2.

To deal with such a control problem, we aim to derive its
symbolic model using the developed results in the previous
sections. To this end, the δ-GUAS needs to be studied first for
the switched system Σ. Note that the switched system Σ does
not have a common δ-GUAS Lyapunov function but admits
the multiple δ-GAS Lyapunov functions for two subsystems.
Choose the multiple Lyapunov functions as Vp(x, y) =√
(x− y)⊤Mp(x− y) with M1 =

[
2 0
0 1

]
and M2 =

[
1 0
0 2

]
.

We can compute that µ1 = µ2 =
√
2, V̇1(x1, x2) ≤
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Fig. 2. Switching signal controlled with the symbolic controller and
satisfying the MDADT conditions.

−0.5V1(x1, x2) and V̇2(x1, x2) ≤ −0.25V2(x1, x2). Hence,
both subsystems are δ-GAS. From Theorem 1, if τa1 ≥
0.6931 and τa2 ≥ 1.3863, then the system Σ is δ-GUAS. The
conditions (3) and (6) are satisfied with α11(v) = α21(v) =
v, α12(v) = α22(v) =

√
2v and γ1(v) = γ2(v) =

√
2v.

Let the dwell-times be bounded in [0.2, 3.1] and the
sampling period be τ = 0.5. Hence, N1 = 1, N2 = 2,Θ1 =
{0.25, 0.5, 1, 2} and Θ2 = {0.25, 0.5}. Furthermore, Θτ =
{0.25k : k ∈ {1, . . . , 12}}. Compared with [12], [14] where
the dwell-times of all subsystems are larger than the sampling
period, we allow the dwell-times of all subsystems to be
smaller than the sampling period. From Theorem 2, the
desired precision is guaranteed by choosing the parameter
η satisfying η ≤ 0.0428ε, which is less conservative than
η ≤ ε/48 in [14] based on the constant dwell-time.

Let ε = 0.34 be the precision and η = 0.0144 is chosen.
The state space is X = [−6, 6] × [−4, 4] and the obstacle
region is O = [−1.5, 1.5] × [−1, 1]. Using the procedure
in Section V-B, the symbolic model Tτ,η(Σ) is constructed
with 7405694 abstract states, the number of which is smaller
than that (i.e., 7696008) in [14]. Since the condition for
η is less conservative than the one in [14], the number of
symbolic states is reduced here. Note that the number of
the transitions depends on the cardinality of Θτ . At each
abstract state, there exists 12 dwell-times to be chosen from
Θτ , and the computation times for both the transitions and
the controller synthesis are related to the cardinality of Θτ .
Hence, the number of the transitions and the computation
times increase with the increase of the cardinality of Θτ ,
which is similar to the case in [12] but distinct from the case
in [14]. With the symbolic model, we consider the switching
design problem such that the obstacle O is avoided. If the
second mode is activated first, the mode map of the symbolic
controller is presented in Fig. 2.

VII. CONCLUSION

We studied symbolic models for switched systems using
the multirate multiscale setting. We first addressed the incre-
mental stability analysis of switched systems and established
stability conditions, which provides alternative criteria for the
stability analysis of switched systems. According to the mul-
tiscale setting and the boundedness of the dwell-times, we
developed a novel multirate multiscale symbolic model for

switched systems, and derive the approximate bisimulation
relation between the symbolic model and the original system.
Further researches are directed to the abstraction construction
for more general switched systems and the applications of
symbolic models.
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