
From data to control: a two-stage simulation-based approach
Federico Dettù∗, Braghadeesh Lakshminarayanan†, Simone Formentin∗ and

Cristian R. Rojas†
∗Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano.

Emails: federico.dettu@polimi.it (F. D.), simone.formentin@polimi.it (S. F.).
†Division of Decision and Control Systems, KTH Royal Institute of Technology.

Emails: blak@kth.se (B. L.), crro@kth.se (C. R.).

Abstract—For many industrial processes, a digital twin is
available, which is essentially a highly complex model whose
parameters may not be properly tuned for the specific process.

By relying on the availability of such a digital twin, this paper
introduces a novel approach to data-driven control, where the
digital twin is used to generate samples and suitable controllers
for various perturbed versions of its parameters. A supervised
learning algorithm is then employed to estimate a direct mapping
from the data to the best controller to use. This map consists of a
model reduction step, followed by a neural network architecture
whose output provides the parameters of the controller.

The data-to-controller map is pre-computed based on ar-
tificially generated data, but its execution once deployed is
computationally very efficient, thus providing a simple and
inexpensive way to tune and re-calibrate controllers directly
from data. The benefits of this novel approach are illustrated
via numerical simulations.

I. INTRODUCTION

Most industrial processes require regulation via feedback
controls to operate at high efficiency. The exact dynamics of
the process is often not available and practitioners come up
with suitable mathematical models to incorporate the dynamics
of such processes. Once a suitable mathematical model is
identified, it is used to design the controller for the actual
process. Nowadays, highly sophisticated digital twins (DT)
are often used for control design [1], e.g. in the automotive
industry. These models can be used to cheaply generate
large amounts of data, and are typically used for testing and
calibrating controllers.
However, although DT are extremely faithful, true parameters
of a real system might change over time, and robustness or
control adaptation is necessary. In this work, we leverage the
availability of large amounts of available simulated data – and
of the prior knowledge of some control design rule – to learn
a law directly mapping fresh data to the control parameters.
In a sense, we meta-learn the control design process.

The Two-Stage (TS) approach [2] is a simulation-based
approach to estimate the unknown parameters of a white-
box model. It is an inverse supervised learning algorithm,
where the white-box model is treated as a simulator: for
each fictitious choice of its parameters, one generates large
number of observations, typically time domain input-output
data. These observations are first compressed into a smaller
set of values (first stage of the TS approach), and these
“compressed samples”, together with the corresponding values
of the parameters, constitute the training set for a supervised

learning algorithm (such as linear regression, gradient boosting
or deep neural networks) to derive a mapping from the com-
pressed samples to the estimated parameters (second stage).
In this way, we leverage the availability of a DT, which is a
data simulator, via TS. The TS approach has several appealing
properties: (i) it is distribution-free, (ii) the estimation proce-
dure can be posed a simple convex optimization program by
a careful choice of the second stage, and (iii) once trained,
the TS estimates can be efficiently computed, as they do not
require solving further optimization problems.

In this paper, we leverage the TS approach for estimating
the control parameters and use these estimates to design a
controller for a reference tracking problem. The TS-based
controller design is completely simulation (data) driven and
in particular, the data compression step (first stage) helps to
reduce the complexity of the model that is required to design
the controller. To this end, ARMAX models are identified
using the synthetically generated input-output data for several
choices of the parameters of the DT. The coefficients of
these ARMAX models form the compressed data. In parallel,
suitable controller parameters, for example the proportional
and integral constants of a Proportional-Integral (PI) controller,
are computed for each parameters choice of the DT based on
some control design rule. These controller parameters, along
with the coefficients of ARMAX models, form the training
set for a supervised algorithm in the second stage, i.e., the
coefficients of the ARMAX models are the “inputs” and the
corresponding controller parameters are the “targets” for the
chosen supervised learning algorithm. In a nutshell, we learn
a direct tuning rule for the controller from the artificially
generated data via the TS approach.

Our contributions are summarized as follows:

• A TS-based approach is designed to implicitly reduce the
order of our model;

• a controller tuning rule is proposed based on the TS
approach; and

• the effectiveness of our approach is demonstrated on a
case study via numerical simulations.

The rest of the paper is organized as follows: In Section II,
we describe our problem statement. Section III outlines the
procedure to use the TS approach for control design, followed
by a case study for our problem in Section IV. Section V
provides simulation analyses that demonstrate our controller

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3421



tuning rule. Finally, we conclude the paper in Section VI.

II. PROBLEM STATEMENT

Consider a discrete-time single-input single-output model
M (Θ)

M :

{
xk+1 = f(xk, uk,Θ),

yk = g(xk,Θ),
(1)

where xk ∈ Rnx , uk ∈ R, yk ∈ R are the state, input
and output of the model, respectively. f and g are possibly
non-linear functions. Θ ∈ Rp is a vector of uncertain
parameters, Θ = [θ1, . . . , θp], each distributed according to
a known probability density function (pdf ) θi ∼ Di. We
assume that we are able to obtain input-output sequences,
say, DN

1 , . . . , DN
m , of length N , from an available simulator

of M, given a specific value of the parameter vector.
Further, consider a parametric controller C(ϕ), where
ϕ ∈ Rnϕ is the vector of controller parameters, and assume
that a control design rule R : M (Θ) 7→ ϕ is available.
The assumptions made above are realistic, and indeed are
motivated by the wide spread of high-fidelity simulators (also
known as digital twins) in many sectors [3]. These models
are very good replica of the system, let apart a few key
parameters that are inherently prone to variations, and cannot
be known in advance. Under these considerations, we are able
to generate a set of data, depicted in Table I. Each row of the
table shows how a realization of the uncertain parameters is
mapped onto a collection of input-output time-domain data –
the pairs (u

(j)
i , y

(j)
i ), i = 1, . . . , N, j = 1, . . . ,m – and a

parametric controller C(ϕj), j = 1, . . . ,m.

Given this framework, we are able to design a controller
for a given realization of the model M(Θ) which is optimal
– in the sense of satisfying the tuning rule R. In practice,
the parameters in Θ are subject to variations, in which case a
classical solution is to re-identify system parameters, which
can be computationally intensive. Instead, we leverage the
available simulator to find a direct solution to get the controller
parameters, de-facto learning the tuning rule R.

Θ1 DN
1 =

{(
u
(1)
1 , y

(1)
1

)
, . . . ,

(
u
(1)
N , y

(1)
N

)}
C(ϕ1)

Θ2 DN
2 =

{(
u
(2)
1 , y

(2)
1

)
, . . . ,

(
u
(2)
N , y

(2)
N

)}
C(ϕ2)

...
...

...

ΘM DN
m =

{(
u
(m
1 , y

(m)
1

)
, . . . ,

(
u
(m)
N , y

(m)
N

)}
C(ϕm)

TABLE I: Collection of uncertain parameters, input-output
trajectories, and designed controllers.

III. TWO-STAGE CONTROL DESIGN APPROACH

The TS approach is a methodology for parameter estimation
in uncertain white-box models, where a simulator of the plant
is available; originally proposed in [2], recent developments
and theoretical foundations analyses have been conducted in
[4]. The goal in TS is that of estimating an unknown function
F , mapping the set of measured data to the parameter. In

this case, we shift the problem from estimating an unknown
model parameter to estimating the controller parameters ϕ,
thus embedding the control design rule R within F , that is,

F∗ = argmin
F

1

m

m∑
i=1

∥∥∥ϕi −F
(
u
(i)
1 , y

(i)
1 , . . . , u

(i)
N , y

(i)
N

)∥∥∥2 .
(2)

Estimating F can in general be a hard problem, if we leave it
in this form. The high dimensionality of the input data (N can
be in the order of thousands) is not easy to treat with standard
optimization techniques. The authors of [2] thus solved it in
two separate stages, that we now review and extend to our
specific control tuning problem.

A. First stage

The collected data DN
1 , . . . , DN

m overall form a set of
m× 2N numbers, as each input and output sequence consists
of N values. This number can explode in case several unknown
parameters or large sample sizes are considered; unfortunately,
this is a typical case in real systems.
Dimensionality reduction can be employed to obtain a man-
ageable amount of data, retaining the necessary information
with a lower number of samples. Specifically, we aim to
obtain a reduced data-set D̃n

i , i = 1, . . . ,m, where n ≪ N ,
by employing a compression function g : (DN

1 , . . . , DN
m) 7→

(D̃n
1 , . . . , D̃

n
m). Leveraging the fact that the DN

i ’s are gener-
ated by a dynamical system, [2] considered the identification
of a black-box model as such compression function, which
captures each time series with a few parameters. Different
possibilities have been employed in the literature [5], we how-
ever consider in the following the Auto-Regressive Moving-
Average with Exogenous-Input (ARMAX) polynomial model,
widely versatile and easy to treat [6]. A generic ARMAX
model reads

yk + α1yk−1 + . . .+ αna
yk−na

= αna+1uk−nd
+ · · ·

+ αna+nb
uk−nd−nb+1 + αna+nb+1ek−1 + . . .

+ αna+nb+ne
ek−ne

+ ek.

(3)

The set of the polynomial model parameters D̃n
i =

(α1, . . . , αn) ∈ Rn=na+nb+ne is then collected and associated
with the corresponding value of the parameter Θi.

B. Second stage

Having compressed the data samples, we now aim at finding
some function h∗ ∈ H such that F = h∗ ◦ g, by solving

h∗ = argmin
h∈H

1

m

∥∥∥∥∥
m∑
i=1

ϕi − h
(
g
(
u
(i)
1 , y

(i)
1 , . . . , u

(i)
N , y

(i)
N

))∥∥∥∥∥
2

2

= argmin
h∈H

1

m

∥∥∥∥∥
m∑
i=1

ϕi − h
(
D̃n

1 , . . . , D̃
n
m

)∥∥∥∥∥
2

2

,

(4)
where H is a prescribed space of functions, or hypothesis
class [7]. Some commonly used classes H that give reliable
solution to Eq. (4) are Gradient Boosted Machines (GBMs) [8]

3422



and Feed-Forward Neural Networks (FFNNs), which we em-
ploy in the second stage of the TS approach. The functions
h ∈ H can in turn be parameterized in terms of hyper-
parameters w ∈ RNw . In other words, h∗ = h(w∗), where

w∗ = argmin
w∈RNw

1

m

∥∥∥∥∥
m∑
i=1

ϕi − h(w)
(
D̃n

1 , . . . , D̃
n
m

)∥∥∥∥∥
2

2

. (5)

Implementation details for GBM and FFNN are given in

Fig. 1: Schematic representation of the Two-Stage approach
considered herein, comprising the data-generation from the
simulator, the estimation of function h, and the benchmark
approach based on g̃.

Section V. The tuning rules learned by using GBM and FFNN
are called TS-GBM and TS-FF respectively.

IV. CASE STUDY: THE YAW-RATE TRACKING PROBLEM

As a case study to prove the methodology described in
Section III, we consider the yaw-rate tracking problem via
steer-by-wire actuation, being of high relevance within the
automotive context.

Fig. 2: A cartoon describing the dynamics of a vehicle.

1) System modelling: Upon the assumptions of small steer-
ing angle δf and front/rear wheels side-slip angles αf,r, the
following set of equations describes the side-slip β and yaw-
rate r dynamics:

β̇ =− r − Cfαf

Mvehvx
− Crαr

Mvehvx
,

ṙ =− lfCfαf

Jz
+

lrCrαr

Jz
,

(6)

where lf amd lr are the distances between vehicle center-
of-gravity and front/rear wheels respectively, Cf and Cr are
the cornering stiffnesses, Mveh is the vehicle mass, and Jz
the yaw-axis vehicle inertia. The differential equations above
can be simply obtained by balances of moments and forces in
Figure 2, and they represent the well known single-track or
bicycle vehicle model.
The tyre-road contact forces are approximated as Fy,f,r =
−Cf,rαf,r, for small slip angles.
In Equation (6), vx is the vehicle longitudinal speed: it is
indeed not a physical parameter, but rather a time-varying state
of the system. However, it is common practice to consider it
as a constant in the yaw-rate control problem [9], [10].
The wheel lateral slip angles αf,r are computed via the
kinematic equations

αkin
f = −δf + β +

lf
vx

r, αkin
r = β − lr

vx
r, (7)

However, it is well known that the tyre lag phenomenon
introduces a phase shift between theoretical slips and actual
ones [11], [12]. The tyre dynamics is thus introduced:

α̇f = − vx
lrel,f

(
αf − αkin

f

)
, α̇r = − vx

lrel,r

(
αf − αkin

r

)
,

(8)
where lrel,f/r governs the lag phenomenon, and is known as
relaxation length. Finally, the steer-by-wire actuator dynamics
could be well within the range of the system dynamics. It
is thus necessary to model it. A second order system is here
considered, with two complex-conjugate poles (typical for this
kind of actuator [13]):

ż = −ω2
nδf + ω2

nδ
cmd
f ,

δ̇f = z − 2ξωnδf .
(9)

Combining Eqs. (6) to (9) eventually yields a 6-th order
Linear and Time-Invariant System, with state vector x =[
β r αf αr z δf

]
, input u = δcmd

f , output y = r.
The cornering stiffness coefficient is highly dependent on the
type of terrain, the tyre characteristics, temperature and so
on [14]. For this reason, it is to be considered as an uncertain
parameter, prone to significant variation throughout the vehicle
functioning:

Cf,r = Cnom
f,r · µs, (10)

where µs is considered as a scaling coefficient for the tyre-
road friction.
Another typical source of uncertainty is the vehicle mass,
which usually changes about some nominal value, typically

3423



including the chassis and tyre payload, as well as the driver
one, i.e.,

Mveh = M0 +Mδ, (11)

where Mδ is the mass variation.
For the considered model, we have identified two typical
sources of uncertainty, the mass and the tyre-road friction,
which can be collected in the vector Θ ∈ R2, and are both
uniformly distributed:

Θ =
[
µs Mδ

]
, µs ∼ U (0.3, 1.1) , Mδ ∼ U (0, 300) . (12)

Finally, the system defined above is discretized with sampling
period Ts = 0.01 s (e.g. also used in [9]). The physical
parameters used in the simulations are given in Table II. The

Mveh [kg] lf,r [m] Jz [kg· m2] lrel,f,r [m]

1895 1.18, 1.53 2400 0.4, 0.8

Cf,r [N/(rad ×103)] ωn [rad/s] ξ

124.9, 166 2π · 5 0.9

TABLE II: Vehicle model physical parameters.

vehicle and actuator parameters are taken from [13], and the
tyre relaxation lengths from [12].

Reference 

generator

Fig. 3: Control scheme for the yaw-rate tracking problem.

2) Control design: The objective in yaw-rate tracking prob-
lems is to regulate a reference behavior, which is generated
using a driver’s steering request based on ad-hoc logic. In
practice, electronic systems track the driver’s intent, thereby
preventing unsafe situations [15].
One common method for controlling a linear time-invariant
system is the loop shaping approach. This method ensures
the desired phase margin ϕm and cutoff frequency ωc. These
two parameters subsequently define the closed-loop behavior
of the system, in accordance with established principles of
control theory. A Proportional-Integral controller is sufficient
and is represented as follows:

C (z, ϕ) =
kp

1 + 2Ti/Ts

z + 1

z +
Ts − 2Ti

Ts + 2Ti

. (13)

The controller is discretized using the Tustin method at a
sampling time of Ts, with the tuning parameters being the
proportional gain and integral time, denoted as ϕ =

[
kp Ti

]
.

By appropriately choosing the regulator parameters, it is
possible to achieve the desired frequency-domain performance.
We aim for φm ≥ 60◦ as a fundamental threshold for en-
suring an asymptotically stable and well-damped closed-loop
response, and cutoff frequency ωc ≥ 1.5 Hz. To implement the

control tuning strategy, the loop shaping approach is employed,
denoted as R (M (Θ)), and this is carried out using the
MATLAB function pidtune.

V. SIMULATION ANALYSIS

In this section, we apply the Two-Stage approach described
in Section III to the case study of Section IV, showing its
performance in terms of learning the control design policy.

A. Dataset generation

Fig. 4: Time-domain representation of noiseless data samples,
noisy ones, and ARMAX fitting performance.

In order to test the Two-Stage approach, we generate
a set of data from the yaw-rate dynamics model. We set
m = 1500, so as to obtain a meaningful number of examples;
they are randomly split between 80% for training and 20% for
validation. Each dataset lasts 10 seconds, and it is sampled at
the frequency of 1000 Hz, so N = 10000 data points in the
time domain are available for each DN

i , i = 1, . . . , 1500.
Further, we generate m = 1500 more scenarios, to evaluate
the model on a different dataset (testing set). The testing
set is also used to evaluate the benchmark identification and
control tuning approach that we are going to describe in the
following. The steer input δf,k, k = 1, . . . , N , is selected
to be a Pseudo-Random-Binary signal, so as to provide a
meaningful excitation to the system; the output yaw-rate
rk, k = 1, . . . , N , is perturbed with Gaussian white noise, so
as to achieve a signal-to-noise ratio of ≈ 30 dB.

B. Gray-box identification benchmark
As a benchmark to compare TS approach to, we consider

gray-box (GB) identification. This benchmark is possibly the
best solution to be carried out when the model structure and
some initial value of the parameters are approximately known,
and only some refinement is necessary. Given the initial model
M (Θ0), we refine it using available data, obtaining Mgb.
The prediction error minimization approach can be utilized to
adjust the model parameters (we consider here the MATLAB
implementation pem).
Once the refined model has been identified, one can apply the
loop shaping tuning rule described in Section III.

3424



C. Model compression details

For the model compression phase, we consider an ARMAX
model of order (2, 2, 2, 1). Such an ARMAX model is a 2nd
order system. Compared to the data generator, which is a 6-th
order one, we significantly reduce the model dimensionality.
An example of the ARMAX fitting performance is shown in
Fig. 4, where noise-perturbed data are shown too. As one can
notice, the reduced order model exhibits some prediction error;
nevertheless, we will show that the extracted ARMAX features
are enough to obtain a good learning of the loop-shaping rule.

D. Second stage training details

We try GBM and FFNN in the second stage to estimate the
controller parameters kp and Ti. The reason to choose these
methods as function approximators is due to their capabilities
to capture non-linearities in the data (corresponding to the
ARMAX coefficients that we obtain from the first stage of the
TS approach). One can simply use FFNN alone as a function
approximator, but more recently it has been demonstrated
empirically that GBMs outperform neural networks for tabular
data and the training time is remarkably fast in GBMs [16].
Hence, for the sake of fair comparison, we use GBM in the
second stage.

To implement GBM, we use XGBoost, a Python package
developed by [17]. More details on using the XGBoost pack-
age and the implications of its hyper-parameters can be found
in [17]. FFNN is implemented in the MATLAB Deep Learning
Toolbox [18]. Their training details are as follows:

• XGBoost: We have selected, via cross-validation,
n_estimators = 2000, max_depth = 7,
max_leaves = 10, learning_rate = 0.1,
reg_lambda = 4, and min_child_weight = 25 for
the tuning parameters of XGBoost. We run two separate
XGBoost algorithms in parallel with the stated choices
of parameters to predict kp and Ti.

• FFNN: Model using feedforwardnet function, with
10 neurons in the hidden layer, tanh activation, and a lin-
ear output layer. The Levenberg-Marquardt (trainlm)
algorithm is considered for training. epochs is set
to 1000; mu is set to 0.001 (a parameter regulating
gradient descent in trainlm); Mu Decrease Ratio
and Mu Increase Ratio are respectively set to 0.1
and 10. max_fail – the maximum number of failed
validation checks before stopping– is set to 5. The other
parameters are left at MATLAB default.

E. Controller parameters identification performance

Figures 5 and 6 respectively depict the proportional gain
kp and integral time Ti estimation performance, for the three
different methods. As one can notice, good performance is
achieved for all methods, and the average value is properly
estimated, although TS-GBM exhibits some variance, espe-
cially for high values of Ti. The figures also give the rms%

Fig. 5: Regression plot showing the fitting of kp in the testing
case, for both considered methods.

Fig. 6: Regression plot showing the fitting of Ti in the testing
case, for both considered methods.

error metric, which is defined – for a generic parameter ν and
its estimated ν̂ – as

rms% (ν, ν̂) =

√√√√ 1

Ns

Ns∑
i=1

(
100 · νi − ν̂i

νi

)2

. (14)

Fitting the controller parameters is one way to assess the
estimators goodness: however, it is interesting to look at some
closed-loop system metrics to see what the impact of an error
in fitting the integral reset time is. Table III provides statistics
about the phase margin and cutoff frequency of the open-loop
transfer function C(z)·M(z), obtained by using the estimated
controller parameters. One can note that all methods satisfy the

φm [deg] ωc [Hz]
Mean Std. Mean Std.

GB 59.98 0.2385 1.50 0.0037
TS-FF 59.99 0.1714 1.50 0.0032
TS-GBM 60.01 0.69 1.50 0.0143

TABLE III: Loop-shaping metrics statistics. ”Mean” and
”Std.” respectively stand for average value and standard de-
viation, over a set of experiments.

3425



Fig. 7: Analysis of computational times necessary for execut-
ing both methods.

Fig. 8: Time domain closed-loop behaviour of the system, for
Θ =

[
0.60 44.14

]
.

control performance requirements of Section IV-2, yielding a
phase margin φm ≈ 60 deg and ωc ≈ 1.5 Hz. In fact, the phase
margin achieved with TS-GBM reflects the increased variance
of the estimator, but the impact on closed-loop performance
is absolutely irrelevant.

Figure 7 provides computational time analysis for the pro-
posed approach and the benchmark. It can be seen that the TS
approaches (TS-FF and TS-GBM) take less time in computing
the controller estimates compared to the benchmark. Among
the proposed approaches, TS-GBM has slightly better compu-
tational advantage over TS-FF.
Figures 8 shows the controller performance in the time-
domain. The three controllers yield practically the same re-
sults, and this confirms the almost equivalence between the
proposed approaches. Indeed, the reference tracking per-se
can be improved, e.g. by selecting a more complex controller,
which is however not in the scope of this work.

VI. CONCLUSIONS

This paper presented a novel methodology for meta-learning
in control systems: we employ a Two-Stage approach, with a
first stage consisting in model order reduction, and a second
one consisting in direct estimation via black-box models.

Specifically, we see how a possibly unknown control tuning
rule can be learned from simulated data, and then applied
to generate new suitable controllers just from fresh data.
Simulation analyses showed that the presented approach can
achieve performance similar to an identification-for-control
method, while providing an improvement in computational
time.
Future research will be devoted to the extension of the
methodology to other applications.

VII. ACKNOWLEDGEMENT

This work has been partially supported by the Swedish
Research Council under contract number 2016-06079
(NewLEADS) and by the Digital Futures project EX-
TREMUM.

REFERENCES

[1] F. Dettù, S. Formentin, and S. M. Savaresi, “The twin-in-the-loop
approach for vehicle dynamics control,” IEEE/ASME Transactions on
Mechatronics, 2023.

[2] S. Garatti and S. Bittanti, “A new paradigm for parameter estimation in
system modeling,” International Journal of adaptive control and signal
processing, vol. 27, no. 8, pp. 667–687, 2013.

[3] E. VanDerHorn and S. Mahadevan, “Digital twin: Generalization, char-
acterization and implementation,” Decision support systems, vol. 145, p.
113524, 2021.

[4] B. Lakshminarayanan and C. R. Rojas, “A statistical decision-theoretical
perspective on the two-stage approach to parameter estimation,” in 2022
IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022,
pp. 5369–5374.

[5] S. Formentin, K. Van Heusden, and A. Karimi, “A comparison of
model-based and data-driven controller tuning,” International Journal
of Adaptive Control and Signal Processing, vol. 28, no. 10, pp. 882–
897, 2014.

[6] L. Ljung, System Identification: Theory for the User, 2nd ed. Prentice-
Hall, 1999.

[7] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2012.

[8] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics
& Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[9] A. Lucchini, S. Formentin, M. Corno, D. Piga, and S. M. Savaresi,
“Torque vectoring for high-performance electric vehicles: an efficient
mpc calibration,” IEEE Control Systems Letters, vol. 4, no. 3, pp. 725–
730, 2020.

[10] A. Lucchini, F. P. Azza, M. Corno, S. Formentin, and S. M. Savaresi,
“Design and implementation of a mpc-based rear-wheel steering con-
troller for sports cars,” in 2021 IEEE Conference on Control Technology
and Applications (CCTA). IEEE, 2021, pp. 802–807.

[11] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and
J. C. Gerdes, “Neural network vehicle models for high-performance
automated driving,” Science robotics, vol. 4, no. 28, p. eaaw1975, 2019.

[12] J. S. Loeb, D. A. Guenther, H.-H. F. Chen, and J. R. Ellis, “Lateral
stiffness, cornering stiffness and relaxation length of the pneumatic tire,”
SAE transactions, pp. 147–155, 1990.

[13] M. Corno, G. Panzani, F. Roselli, M. Giorelli, D. Azzolini, and S. M.
Savaresi, “An lpv approach to autonomous vehicle path tracking in the
presence of steering actuation nonlinearities,” IEEE Transactions on
Control Systems Technology, vol. 29, no. 4, pp. 1766–1774, 2020.

[14] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle
stabilization at the limits of handling,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 4, pp. 1258–1269, 2012.

[15] R. Rajamani, “Electronic stability control,” Vehicle Dynamics and Con-
trol, pp. 201–240, 2012.

[16] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84–90, 2022.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
ser. KDD’16, 2016, p. 785–794.

[18] “MATLAB deep learning toolbox,” https://se.mathworks.com/products/
deep-learning.html, accessed: October 4th 2023.

3426


