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Abstract— As the interest in mobile robots navigation on
public sidewalks increases, so does the attention given to local
planners capable of navigating around humans in a socially
acceptable way. This paper presents a socially aware version
of the Dynamic Window Approach planner. The DWA is
augmented with an additional cost function, which predicts
pedestrian trajectories using the Social Forces Model. Scoring
of the robot control action is achieved by weighting the
disturbance the robot causes to pedestrians. The approach is
validated in a simulation environment with realistic pedestrian
motions, showing superior performance with respect to the
original DWA as well as to a distance-based scoring method.

I. INTRODUCTION

Interest in mobile robots traveling on sidewalks has been
on the rise for the last few years, with the major use case
being autonomous urban deliveries. In this kind of applica-
tion, robots coexist with pedestrians, making human-robot
interactions a common occurrence. It’s thus essential for
navigation algorithms to be capable of gracefully avoiding
collisions with humans. As testified by recent surveys [1], the
task is less trivial than it might seem : while overcautious
behaviors can avoid collisions, more often than not they
cause unnecessary stopping. Furthermore, for the robots to be
socially accepted, the chosen avoidance maneuvers must feel
natural and predictable, so that passers-by do not feel scared.
Such challenges are caused by the peculiarities of pedestrian
motion. Humans fall in the category of dynamic obstacles,
just like cars and bicycles, but their response to the behavior
of other agents in the scene is much stronger. For generic
dynamic obstacles, for instance, kinematic models can pro-
duce trajectory predictions sufficiently accurate, at least for
obstacle avoidance purposes. This kind of prediction, though,
does not capture social interactions. Indeed, cooperation
is a prominent feature of human navigation in populated
environments. Consider, as an example, a human facing other
pedestrians in a narrow passage. While a kinematic model
would predict a collision independently of the action taken,
the human expects its opponents, even if they are strangers,
to leave them some space to pass. In some sense, the
responsibility for the avoidance maneuvers is shared between
the two engaged parties. It does not come as a surprise, then,
that an ever-increasing number of works are focusing on local
planners that specifically handle interactions with humans,
so-called Socially Aware Local Planners.
This paper, fostering these efforts, presents a Dynamic Win-
dow Approach based socially aware local planner. Differently
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from most of the recent literature, though, our approach does
not constrain the robot to imitate human motion. Rather,
it makes the robot aware of human motion patterns, while
maintaining an optimal selection process of the control
actions. With this goal, we modify the Dynamic Window
Approach [2] to include pedestrian trajectories predictions
by employing the Social Forces Model [3]. The predictions
are tightly integrated with a novel Social Cost Function, that
assesses the disturbance caused to pedestrians by the robot.
Validation is carried out in a simulated environment with
custom pedestrian simulator.

The remainder of this paper is structured as follows.
Section II presents a review of related works. The proposed
approach is explained in Section III, while the simulator
setup and the simulated validation results are presented in
Section IV and in Section V, respectively.

II. LITERATURE REVIEW

While local planning has been the center of numerous
research efforts since the early days of robotics, planners that
explicitly handle humans are a relatively recent trend. This
literature review focuses on this type of local planners, of
which two major categories can be identified: learning-based
and model-based methods. In the former group, [4] proposes
a planning architecture composed of two Auto-Regressive
Gaussian Processes. The first one is employed to predict
the trajectories of nearby pedestrians given position mea-
surements, while the second performs the actual planning by
estimating the robot trajectory given the human trajectories
as inputs. The prediction model was trained on a very simple
potential field-based simulator, while the planner on data
collected while a human was manually driving a simulated
robot. [5] presents a detailed analysis of the “freezing robot
problem” described in the introduction, highlighting how the
unfreezing is only possible if the robot is capable of coop-
erating with humans. The authors then proceed to develop a
planner based on Gaussian Processes. Differently from [4],
prediction and planning are integrated into a single model:
the robot trajectory is computed jointly with the trajectories
of the humans in the scene, given their measured positions
and the past robot trajectory. Note that the robot is considered
exactly as a person in the proposed model, with the goal of
obtaining human-like behaviors. A similar goal is pursued
by [6], which applies Inverse Reinforcement Learning and
trains the planner with data recorded in a crowd simulator.
Finally, [7] reduces the problem to making the robot respect
simple social rules, like passing on the right and overtaking
on the left. The social rules are encoded in the reward
function of a deep reinforcement learning algorithm, which
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is trained for one-versus-one and multi-agent environments.
While data-driven methods do seem to successfully learn to
navigate human environments, their major drawback is the
amount of time and resources needed for data collection and
training. Indeed all of the cited works train their systems
on simulators based on different kinds of models, rendering
the development of pedestrian models necessary anyways.
The only exceptions are [5], which however limits the study
to a small indoor area that can be instrumented for data
acquisition, and [7] which, requires the manual definition
of the reward function for each social rule to be handled.

Among model-based approaches, two major classes can
be identified: a potential fields class, and a social forces
one. The former employs potential fields [8] to encode
information about both human dynamicity and their prox-
emics [9], i.e. the areas around a person which, if occupied,
can influence its behavior. The latter, to which this work
belongs, makes use of the Social Forces Model (SFM) [3]
which is one of the most popular approaches to model
and predict human motion. The SFM models each agent
in the environment as a point mass subject to an attractive
force (towards a goal location) and repulsive forces from
other agents and obstacles. More details will be discussed in
Section III-B. Within the potential fields class, [10] proposes
an approach in which the potential field is modeled to have
high peaks in the direction of motion of the pedestrians.
The control action is selected to make the robot move in
the direction of the steepest descent, so away from the
pedestrians. This formulation encodes just information about
human motion, and does so through a kinematic model, not
differently from how planners traditionally handle generic
dynamic obstacles. [11] also employs a potential field as
a cost function for the RRT planner [12]. In this case,
high potential values representing human proxemics are used
to discourage interactions with humans, while their future
trajectories are taken into account by rendering the field
time-varying within the planning window. Still, in this case
too pedestrian positions are predicted based on a constant
velocity and heading model. It is worth noting that [10]
and [11] validate the approach in a kinematic simulator,
which cannot highlight the peculiarities of human behavior.
A different approach is proposed by [13], which creates
“sensitive fields” around each pedestrian considering its
speed and gaze direction. The fields are then considered as
simulated hard obstacles by creating a virtual laser scan that
includes their occupation.

Shifting the focus to the social forces class, a first example
is [14], which employs the SFM to create a more natural
global plan: the tentative global plan is obtained by the
A* algorithm [15]. Then, the SFM is used to refine it by
simulating the behavior a pedestrian would have in following
it. This allows the robot to follow a human-like trajectory.
The vast majority of the papers, apply the SFM to the robot
directly at the local planner level. [16], for example, exploits
the SFM in two ways. A first, custom, version is employed
to predict human intentions, that is if the pedestrian wants
to approach or avoid the robot. A second version is applied

to the robot itself: by making it abide by the equations of a
model describing human motion, the authors want to obtain
a human-like, and thus socially acceptable, behavior. A very
similar approach is used by [17], which was also adapted to
follow a target person in [18]. Note that in these approaches
in absence of obstacles, the SFM would make the robot move
directly towards the goal. This makes the choice of the goal
a critical task: the robot could otherwise get stuck in local
minima. From a wider perspective, directly applying a model
to guide the robot means not exploring the control space at
all: the choice is already made at the moment of the model
design. Of course, this may lead to suboptimal decisions,
like the local minima mentioned above. To mitigate this
issue, [19] introduces a complex, RRT-based anticipative
kinodynamic planner. The idea is to select multiple goal
points, randomly sampled around a preview point along the
global plan. A trajectory and the required control actions are
then simulated for each goal by applying the SFM from the
robot pose. Finally, a multi-objective cost function is used to
select the best trajectory.

From this brief literature review, a trend emerges: almost
all approaches tackling navigation in presence of humans
do so by imitating human behavior. The approaches that
do not, typically employ kinematic models more suitable
for generic dynamic obstacles than for pedestrians. Imitating
human motion does indeed create more natural motion, but
often requires “tricks” to adapt the models to a completely
different way of locomotion. Furthermore, simply applying
the models severely impacts the optimality of the motion
planning algorithms and complex mechanisms are needed
to recover it while maintaining their benefits. In this paper,
we aim to explore a simpler solution, in which pedestrian
motion models are used for prediction purposes only, while
the optimality of the choice is maintained by design.

III. SOCIALLY AWARE DYNAMIC WINDOW APPROACH

A. Dynamic Window Approach

The Dynamic Window Approach [2] is one of the most
popular motion planners, especially for differential drive
robots. DWA is a receding horizon method based on a
grid search optimization in the velocities space, with a
preliminary step that reduces the search space. The reduction
is performed by applying dynamic constraints, limiting the
maximum and minimum speeds to those achievable within
the prediction horizon T :

WD =
{
⟨v, ω⟩ : vmin ≤ v ≤ vmax

∧ ωmin ≤ ω ≤ ωmax

∧ v̄ − amaxT ≤ v ≤ v̄ + amaxT

∧ ω̄ − ω̇maxT ≤ ω ≤ ω̄ − ω̇maxT
} (1)

where WD is the dynamic window and v̄ and ω̄ are the
current speed and yaw rate, respectively. vmin, vmax, ωmin,
ωmax represent the minimum and maximum velocities and
yaw rates the robot can achieve, while amax and ω̇max are
the maximum linear and rotational accelerations. Scoring
of the trajectories is done through multiple cost functions,
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which are linearly combined. The optimization problem is
then defined as

⟨v∗, ω∗⟩ = argmin
⟨v,ω⟩∈WD

woJo (v, ω) + wpJp (v, ω) (2)

In this work, two cost functions are combined: an obstacles
cost function Jo and a path cost function Jp, with their
respective weights being wo and wp.

The cost functions simulate the robot trajectory in the
prediction horizon assuming a constant velocity model. The
obstacle cost function then discards all the trajectories col-
liding with obstacles, based on range data typically coming
from a LiDAR sensor. The path cost function, instead,
pushes the robot forwards and toward the global plan. This
is achieved by assigning to each robot location a weight
linearly proportional to the distance from the goal and
a cost quadratic in the distance from the global plan. A
representation of the path cost function is given in Fig. 1.

Fig. 1: DWA path cost function example

B. Social Forces Model

This paper proposes an additional cost function, dubbed
“Social Cost Function” (SCF), which handles exclusively
pedestrians. The idea of the SCF is to predict the humans’
trajectories using the SFM, scoring the robot control actions
based on the disturbance caused to the pedestrians. The SFM,
first introduced in [3], is by far the most popular model for
pedestrian trajectory prediction. Each pedestrian is modeled
as a point mass subject to a set of forces and is associated
with a desired goal location. The goal attracts the pedestrian
with a force given by

Fgoal =
v0e− v

τ
(3)

being v0 the pedestrian’s desired speed, e the unit vector
pointing from its position to the goal position, v its speed
vector and τ a time constant. Obstacles exert a repulsive
force instead. In this work, the original circular specification
is used for static obstacles:

Fo = Aoe
− ∥do∥

Bo
do

∥do∥
(4)

being do the vector from the pedestrian position to the closest
point of the obstacle and Ao, Bo two tuning parameters.
For other pedestrians and the robot itself, the elliptical

specification [20] is used. The force felt by pedestrian i due
to the presence of agent j is then defined by equations (5).

Fij = W (θij) ·Aje
−

bij
Bj ·Dij (5a)

Dij =
∥dij∥+ ∥dij − yij∥

4bij

dij

∥dij∥
+

dij − yij

∥dij − yij∥
(5b)

bij =
1

2

√
(∥dij∥+ ∥dij − (vj − vi∆t)∥)2 − ∥yji∥2 (5c)

yij = (vi − vj)∆t (5d)

W (θij) = λi + (1− λi)
1 + cos θij

2
(5e)

Here, W (θij) is an anisotropy term dependent on the angle
of approach θij , which models the fact that people prefer
a larger free space in front of them, but can accept closer
obstacles on the back. The remaining terms are function of
the distance vector dij , the relative velocity vi − vj and a
few parameters (namely, Aj , Bj , λi and ∆t). An example
of the elliptical force field is shown in Fig. 2. In this paper,

Fig. 2: Example of the shape of the elliptical force field
felt by agent i due to the presence of agent j. The speeds
of the agents are vi = [−1 0]Tm/s and vj = [1 0]Tm/s,
respectively

the force as formulated in (5) is applied for other humans, as
well as the robot itself. Tuning of the Aj and Bj parameters
is particularly critical: these define the attitude pedestrians
present in reciprocal interactions and in interactions with
the robot. Lower values of the parameters will lower the
force felt by the pedestrian due to the presence of another
agent, making closer encounters possible. Vice-versa, higher
values will make the modeled pedestrian keep a distance.
As shown in [21], one could say that high values represent a
person aware of their surroundings, or scared of other agents,
while lower values model unaware or “aggressive” people.
To the extreme, with values close to zero the pedestrian
model will not attempt any avoidance or collaboration, a
case representative of a distracted person. Fig. 3 shows the
effect of such parameters for three classes of pedestrians:
unaware (or distracted: Aj = 0.01, Bj = 0.92), nominal
(or balanced: Aj = 2.98, Bj = 1.1), and aware (or timid:
Aj = 2.0, Bj = 6.0). For the purposes of this visualization,
the pedestrians encounter a robot that does not attempt to
avoid them.
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Fig. 3: Pedestrian avoidance of a non-cooperating robot in
a wide corridor, as modeled by the SFM. Three classes of
pedestrian attitudes are compared.

C. Social Cost Function

The goal of the Social Cost Function is to evaluate how
much impact a given robot control action will cause to nearby
pedestrians. With this target, each robot control action (v, ω)
is simulated inside the DWA prediction horizon, similarly
to what occurs in the obstacle and path cost functions.
Each simulation, however, includes also the positions and
velocities of the pedestrians, which are predicted according to
the SFM equations outlined in Section III-B. It is important
to note that, since the SFM models interactions between the
agents on the scene, the pedestrian trajectories will depend
on the robot one. For this reason, it is not possible, to perform
just one simulation involving the pedestrians for all the robot
trajectories. In this work, we compute a pedestrian simulation
for each robot control action evaluated by the DWA. Then,
the social score of each trajectory is computed as

Js(v, ω) =
dt

T

T/dt∑
t=0

Nped∑
i=1

Fir (6)

being T the DWA prediction horizon, dt the simulation
time step, Nped the number of pedestrians in the vicinity
of the robot and Fir the force felt according to the SFM
(equation (5)) by pedestrian i due to the presence of the
robot. In essence, the proposed SCF weights how much the
pedestrian has to deviate from its ideal trajectory to stay
at a comfortable distance from the robot. This ensures that
the robot exploits the cooperation of the pedestrians only
when strictly necessary (as presented in Section I), while
it will tend to take more responsibility in the avoidance
maneuver whenever possible. The SCF is added to the other
cost functions of the DWA, modifying the cost minimized in
equation (2) into

woJo (v, ω) + wpJp (v, ω) + wsJs (v, ω) (7)

being ws the linear combination term for the SCF Js.
Particular care needs to be taken when using the SCF: in
order not to consider the pedestrians twice, they need to
be removed from the point cloud fed to the obstacles cost
function Jo.

It is worth mentioning that the parameters of Fir as
defined in (5) can be considered design parameters for the
purposes of SCF implementation and need not be adapted to
the actual behavior of the encountered pedestrian. This can
be justified philosophically stating that the robot should treat
all pedestrians equally, without leaving more space for some

pedestrians and less for others. This approach comes with
the additional benefit of trajectory predictability, which can
be appreciated by timid pedestrians.

IV. SIMULATION SETUP

The proposed approach was implemented in the ROS
[22] framework and was validated in a simulated corridor
environment within the Gazebo simulator [23] set up to
recreate a passing face-to-face scenario. The robot used
for testing is a simulation model of Yape [24], [25], a
two-wheeled inverted pendulum robot designed for last-mile
delivery. It features a differential drive drivetrain and is
fitted with a 16-layer LiDAR for obstacle perception. In
order to validate against a realistic human-like behavior, a
custom SFM-based pedestrian simulator was developed as a
Gazebo plugin. Fig. 4 shows a snapshot of the simulation
environment during a face-to-face passing test.

Fig. 4: Snapshot of the simulated environment: the differen-
tial drive robot is represented on the left, the pedestrian is on
the right, with its goal represented by the red circle behind
the robot.

The input data required by the DWA planner are:
• Pose of and velocity of the robot.
• LiDAR point clouds to feed the obstacles cost function.
• Positions, velocities, goal positions and SFM attitude

parameters for each pedestrian, to feed the SCF.
The simulation environment allows to remove non-idealities
from the algorithm testing by exploiting ground truth data
for both localization and pedestrian tracking (positions and
velocities). In real-world applications, this data would be
provided by a localization algorithm like AMCL [26] and
a target tracking algorithm [25]. To remove the pedestrians
from the point cloud, they were simply made invisible to
the LiDAR within the simulator. A similar result could
be achieved by classifying the tracked obstacles and pre-
processing the point clouds to remove all the points labeled
as pedestrians. While ground truth data could be used for
the SFM parameters as well, it is not realistic to accurately
estimate them online in the real world. For this reason,
robustness to the pedestrian attitude was extensively tested,
as explained in Section V. Finally, ground truth data was
also exploited to feed the cost function with pedestrian
goal locations. While not trivial, online goal estimation is
possible, as proven by [21].

V. VALIDATION RESULTS

The proposed planner is evaluated against the three pedes-
trian classes defined in Section III-B: unaware, nominal and
aware. For each pedestrian class, the algorithm is tested
for robustness, by varying the SFM parameters used for
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trajectory prediction, simulating a pedestrian class misclas-
sification. Three algorithms are benchmarked:

• The DWA fitted with the proposed SCF.
• The original DWA as formulated in equation (2), which

considers pedestrians as static obstacles.
• The DWA fitted with a Distance Cost Function (DCF),

which employs the same SFM-based predictor of the
SCF, but weights the robot trajectories based on the
robot-pedestrian distance ∥dir∥:

Jd(v, ω) = Wd
1

Nped

dt

T

T/dt∑
t=0

Nped∑
i=1

max (0, dmax − ∥dir∥)

(8)
being Wd a scaling factor and dmax is the distance
threshold over which no weight is given to the robot-
pedestrian interactions. The reasoning behind this sec-
ond benchmarked cost function is to assess whether
the SFM-based prediction alone can improve the per-
formance of the local planner.

Fig. 5a shows the trajectories of the robot and the pedes-
trian in the case of a nominal simulated pedestrian attitude,
with nominal parameters used for trajectory prediction. By
comparing the trajectories of the original DWA (purple) with
the two proposed cost functions, it is apparent that the SFM-
based prediction is capable of reacting earlier to an approach-
ing pedestrian. Indeed, the trajectory of the pedestrian facing
the robot with the original DWA has to widen its trajectory
more and in a sharper way. Moreover, comparing the Social
and Distance cost functions one can note how the inclusion of
a speed term within the weighting function further increases
the smoothness of the avoidance maneuver. Fig. 5b presents
the profile of the pedestrian speed, which shows a slowdown
phenomenon in correspondence of the approach point. The
severity of this braking maneuver is significantly reduced
with the SFM-based prediction, especially when paired with
the SCF. A reduced slowdown signals that the pedestrian was
disturbed less and could continue towards its goal without
altering its path too abruptly.

The lower impact is also represented by the synthetic
metrics in Fig. 6. The top figures depict the average and
maximum forces felt by the pedestrian around the approach
point according to (5), while the latter quantifies the percent-
age slowdown from the pedestrian’s desired speed. In each
row, the first figure was obtained with an unaware simulated
pedestrian, the central ones with a nominal pedestrian, and
the right ones with an aware pedestrian. Within each figure,
different colors (indexed on the X-axis) refer to the models
used by the local planner to predict the pedestrian’s motion.
Over the three graphs of each row, all possible mismatches
between real and assumed pedestrian models are evaluated,
assessing the robustness of the planners to model uncertain-
ties. In all evaluated cases, the SCF performs better than both
the original DWA and the DCF, proving its robustness even
to severe pedestrian misclassification. It is worth noting that,
in the case of an unaware pedestrian, the original DWA does
not manage to avoid the collision, reacting too late to the
incoming pedestrian. On the contrary, the Socially Aware

DWA takes full responsibility of the avoidance maneuver,
widening the trajectory so much that the pedestrian speed is
virtually unaffected. The DWA modified with the Distance
Cost Function, instead, does manage to avoid the unaware
pedestrian, but it is quite susceptible to errors in the predic-
tion model: when the pedestrian is classified as nominal or
aware, a collision cannot be avoided.

VI. CONCLUSIONS
This paper presented a socially aware version of the

Dynamic Window Approach planner. The proposed planner
is designed to handle interactions with humans in a smooth
and socially acceptable way, by predicting their trajectories
using the Social Forces Model and implementing a novel cost
function. The Social Cost Function scores the trajectories
based on how much disturbance they give to pedestrians by
using the elliptical formulation of the Social Forces Model
obstacles cost. The approach is validated in a simulation
environment with realistic pedestrian motions, avoiding col-
lisions both with collaborating and distracted pedestrians,
even under in presence of severe model uncertainties. The
approach shows superior performance with respect to the
original DWA and a distance-based scoring function, which
fails when facing non-collaborating pedestrians. Given the
promising results, the experimental validation of the pro-
posed algorithm is the natural next step and is currently
underway.
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