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Abstract— The incremental stability analysis of Lurie systems
consisting of the feedback interconnection between a linear
time-invariant (LTI) system and a slope-bounded nonlinearity
is considered. We first show that the incremental input-output
mappings generated by the set of slope-bounded nonlinearities
satisfy a set of biased integral quadratic constraints (IQCs)
defined by Popov multipliers. Then, a frequency-domain in-
equality (FDI) condition on the LTI system is proposed for
establishing incremental closed-loop stability via an incremental
form of IQC theory. Application of the KYP lemma yields an
equivalent linear matrix inequality (LMI) condition.

I. INTRODUCTION

The incremental analysis of dynamical systems is con-
cerned with determining the properties of trajectories towards
each other, not just with respect to a fixed equilibrium
point. In nonlinear settings, incremental notions such as
incremental stability and incremental dissipativity are of
great significance for applications such as regulation [1],
observer design [2] and synchronisation [3], [4]. The crucial
role of incremental analysis in these applications has driven
forward theoretical developments in recent years, including
in the closely-related topic of contraction theory which
has attracted significant attention since the late 1990s [5].
However, in spite of these application-orientated motivations,
results on incremental properties have arguably stagnanted.
As pointed out in studies such as [6], the field of nonlinear
control systems has been dominated by non-incremental
analysis since the 1980s and advances on the incremental
problem have been limited. For example, whilst many novel
methods have been devised to compute Lyapunov functions,
these advances have not transferred over to the incremental
problem. As a consequence, results on the incremental anal-
ysis have been scattered. Even though notable pioneers in
the field placed significant value on the role of incremental
analysis, notably George Zames in his 1966 papers [7] and
[8], that perspective has been somewhat lost in recent years.

Similar to the non-incremental approach on nonlinear
systems stability analysis, the incremental analysis can be
treated in both the state-space (internal) and input-output (ex-
ternal) perspectives. The former is more recent, with results
focusing on the search for incremental forms of Lyapunov-
type theories [5], [9], [10], with an incremental dissipativity
theory developed in [11] and employed in [3]. The input-
output perspective of incremental notions was pioneered by
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Zames [7], [8] and developed in the classical textbooks [12],
[13]. Building upon these results, the recent work of [6]
showed that the incremental input-output properties studied
in the 1970s and the incremental form of Lyapunov stability
could be connected to the incremental form of dissipativity
in a straightforward way.

This work develops an input-output approach for the
incremental stability analysis of Lurie systems consisting of
a linear time-invariant (LTI) system in feedback connection
with a slope-bounded nonlinearity. We restrict the class of
Lurie systems considered with the following assumptions:

H1) The feed-through term in the open-loop LTI system is
assumed to be zero, as in G(∞) = 0.

H2) The external input at the input side of the nonlinear
operator is differentiable.

The main result of the paper is a Popov-criterion-like
condition for the closed-loop incremental stability of such
Lurie systems. The key implication is that the open-loop
LTI component of the Lurie system is not required to be
passive — the Popov multiplier can shift the phase of the LTI
system to reduce the conservatism in the incremental stability
certificates. The idea behind the result is to establish the
incremental closed-loop stability via an incremental form of
integral quadratic constraint (IQC) theory [14], [15], which
encapsulates notions such as small-gain and passivity [16].
This is done by first capturing the incremental input-output
mappings of slope-bounded nonlinearities by Popov multipli-
ers and then deriving the frequency-domain inequality (FDI)
condition defined by Popov multipliers on the open-loop
LTI system. In this way, this work builds upon early results
on the well-posedness of Lurie systems consisting of LTI
systems in feedback with set-valued maximally monotone
operators, such as [17]–[20]. However, note that these works
impose a passivity assumption on the open-loop LTI system,
a condition which can be relaxed by the Popov criterion of
this paper.

The first step of the theory outlined above may appear
to conflict with [21] – a seminal result on the incremental
analysis of Lurie systems. In that paper, it was shown that the
dynamic multipliers, which have been highly successful in
reducing the conservatism in the non-incremental analysis of
Lurie systems, fail for the incremental analysis. In particular,
it was proven in [21] via a counter-example that Popov
multipliers preserve incremental positivity of a monotone
nonlinearity if and only if the nonlinearity is linear. The
implication of this result is that dynamic multipliers do not
generalise to the incremental stability analysis, a feature
which has led to a bottleneck in this area. We circumvent the
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bottleneck of [21] by: i) restricting the class of Lurie systems
with assumptions H1 and H2, and ii) introducing a bias in the
definition of incremental positivity. This allows us to adopt a
weaker form of incremental positivity of the slope-bounded
nonlinerities, but from this weaker definition we are still able
to infer a form of incremental stability results. We also show
that, by applying the KYP lemma, the proposed condition is
equivalent to a linear matrix inequality (LMI) which can then
be efficiently verified using convex programming. Crucially,
these results allow the passivity of G to be relaxed and so can
reduce the conservatism of incremental stability conditions.

The rest of the paper is organised as follows. Section II
introduces the notation and formulates the problem. Section
III presents the main results including: the characterisation
of the incremental property for slope-bounded nonlinearities
by Popov multipliers, incremental stability analysis, and
its relation to the result of [22]. Section IV contains the
conclusions.

II. NOTATION AND PROBLEM FORMULATION

We use L2 and L2e to denote the following signal spaces

L2 :=

{
x : [0,∞) → Rn

∣∣∣∣ ∥x∥2 =

∫ ∞

0

|x(t)|2dt <∞
}

and

L2e := {x : [0,∞) → Rn | PTx ∈ L2, ∀T ≥ 0} ,

where PT denotes the truncation operator defined as

(PT f)(t) =

{
f(t) for t ≤ T

0 otherwise.

For a signal x in L2e, denote its initial value as x0, i.e., x0 =
x(0). For any signal x ∈ L2e and T > 0, let xT := PTx and
∥x∥T := ∥xT ∥. For x, y ∈ L2, ⟨x, y⟩ :=

∫∞
0
x(t)⊤y(t)dt.

For T ≥ 0 and x, y ∈ L2e, ⟨x, y⟩T :=
∫ T

0
x(t)⊤y(t)dt. A

negative definite matrix M ∈ Rn×n is denoted M ≺ 0 and
a positive-definite matrix is denoted M ≻ 0.

A system H : L2e → L2e is said to be causal if PTHPT =
PTH for all T > 0. In this work, the main object of study
is incremental systems properties, with the notation

δz = z − z̄

denoting the difference between a pair of objects z and z̄.
In this paper, a static (a.k.a. memoryless) system ∆ :

L2e → L2e is one for which there exists ϕ : R → R such that
(∆u)(t) = ϕ(u(t)). For convenience, we will subsequently
abuse the notation by using ∆ to denote both the operator
∆ mapping from L2e into L2e and the function ϕ mapping
R into R interchangeably.

Problem formulation

The Lurie system studied in this work is given by the
feedback interconnection depicted in Figure 1 with G,∆ :
L2e → L2e where G is an LTI system and ∆ belongs to a
nonlinearity set. Throughout this work, we assume both G,∆
are causal having single-input single-output. For the sake

of simplicity, we are not considering the multi-input multi-
output case but a parallel generalisation may be possible.

It is also assumed that G ∼ (A,B,C) with A being
Hurwitz. Without loss of generality, we assume zero initial
conditions x(0) = 0 of G as the unforced response of G
due to nonzero initial condition can be lumped with the
external signal e2. Note that the unforced response of G and
its derivative belong to L2 because of A being Hurtwitz. It is
assumed that ∆ belongs to the class of (α, β)-slope-bounded
static nonlinearities that map 0 to 0, denoted by ∆α,β . That
is, for each ∆ ∈ ∆α,β , it holds that ∆(0) = 0, and

α ≤ ∆(x1)−∆(x2)

x1 − x2
≤ β,∀x1 ̸= x2, x1, x2 ∈ R. (1)

With a restricted external signal space, we define the well-
posedness and incremental stability of the Lurie system in
Figure 1 as follows.
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Fig. 1. Feedback configuration of the Lurie system.

Definition 1: The feedback system in Figure 1 is said to
be well-posed if for any e1, e2 ∈ L2e such that ė2 ∈ L2e,
there exists u, y ∈ L2e that depend causally on e1, e2, and
ẏ ∈ L2e.

Definition 2: The feedback system in Figure 1 is said to
be incrementally stable if it is well-posed and there exist
constants γ0 > 0 and ρ > 0 such that

∥y − ȳ∥2T + ∥u− ū∥2T ≤ γ0 |e2(0)− ē2(0)|2 +
ρ(∥e1 − ē1∥2T + ∥e2 − ē2∥2T + ∥ė2 − ˙̄e2∥2T )

for all T > 0 and for arbitrary e2(0), ē2(0) ∈ R and
e1, ē1, e2, ē2 ∈ L2e such that ė2, ˙̄e2 ∈ L2e.

For linear systems, incremental stability and its non-
incremental counterpart exhibit equivalence, which does not
hold for nonlinear systems. In contrast to the finite incre-
mental L2-gain given in [23, Definition 2.1.5], Definition 2
imposes differentiability on the external input e2 and allows
a bias caused by the difference of the initial value of e2.
The requirement for smoothness applies solely to e2 and
not to e1. This distinction arises from the fact that e2 is
injected into the input side of the nonlinear system ∆, while
G is linear, stable, and satisfies H1. The aim of this work is
to derive conditions on G such that the feedback system is
incrementally stable.

III. MAIN RESULTS

A. Popov multipliers

The Popov multiplier is defined as

ΠP :=

[
0 −jω
jω 0

]
.
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For notational convenience, we do not differentiate ΠP and
its associated operator in time domain. Given signals x, z ∈
L2 such that ẋ ∈ L2, the inner product〈[

x
z

]
,ΠP

[
x
z

]〉

exists and is given by 2⟨ẋ, z⟩. Next, we show in the following
that input-output pairs of ∆ ∈ ∆α,β satisfy the integral
quadratic constraints defined by the Popov multiplier.

Lemma 1: For any u − ū ∈ L2 such that u̇ − ˙̄u ∈ L2, it
holds that y − ȳ ∈ L2, and〈[

u− ū
y − ȳ

]
, λΠP

[
u− ū
y − ȳ

]〉
≥ −γ |u0 − ū0|2 ,

∀λ ∈ R,∆ ∈ ∆α,β

where γ := |λ|max(|α|, |β|), y = ∆(u), and ȳ = ∆(ū).
This is referred to as a biased IQC.

Proof: First, note that ∆ ∈ ∆α,β satisfies (∆(x))(t) =
∆(x(t)) for all t ≥ 0, ∆0 = 0, and (1). Therefore, ∥y−ȳ∥ =
∥∆u−∆ū∥ ≤ max(|α|, |β|)∥u− ū∥, i.e. y − ȳ ∈ L2.

Recall that u(T )− ū(T ) → 0 as T → ∞ since u− ū ∈ L2

and u̇ − ˙̄u ∈ L2 [12, Section VI.6]. Let δy := y − ȳ and
δu := u−ū. Then, δy(t) = y(t)−ȳ(t) = ∆(u(t))−∆(ū(t)).
By recalling (1), we have that α(δu(t))2 ≤ δy(t)δu(t) ≤
β(δu(t))2. Next, we show that〈[

δu
δy

]
, λΠP

[
δu
δy

]〉
≥ −γ |δu0|2

with γ = |λ|max(|α|, |β|). To see this, let δu̇ = u̇− ˙̄u and
observe that

2λ lim
T→∞

∫ T

0

δyδu̇ dt =2λ lim
T→∞

∫ δu(T )

δu0

δy d(δu)

=− 2λ

∫ δu0

0

δy d(δu)

≥− 2γ

∫ δu0

0

δu d(δu) = −γ|δu0|2,

where the second equality follows from δu(T ) → 0 as
T → ∞ and the last inequality holds because α(δu(t))2 ≤
δy(t)δu(t) ≤ β(δu(t))2. As δy, δu̇ ∈ L2, it follows that
limT→∞

∫ T

0
δyδu̇ dt = ⟨δy, δu̇⟩. The inequality in Lemma

1 holds as

2λ⟨δy, δu̇⟩ =

〈[
δu
δy

]
, λΠP

[
δu
δy

]〉
.

Next, a more general class of Popov multipliers given by
ΠB + λΠP are used to capture the incremental property of
the class ∆α,β with

ΠB :=

[
−2αβ α+ β
α+ β −2

]
.

It is well known that a (α, β)-sector bounded nonlinearity
satisfies the IQC defined by ΠB (see, [12], [24]). From the
proof of Lemma 1, it follows staightforwardly that〈[

u− ū
y − ȳ

]
,ΠB

[
u− ū
y − ȳ

]〉
≥ 0, ∀u, ū ∈ L2, ∆ ∈ ∆α,β

where y = ∆(u), ȳ = ∆(ū). This in combination with
Lemma 1 leads directly to the following lemma.

Lemma 2: For any ∆ ∈ ∆α,β , it holds that〈[
u− ū
y − ȳ

]
, (ΠB + λΠP )

[
u− ū
y − ȳ

]〉
≥ −γ |u0 − ū0|2 ,

∀u, ū, u̇, ˙̄u ∈ L2

where γ := |λ|max(|α|, |β|), and y = ∆(u), ȳ = ∆(ū).
Note that when 0 ≤ α ≤ β, ∆α,β is a set of monotone

memoryless nonlinearities, the positivity of which is known
to be preserved by several classes of multilpliers including
Zames–Falb multipliers [25]–[27]. The work [21] presents a
fundamental result on the monotone analysis of nonlinear
systems, and so merits special mention. It was proven
that “stability multipliers such as Zames–Falb multipliers,
Popov multipliers, and RL/RC multipliers, known to preserve
positivity of monotone memoryless nonlinearities, do not, in
general, preserve their incremental positivity”. In particular,
[21] established by counterexample that for a static monotone
function ∆ (i.e., ∆ ∈ ∆0,∞), it holds that〈[

u− ū
∆u−∆ū

]
,

[
0 1− λjω

1 + λjω 0

] [
u− ū

∆u−∆ū

]〉
≥ 0

∀λ ∈ R, u, ū ∈ L2 such that u, u̇ ∈ L2

if and only if ∆ is linear. From this statement, it would
appear that the counterexample of [21] gives a definitive
statement on the irrelevance of dynamics multipliers for
verifying incremental positivity of monotone nonlinearities.
This seminal result has since acted as a roadblock to the de-
velopment of novel methods for incremental stability analysis
of nonlinear systems. In fact, the least conservative method
has remained the Circle criterion, which was developed by
Zames in 1966 [8]. Nevertheless, as will be shown in the
latter sections of this paper, there is scope to develop incre-
mental results around this apparent roadblock, and Lemma
1 represents one way to achieve this. As a comparison,
Lemma 1 shows that Popov multipliers preserve incremental
positivity of slope-bounded nonlinearities in a weak form in
that it is dependent on the initial value of the input. With such
a distinction, Lemma 1 then shows that incremental positivity
results can be obtained via Popov multipliers, which can then
be used for incremental stability analysis.

B. Incremental stability analysis

In this subsection, we present the main results of the
paper that propose a condition on G to establish incremental
stability of the Lurie system in Figure 1. Before proceeding
to the main result, well-posedness of the Lurie system is first
shown.
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Lemma 3: Suppose G ∼ (A,B,C) with A being Hur-
witz, and ∆ ∈ ∆α,β . The feedback system in Figure 1 is
well-posed.

Proof: Based on Theorem 4.1 in [28], the feedback
system [G,∆] is well-posed in the conventional sense, i.e.,
for any e1, e2 ∈ L2e, there exists u, y ∈ L2e that depend
causally on e1, e2. The fact that G is stable and strictly proper
implies that the mapping from u to ẏ is stable, and thus if
u ∈ L2e then ẏ ∈ L2e. Hence, the feedback system [G,∆]
is well-posed as per Definition 2.

The next theorem provides a condition on G ∼ (A,B,C)
for the feedback incremental stability defined in Definition
2 by exploiting the class of Popov multipliers ΠB + λΠP .

Theorem 1: Suppose G ∼ (A,B,C) with A being Hur-
witz, α ≤ 0 ≤ β, and ∆ ∈ ∆α,β . The feedback system in
Figure 1 is incrementally stable if there exist λ ∈ R, ϵ > 0
such that[

G(jω)
1

]∗
(ΠB + λΠP )

[
G(jω)

1

]
≤ −ϵ,∀ω ∈ R. (2)

Proof: Since α ≤ 0 ≤ β, it is clear that if ∆ ∈ ∆α,β ,
then τ∆ ∈ ∆α,β for all τ ∈ [0, 1]. By Lemma 3, we know
that [G, τ∆] is well-posed for all τ ∈ [0, 1] and ∆ ∈ ∆α,β .
Since ∆ ∈ ∆α,β , we have from Lemma 2 that〈[

δw
δv

]
,ΠB + λΠP

[
δw
δv

]〉
≥ −γ |δw0|2 ,

for all w, w̄, ẇ, ˙̄w ∈ L2 where γ := |λ|max(|α|, |β|), and
v = ∆(w), v̄ = ∆(w̄), which can be rewritten equivalently
into〈δẇδw

δv

 ,
0 0 λ

0
λ

ΠB

δẇδw
δv

〉
≥ −γ |δw0|2 , (3)

∀w, w̄, ẇ, ˙̄w ∈ L2.

Now rewrite (2) asjωG(jω)G(jω)
1

∗ 0 0 λ

0
λ

ΠB

jωG(jω)G(jω)
1

 ≤ −ϵ, ∀ω ≤ 0.

Note that y, ẏ ∈ L2 when u ∈ L2 as G is stable and strictly
proper. By Proposition 4 in [24], the frequency domain
inequality is equivalent to〈δẏδy

δu

 ,
0 0 λ

0
λ

ΠB

δẏδy
δu

〉
≤ −ϵ∥δu∥2,

∀u, ū ∈ L2, y = Gu, ȳ = Gū.

As G is stable and the mapping from δu to δẏ is bounded,
the above condition implies that there exists ϵ > 0 such that〈δẏδy

δu

 ,
0 0 λ

0
λ

ΠB

δẏδy
δu

〉
≤ −ϵ

∥∥∥∥∥∥
δẏδy
δu

∥∥∥∥∥∥
2

, (4)

∀u, ū ∈ L2, y = Gu, ȳ = Gū.

Next, a homotopy argument that mimics that in [14, Theorem
1] is used, which is completed in three steps.

Step 1. From (3)&(4), we show in what follows that there
exist γ0, ρ > 0 such that

∥δy∥2 + ∥δu∥2 ≤ γ0∥δe2(0)∥2 + ρ ·
(∥δe1∥2 + ∥δe2∥2 + ∥δė2∥2)

for all w, w̄, ẇ, ˙̄w ∈ L2 and u, ū ∈ L2, y = Gu, ȳ = Gū.
For notational simplicity, let

M :=

0 0 λ

0
λ

ΠB

 , p :=
δẏδy
δu

 , q :=
δẇδw
δv

 . (5)

Summing up (3)&(4) yields

− γ|δw0|2 + ϵ∥p∥2

≤⟨q,Mq⟩ − ⟨p,Mp⟩
=⟨(q − p),M(q − p)⟩+
⟨p,M(q − p)⟩+ ⟨(q − p),Mp⟩

≤∥M∥∥q − p∥2 + 2∥M∥∥p∥∥q − p∥

≤∥M∥∥q − p∥2 + 2∥M∥2∥q − p∥2

ϵ
+
ϵ

2
∥p∥2.

Therefore, we obtain

ϵ

2
∥p∥2 ≤ γ|δw0|2 +

(
∥M∥+ 2∥M∥2

ϵ

)
∥q − p∥2.

Since G is strictly proper and has zero initial condition, we
have y(0) = 0. Hence, δw0 = δy(0) + δe2(0) = δe2(0). By
noting ∥δe1∥2 + ∥δe2∥2 + ∥δė2∥2 = ∥q − p∥2, the claim is
proved by letting γ0 = 2γ

ϵ and ρ = 2
ϵ

(
∥M∥+ 2∥M∥2

ϵ

)
.

Step 2. Given the homotopy τ∆, τ ∈ [0, 1], we show
that if [G, τ1∆] is incrementally stable, then there exists a
constant d > 0 such that [G, τ2∆] is also incrementally stable
for all τ2 such that |τ2 − τ1| ≤ d where d depends only on
α, β and ρ in Step 1. Given τ2 ∈ [0, 1], recall from Lemma 3
that [G, τ2∆] is well-posed as τ2∆ ∈ ∆α,β . Hence, it follows
that for any (e1, e2, ė2) ∈ L2e, there exist (u, y, ẏ) ∈ L2e

such that for all T ≥ 0,

yT = PTGuT , uT = e1T + vT

vT = τ2∆wT , wT = yT + e2T .

One can rewrite τ2∆ = τ1∆+ (τ2 − τ1)∆, so v = τ1∆w +
(τ2 − τ1)∆w. Let v∗ := τ1∆w and e∗1T := e1T + (τ2 −
τ1)∆wT . Then, the above equations can be rewritten as

yT = PTGuT , uT = e∗1T + v∗T

v∗T = τ1∆wT , wT = yT + e2T ,

which can be taken as the feedback interconnection [G, τ1∆]
with external input (e∗1, e2). The assumed incremental stabil-
ity of [G, τ1∆] implies

∥δy∥2T + ∥δu∥2T ≤γ0 |δe2(0)|2 + ρ·
(∥δe∗1∥2T + ∥δe2∥2T + ∥δė2∥2T )

for all T > 0 and for arbitrary w0, w̄0 ∈ R. Since
e∗1T := e1T + (τ2 − τ1)∆wT , we have ∥δe∗1∥2T ≤
2∥δe1∥2T + 2|τ2 − τ1| · ∥(∆w − ∆w̄)∥2T ≤ 2∥δe1∥2T +
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2|τ2 − τ1|max{|α|, |β|}(∥δw∥2T ) ≤ 2∥δe1∥2T + 4|τ2 −
τ1|max{|α|, |β|}(∥δe2∥2T + ∥δy∥2T ) where the first and the
third lines hold because (a + b)2 ≤ 2a2 + 2b2 and the
second line follows from (1). Suppose |τ2 − τ1| ≤ d :=

1
4ρmax{|α|,|β|} . Then, we have ∥δu∥2T ≤ γ0 |δe2(0)|2 +

2ρ∥δe1∥2T+(ρ+1)(∥δe2∥2T+∥δė2∥2T ), which, in combination
with,

∥δy∥2T + ∥δu∥2T ≤ (∥G∥2 + 1)∥δu∥2T
implies that [G, τ2∆] is incrementally stable.

Step 3. Since the open-loop system [G, 0] is stable and
linear, [G, 0] is incrementally stable, and by the iterative
application of the conclusion in Steps 1&2, it can be shown
that [G, τ∆] is incrementally stable for τ ∈ [0, 1]. This
completes the proof.

Remark 1: When λ in Theorem 1 is taken to be λ = 0, the
condition (2) reduces to the circle criterion. The use of Popov
multiplier allows the condition of G to be relaxed and thus
reduce the conservatism of incremental stability conditions.

C. Linear matrix inequality conditions

In the following, the frequency domain inequality (FDI)
of (2) from Theorem 1 is translated into a linear matrix
inequality (LMI) condition by applying the KYP lemma, and
so can be verified using semi-definite programming.

By augmenting the dimension of output of G, define the
state-space system

ẋ =Ax+Bu,

ỹ =

[
y
ẏ

]
=

[
C
CA

]
x+

[
0
CB

]
u.

Denote the corresponding operator mapping from u to ỹ as
G̃, which has a state-space realisation

G̃ ∼
(
A,B,

[
C
CA

]
,

[
0
CB

])
.

It follows that G̃ is stable and its frequency response is

G̃(jω) =

[
jωG(jω)
G(jω)

]
=

[
C
CA

]
(jωI −A)−1B +

[
0
CB

]
.

Hence, the FDI (2) can be rewritten as[
G̃(jω)

1

]∗ 0 0 λ

0
λ

ΠB

[
G̃(jω)

1

]
(6)

=

[
(jωI −A))−1B

1

]∗
M

[
(jωI −A))−1B

1

]
≤ −ϵ, ∀ω ∈ R

(7)

where

M :=

 C 0
CA CB
0 1

T 0 0 λ

0
λ

ΠB

 C 0
CA CB
0 1

 .
Now we are ready to present the following corollary.
Corollary 1: Suppose G ∼ (A,B,C) with A being Hur-

witz, α ≤ 0 ≤ β, and ∆ ∈ ∆α,β . The feedback system in

Figure 1 is incrementally stable if there exist λ ∈ R, P = PT

such that [
PA+ATP PB

BTP 0

]
+M ≺ 0 (8)

with M as in (5).
Proof: From Theorem 1 and (7), it follows that the

feedback system in Figure 1 is incrementally stable if there
exists λ ∈ R, ϵ > 0 such that[

(jωI −A))−1B
1

]∗ (
M +

[
0 0
0 ϵ

])[
(jωI −A))−1B

1

]
≺ 0, ∀ω ∈ R

which is equivalent, by invoking the KYP lemma [24, Theo-
rem 8], to showing that there exists λ ∈ R, ϵ > 0, P = PT

such that[
PA+ATP PB

BTP 0

]
+M +

[
0 0
0 ϵ

]
≺ 0. (9)

That inequality (8) holds then implies that there exists some
ϵ > 0 such that (9) is satisfied which completes the proof.

D. A special case

The condition (2) was shown to be a sufficient condition in
[22, Theorem 1] for establishing the stability of the feedback
system in Figure 1 with ∆ being (α, β)-sector bounded, e2 =
0, G ∼ (A,B,C) with possibly nonzero initial condition.
In what follows, we consider the same system setting as in
[22] and show by an interpolation argument that the feedback
system the sector-bounded nonlinearity set replaced by ∆α,β

is incrementally stable.
Consider the feedback system in Figure 1 where G ∼

(A,B,C) with initial state x(0) = x0, and e2 = 0, satisfies

ẋ = Ax+Bu, x(0) = x0,
y = Cx,
v = ∆(y), u = v + e1.

(10)

Proposition 1: Assume A is Hurwitz, α ≤ 0 ≤ β and
∆ ∈ ∆α,β . Consider the feedback system (10). If there exists
λ ∈ R, ϵ > 0 such that (2) holds, then, there exist constants
γ, ρ > 0 such that

∥y − ȳ∥2T + ∥u− ū∥2T ≤ γ |x0 − x̄0|2 + ρ∥e1 − ē1∥2T
for all T ≥ 0, x0, x̄0 ∈ R, and e1, ē1 ∈ L2e.

Proof: Since α ≤ 0 ≤ β, τ∆ is (α, β)-sector bounded
for all τ ∈ [0, 1] if ∆ is (α, β)-sector bounded. Similarly
to Lemma 3, it can be shown that [G, τ∆] with any (α, β)-
sector bounded ∆ is well-posed by the definition of [22],
i.e., for any e1 ∈ L2e, there exists u, x, ẋ ∈ L2e that depend
causally on e1. Then, using both Example 1 and Theorem 1
from [22], one can show that the feedback system [G,ψ] is
stable when ψ is a (α, β)-sector bounded nonlinearity, i.e,
for all e1 ∈ L2e and x0 ∈ R, there exists γ0, ρ > 0 such that
∥y∥2T + ∥u∥2T ≤ γ0|x0|+ ρ∥e1∥2T for all T ≥ 0.

Next, we prove that the stability of [G,ψ] with ψ being
(α, β)-sector-bounded implies the incremental stability of
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[G,∆] with ∆ being (α, β)-slope-bounded. Suppose by con-
tradiction that [G,∆∗] is not incrementally stable for some
∆∗ ∈ ∆α,β . That is, there exists x∗0, x̄

∗
0 ∈ Rn, e∗1, ē

∗
1 ∈ L2e

such that there exists no γ0, ρ satisfying

∥δy∗∥T + ∥δu∗∥2T ≤ γ0|δx∗0|2 + ρ∥δe∗1∥2T , ∀T ≥ 0.

Now consider the feedback system [G,ψ], and let e1 = δe∗1
and x0 = δx∗0. Let ψ∗ be the (α, β)-sector bounded system
that maps δy∗ to δv∗. It follows from the linearity of G that

δy∗ = G(δu∗)

δv∗ = ψ∗(δy∗)

δu∗ = δe∗1 + δv∗.

Hence, the feedback system [G,ψ∗] is not stable, which
completes the proof.

Remark 2: In comparison with Proposition 1, Theorem 1
provides a more general result that allows nonzero external
e2. In fact, Proposition 1 can be recovered from Theorem 1.
To see this, we note that by shifting effect of the nonzero
initial condition of G to e2 the feedback system (10) can be
equivalently represented as

ẋ = Ax+Bu1, x(0) = 0,

y = Cx, e2 = CeAtx0, w = y + e2,

u = ∆(w) + e1,

where G maps 0 to 0. For x0, x̄0, let δe2 = CeAtx0 −
CeAtx̄0. Since A is Hurwitz, there exist constants γ1, γ2
such that ∥δe2∥2 = ∥CeAtδx0∥2 ≤ γ1|δx0|2 and ∥ė2∥2 =
∥CAeAtδx0∥2 ≤ γ2∥δx0∥2. At the initial time instant,
e2(0) = Cx0. If condition (2) is satisfied, then Theorem
1 implies there exists constants γ0 > 0 and ρ > 0 such that

∥δy∥2T + ∥δu∥2T
≤γ |δe2(0)|2 + ρ(∥δe1∥2T + ∥δe2∥2T + ∥δė2∥2T )
≤γ0∥C∥2|δx0|2 + ρ(∥δe1∥2T + γ1|δx0|2 + γ2|δx0|2)
=(γ0∥C∥2 + ργ1 + ργ2)|δx0|2 + ρ∥δe1∥2T

for all T > 0 and for arbitrary x0, x̄0 ∈ R and e1, ē1 ∈ L2e.
Hence, Proposition 1 is recovered.

IV. CONCLUSION

This work considered Lurie systems consisting of a feed-
back interconnection of a stable and strictly proper open-loop
LTI system and a slope-bounded nonlinearity. We imposed
differentiablity on one of the two exogenous signal spaces
which enabled incremental properties of the slope-bounded
nonlinearities to be analysed using Popov multipliers. Using
an incremental version of an IQC theorem, conditions for
incremental closed-loop stability have been proposed in the
form of FDIs and LMIs.
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