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Abstract— Nonlinearity and dimensionality have always been
computationally challenging problems when it comes to the on-
line implementation of optimization-based control approaches,
especially in the presence of disturbances. In this paper, we
show how to alleviate the problem via a variable reformulation
derived from differential flatness for a quadcopter vehicle.
More specifically, we present a robust model predictive control
design, to track a predefined trajectory of a quadcopter in the
presence of disturbances. The synthesis procedure starts with a
coordinate change mediated by the model’s flatness property. In
this new representation, the dynamics become linear in closed-
loop at the price of more convoluted constraint expressions,
which are usually disregarded in the literature or simple
approximations are proposed. Subsequently, with a proper
parameterization to portray the feasible domain, the trajectory
tracking problem is transformed into the stabilization of a
constrained linear time-invariant system under disturbances,
which is then handled by a robust model predictive controller.
Simulations and experimental results are presented to analyze
and validate the proposed scheme.

Index Terms— Quadcopter trajectory tracking, feedback lin-
earization, tube-based MPC, differential flatness.

I. INTRODUCTION

The problem of maneuvering the quadcopter vehicles with
not only stability, but also optimality and robustness, still
remains open for discussion in the literature. The primary
issue lies in the vehicle’s trigonometric complexity, which
typically demands high computational power to find a fea-
sible stabilizing control for the non-linear problem [1], [2].
To address these challenges, while many robust techniques
have been offered, Model Predictive Control (MPC) is of
special interest to us thanks to its optimality and constraint-
handling capability. Theoretically, over a finite prediction
horizon in the future, stability, feasibility, and robustness can
be ensured with a proper formulation of the cost, constraints,
and a local controller within the MPC design [3]. However,
due to the problem’s complex expressions, its solution is
hard to find, at least in the limited sampling time of aerial
vehicles. As a partial solution, linearization of the system
dynamics around its operating points is typically exploited
to achieve a linear representation (also referred to as the
approximation with “small” valued angles/states), then robust
or adaptive approaches can be applied to ensure performance
and constraints. Although the strategy appears to be generic
and computationally attractive, the controller’s validity is
only secured “near” a reference [4], [5], or partially assured
for decoupled dynamics [6], [7].
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In contrast, the notion of exact linearization has promised
to solve the issue by reshaping the nonlinear dynamics into
a linear, controllable system. Indeed, the quadcopter’s model
is known to be differentially flat [8], [9] (i.e., all states and
inputs can be expressed algebraically with a special output
called flat output and a finite number of its derivatives).
This input-output representation implies that, via an input
change and a dynamic feedback, the system can be converted
into chains of integrators in a new coordinate, called the
flat output space [10]. Ideally, this property is beneficial for
both the vehicle’s trajectory planning problem and control
synthesis, as they are now reduced to the level of trivial
integrators. However, owing to that reformulation, although
the dynamics’ nonlinearity is discarded, the original con-
straint set becomes convoluted. To handle this disadvantage,
conservative linear estimations of such a new feasible domain
have been exploited to design a controller for the new linear
system [8], [11]. Even so, due to such conservatism, the
robustness of the quadcopter under this strategy remains
inadequately covered in the literature, especially for the tra-
jectory tracking problem. Thus, in this paper, we exploit the
well-known linearizing transformation for the quadcopter’s
translation dynamics and present a synthesis procedure for
robust trajectory tracking based on MPC. Specifically, we:

• address the problem of the nonlinear convoluted con-
straints arising from the linearization in closed-loop in
the flat output space by a surface parameterization;

• formulate an efficient synthesis procedure for the quad-
copter’s position tracking with tube-based MPC with
ellipsoidal terminal ingredients;

• validate the design via simulation and experimental
tests over the Crazyflie 2.1 nano-drone
platform. Experiment video can be found at
https://youtu.be/aJHZyouXtwo.

Notation: Bold capital letters are matrices with appropriate
dimensions. diag(·) returns a diagonally arranged matrix with
the components given within. Q ≻ 0 and Q ⪰ 0 imply
Q is positive definite and semi-definite, respectively. For
Q ⪰ 0, λmax(Q), λmin(Q) denote its largest and smallest
eigenvalues, respectively. Bold letters denote vectors, while
the subscript k denote the discrete step k. 0n×m represents
a matrix of dimension n × m of which all components
are 0. For x ∈ Rn, ix represents its i-th entry, while the
superscript “ref” presents the reference for the signal to
follow. ∥x∥P ≜

√
x⊤Px and ∥x∥2 ≜

√
x⊤x. Np(a, b)

returns a set of p evenly spaced samples over the interval
[a, b]. co{·} denote the convex hull. Finally, ⊕ and ⊖ denote
the Minkowski sum and Pontryagin difference, respectively.
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II. MODEL REPRESENTATION AND MPC SETUP

First, we recapitulate the quadcopter model employed for
position control design and its representation in the flat out-
put space, which possesses linear dynamics and a non-linear
constraint. The ellipsoidal terminal ingredient synthesis for
constrained linear system is also presented.

A. Quadcopter position control

The quadcopter’s discretized translation dynamics:
xk+1 = Adxk +Bdhψ(uk), (1)

where the vectors and matrices are defined as:
xk = [xk, ẋk, yk, ẏk, zk, żk]

⊤,uk = [Tk, ϕk, θk]
⊤,

Ad = diag(A1, A1, A1),Bd = diag(B1, B1, B1)

hψ(uk) =

Tk(cosϕk sin θk cosψ + sinϕk sinψ)
Tk(cosϕk sin θk sinψ − sinϕk cosψ)

−g + Tk cosϕk cos θk

 (2)

where, at time step k, xk ∈ R6 denotes the system’s with
xk, yk, zk and ẋk, ẏk, żk as the positions of the drone and
their time derivative, respectively; uk ∈ R3 gathers the three
input including the normalized thrust Tk, the roll (ϕk) and
pitch (θk) angles; the yaw angle ψ ∈ [−π;π] is assumed to
be known by sensor measurement. ts is the sampling time
and A1 =

[
1 ts
0 1

]
,B1 =

[
0.5t2s ts

]⊤
.

The inputs’ constraints are defined as:
uk ∈ U = {0 ≤ Tk ≤ Tmax ; |ϕk| , |θk| ≤ ϵmax} (3)

where g is the gravitational acceleration and Tmax > 0,
ϵmax ∈ (0;π/2) are constant bounds of the inputs.

Recall the variable reformulation (a.k.a. inverse kinemat-
ics) uk = φψ(vk) where:

φψ(vk) ≜ [ 1φψ(vk),
2φψ(vk),

3φψ(vk)]
⊤

=


»
v21k + v22k + (v3k + g)2

sin−1
(
(v1k sinψ − v2k cosψ)/

(
1φψ(vk)

))
tan−1((v1k cosψ + v2k sinψ)/(v3k + g))

 , (4)

the system (1) becomes:
xk+1 = Adxk +Bdvk, (5)

under the condition v3k ≥ −g, with vk ≜ [v1k, v2k, v3k]
⊤

gathering the new input. For a more detailed computation,
we refer to the work [11] where both the flat representation
and the linearizing law are derived.

Remark 1: It is important to note that the transformation
(4) is deduced from the input-output relationship of the
quadcopter’s model, where the flat output is considered as
[x, y, z]⊤ [9], [11]. Moreover, for this model, as a property of
differentially flat systems, the system dynamics (5) describe
three concatenated chains of integrators.

As discussed in our previous work [9], the feasible domain
Ũ ≜ {vk : φψ(vk) ∈ U} is non-convex and time varying
(due to the dependence on ψ), which proves impractical for
real-time control. To handle this problem, the convex time-
invariant subset of the domain is adopted as:

Vc =
{
v =[v1, v2, v3]

⊤ ∈ R3 :ï
v21 + v22 + (v3 + g)2 − T 2

max√
v21 + v22 − (v3 + g) tan ϵmax

ò
≤ 0

}
. (6)

For brevity, the proof for the inclusion Vc ⊂ Ũ ,∀ψ ∈ R
is omitted, the details can be found in [9].

Remark 2: It can be seen directly that, Vc contains the
origin in its interior, thus, there exists vε > 0 such that the
set can be under-approximated by the saturation constraint:
|v| ≤ vε. Then, anti-saturation control can be designed via
an anti-windup PID or nested saturation control [11], [12]
with global asymptotic stability. However, as shown in [9],
such norm-based approximation truncates significantly the
original set, conservatively limiting the control admissible
solution. Thus, subsequently, we exploit the set’s geometric
representation to construct a less conservative approximation.

From (6), Vc contains a sphere of radius Tmax and a
convex cone characterized by ϵmax. With this geometric
interpretation and by parameterizing such bounding surfaces,
an inner-approximation of Vc can be constructed as:

V in
c = co

{
[0, 0,−g]⊤, [R⋆ cosαi, R⋆ sinαi, v⋆3 ]⊤,

[rj cosαi, rj sinαi,
»
T 2
max − r2j − g]

⊤

}
(7)

with αi ∈ Ns1(0, 2π), rj ∈ Ns2(0, R⋆) for some inte-
ger s1, s2 > 2 (the larger s1 and s2, the more closely
V in
c approaches Vc) and R⋆ ≜ Tmax sin ϵmax, v⋆3 ≜
Tmax cos ϵmax − g. An illustration of the parameterization
is shown in Fig. 1. Hereinafter, as opposed to Vc, V in

c will
be employed to take advantage of its linear representation in
the control problem, which is discussed later.

Fig. 1. Vc parameterization with s1 = 7, s2 = 3, g = Tmax/1.45 =
9.81m/s2, ϵmax = 0.1745 rad.

B. Tube-MPC synthesis
Next, we summarize the MPC synthesis for a linear system

with stability and feasibility guaranteed, which later serves
as the ingredients for the tube-based MPC design.

Proposition 1: (Largest constrained ellipsoid [13]) Con-
sider a symmetric matrix P ≻ 0 and a polyhedron H =
{x ∈ Rn : a⊤

i x ≤ bi, i = 1, ..., p}, define an ellipsoid:
E = {x ∈ Rn : ∥x∥P ≤ ε}. Then, the maximum ε such that
E ⊂ H can be found by solving:

ε∗ = argmaxε log detB(ε),

s.t B(ε)=(V S1/2U⊤)-1ε and ∥B(ε)ai∥2 ≤ bi.
(8)

where V ,S,U come from the singular value decomposition
of P with P = USV ⊤. □

Proposition 2: (Stabilizing MPC with ellipsoidal terminal
region [14]) Given the matrices Q ≻ 0,R ⪰ 0 and a
constrained linear dynamics:

x̃k+1 = Adx̃k +Bdṽk subject to ṽk ∈ V⋆, (9)
where x̃k ∈ Rn, ṽk ∈ Rm, and V⋆ is a polyhedral constraint
set, consider the following procedure:
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• Choose a feedback gain K such that Acl ≜ Ad+BdK
is a Schur matrix;

• Choose M such that
M ⪰ Q+ λmax(R)K⊤K; (10)

• Solve the Lyapunov equation (11) to find P :
A⊤
clPAcl − P +M = 0; (11)

• Following Proposition 1 to find the largest ellipsoid:
Ef =

¶
x̃ : x̃⊤P x̃ ≤ εf

©
, (12)

such that Ef ⊂ X̃ ≜ {x̃ : Kx̃ ∈ V⋆}.
Then, we have:

1) The control law ṽk = Kx̃k ∈ V⋆, ∀x̃k ∈ Ef and
also renders the ellipsoid Ef forward invariant for the
system (9) (i.e, x̃k ∈ Ef ⇒ x̃k+1 ∈ Ef , k ≥ 0 [15]);

2) Vf (x̃k+1) + Vs(x̃k,Kx̃k)− Vf (x̃k) ≤ 0∀x̃k ∈ Ef

with

®
Vf (x̃k) ≜ ∥x̃k∥2P
Vs(x̃k, ṽk) ≜ ∥x̃k∥2Q + ∥ṽk∥2R.

(13)

□
Proof: From the definition (12), ṽk = Kx̃k ∈ V⋆,

∀x̃k ∈ Ef always holds. Next, with condition (11), we have:

∥x̃k+1∥2P = x̃⊤
kA

⊤
clPAclx̃k = x̃⊤

k (P −M)x̃k

≤ (1− λmin(M)/λmax(P ))x̃⊤
k P x̃k ≤ x̃⊤

k P x̃k
(14)

Then, if x̃k ∈ Ef , ∥x̃k+1∥2P ≤ ∥x̃k∥2P ≤ εf , or x̃k+1 ∈ Ef ,
namely Ef is forward invariant for the closed-loop.

Finally, with the conditions in (10) and (11), we have:
Vf (x̃k+1) + Vs(x̃k,Kx̃k)− Vf (x̃k)
= x̃⊤

kA
⊤
clPAclx̃k + x̃⊤

k (Q+K⊤RK)x̃k − x̃⊤
k P x̃k

= −x̃⊤
k (M −Q−K⊤RK)x̃k ≤ 0,∀x̃k ∈ Rn. (15)

Corollary 1: From the settings of Proposition 2, consider
the standard optimization problem at time step k [3]:
VNp

(x̃k) ≜ min
∑Np−1
i=0 Vs(x̃k+i, ṽk+i)+Vf (x̃k+Np

) (16)

s.t
ß
x̃i+k+1 = Adx̃i+k +Bdṽi+k; x̃k+Np

∈ Ef (17a)
ṽi+k ∈ V⋆, i ∈ {0, 1, ..., Np − 1}, (17b)

where Np denotes the prediction horizon, Ef is the terminal
region; the polyhedron Ṽ describes the input constraints;
Q,P ≻ 0,R ⪰ 0 are weighting matrices. Then, by finding
P and εf as in Proposition 2, the problem (16)-(17) is
recursively feasible, and the origin 0n×1 is asymptotically
stable under the closed-loop system given by repetitively
applying the first control action found in (16)-(17).

Proof: The properties achieved in Proposition 2 sat-
isfy the conditions for feasibility and stability presented in
Section 3.3 in [3] for a standard MPC scheme.

Remark 3: The existence of Ef in (12) simply requires
the set X̃ to include the origin as its interior point. In such
case, there always exists a sufficiently small value of εf so
that Ef is inscribed in X̃ .

III. TUBE MPC FORMULATION FOR A
QUADCOPTER UNDER DISTURBANCES

In this part, we establish and implement the robust MPC
strategy for the quadcopter’s tracking error dynamics by
stabilizing the tracking error dynamics with robust MPC.

A. Trajectory tracking error dynamics

First, consider the disturbed quadcopter model (1):
xk+1 = Adxk +Bdhψ(uk) +w, (18)

where w ∈ R6 denotes the system’s disturbance which is
assumed to be bounded, i.e.: w ∈ W. Then, by using the
mapping (4), the system (18) becomes:

xk+1 = Adxk +Bdvk +w. (19)
Next, we assume to have a well-defined reference trajec-

tory of the quadcopter with all constraints satisfied, namely:®
xref
k+1 = Adx

ref
k +Bdv

ref
k , (20a)

vref
k ∈ Vref

c ⊂ V in
c as in (7), (20b)

where Vref
c represents the polytope containing the input

reference sequence vref
k . This set Vref

c is assumed to be
included by the constraint set V in

c of vk. Note that the dy-
namics expressed in (20a) simply represent the trajectory of
three independent double integrators. Hence, effective time
parameterization tools can be used to generate the reference
signal satisfying the constraints (20b) [11]. Subsequently,
from (20) and (19), we achieve the tracking error dynamics:ß

x̃k+1 = Adx̃k +Bdṽk +w (21a)
s.t ṽk ∈ Ṽ, (21b)

where x̃k ≜ xk −xref
k denotes the deviation of the state xk

with respect to the reference xref
k ; likewise, ṽk ≜ vk − vref

k

denotes the control action employed to compensate such
deviation and disturbances while Ṽ ≜ V in

c ⊖ Vref
c is the

corresponding constraint set for the input ṽk of system (21a).
Prior to this point, the trajectory tracking problem has been

reduced to the stabilization of the linear disturbed system
(21a) towards the origin x̃e = 06×1, ṽe = 03×1. Therefore,
in the next part, we synthesize the robust MPC [16] subject
to the bounded disturbance w.

B. Robust model predictive control

As introduced above, let us formulate the robust MPC
presented in [16] for the constrained and disturbed system
(21). The online optimization at step k is defined as follows:

VNp
(x̃k) ≜ min

∑Np−1
i=0 Vs(x̃

∗
k+i, ṽ

∗
k+i)+Vf (x̃

∗
k+Np

) (22)

s.t


x̃∗
i+k+1 = Adx̃

∗
i+k +Bdṽ

∗
i+k; (23a)

x̃∗
k ∈ x̃k ⊕Z; x̃∗

Np
∈ Ef ; (23b)

ṽ∗
i+k ∈ V⋆ ≜ Ṽ ⊖KZ, i ∈ {0, 1, ..., Np − 1}, (23c)

where Ad,Bd is defined as in the model’s parameters (2);
Vs(·), Vf (·) are the quadratic cost given in (13) with given
weighting Q ≻ 0,R ⪰ 0 of choice; Np is the prediction hori-
zon; x̃∗

i+k and ṽ∗
i+k denote the predicted state and control

action at time step i+k, respectively, for the nominal version
of system (19) (i.e., without the effect of the disturbance
w). The remaining ingredients in the constraints (23) are
defined as follows. Firstly, given a state feedback gain K
that renders the closed-loop matrix Acl = Ad + BdK a
Schur matrix, then Z is a robust positively invariant (RPI) set
[17], [18] for the autonomous system: x̃k+1 = Aclx̃k +w.
In this setting, we employ the outer-approximation of the
minimal RPI proposed in [17]. Then, the set Z plays a role
as the “origin” for our stabilizing problem [16]. Next, the
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terminal ingredients (P and the set Ef ) for the nominal MPC
settings are found exactly with the Proposition 2 with the
gain K chosen as aforementioned, the dynamics (23a) and
the constraint set V⋆ ≜ Ṽ ⊖KZ . It is also assumed that the
disturbance’s boundW is sufficiently manageable and hence
results in non-empty feasible sets for the constraints in (23).

In short, the offline synthesis can be summarized as:
1) Choose Q ≻ 0 and R ⪰ 0 to formulate the stage and

terminal cost value function of the form (13);
2) Choose the gain K stabilizing the pair (Ad,Bd);
3) Compute the mRPI set Z as proposed in [17];
4) Compute the terminal ingredients subject to the con-

straint V⋆ ≜ Ṽ ⊖KZ as in Proposition 2.
Remark 4: To avoid computational issues caused by the

system’s large dimensionality, we do not employ the com-
putation of the maximal positively invariant set [19] for
the closed-loop x̃k+1 = Aclx̃k to play the role of the
terminal region Ef . More specifically, although proven finite,
the number of equalities portraying such a set for this
6 dimensional problem may exceed the memory capacity
provided for the computation software. Yet, if the polyhedral
set can be computed, the terminal constraints Ef will become
linear, as opposed to being quadratic as in (12), and reduce
the complexity of the online problem (22)-(23).

Nevertheless, with these setups, the control input applied
to the system (21a) is defined as:

ṽk = ṽmpc
Np

(x̃k) ≜ ṽ∗
k +K(x̃k − x̃∗

k). (24)
Consequently, with this scheme, as proven in [16], the set Z
is robustly exponentially stable for the closed-loop:

x̃k+1 = Adx̃k +Bdṽ
mpc
Np

(x̃k) +w. (25)
Namely, x̃k is maintained inside the “tube” x̃∗

k ⊕ Z which
converges to Z when k →∞. In other words, one can state:

xk − xref
k = x̃k ∈ x̃∗

k ⊕Z ⇔ xk ∈ xref
k ⊕ x̃∗

k ⊕Z (26)
with x̃∗

k exponentially converges to 06×1. With the sequence
of the reference for xk and vk denoted as xref ,vref , respec-
tively, the control implementation is given by Algorithm 1.

Algorithm 1: Robust MPC for trajectory tracking

Input: Reference sequence xref ,vref ; the
optimization setup as in (22)-(23).

1 for (xref
k ,vref

k ) in xref × vref do
2 Measure xk and ψ at time step k;
3 Compute x̃∗

k and ṽ∗
k by solving (22)-(23);

4 ṽmpc
Np
← ṽ∗

k +K(x̃k − x̃∗
k) as in (24);

5 uk ← φψ(v
ref
k + ṽmpc

Np
) as in (4);

6 Apply uk to the vehicle;
7 end

IV. EXPERIMENTAL VALIDATION
The experiments are done over the Crazyflie 2.1 quad-

copter platform where the drone’s inputs are the desired
thrust, roll and pitch angles, gathered in the vector uk,
together with the desired yaw angle, assigned to zero.
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Fig. 2. Two references employed for the experimental validation.

Furthermore, the position and velocity of the quadcopter
are acquired via a system of 8 Qualisys motion capture
cameras. Note that the platform expects the normalized thrust
T (m/s2) to be converted into the quadcopter’s unit which
varies from 0 to 65535. Then, these signals will be tracked
via a built-in inner-loop containing two cascade PID and
a transformation from the required torque to PWM signals
designed for the drone’s X-shape configuration [20].

A. Parameter setup

Firstly, the reference is required to be at least two time
differentiable to guarantee the continuity and boundedness of
vref as in (20b). Herein, two references are used as follows:

• Ref. 1: The position of the drone will be parameterized
in time with the B-spline method [11]. More specifi-
cally, at timestamp tr (s), we imposed the position of
the drone to pass through a waypoint pr as:

p⊤
r ∈


[6, 0, 3]; [6, 3, 5]; [6, 6, 10];

[0, 6, 10]; [−6, 6, 10]; [−6,−6, 10];
[6,−6, 10]; [6, 0, 10]; [6, 6, 10]

× 10 (cm),

(27)
with tr ∈ N9(0, 45) (s). Then, by minimizing the
curve’s length and restraining their second derivatives
(which is the mathematical interpretation of vref

k ) inside
V in
c , we obtain the green solid curve depicted in Fig. 2.

• Ref. 2: The circular motion is parameterized as:
xref(t) = 0.6 cosωt, yref(t) = sin 0.6ωt,

z(t) = 0.5 (m), ω = 0.2π rad/s,
(28)

and illustrated as the purple curve in Fig. 2. Note that at
the beginning and the end of the reference, we introduce
smooth curves to reduce the overshoot effect caused by
introducing a sudden reference.

Consequently, Vref
c as in (20b) can be obtained by bounding

the vref with a box-type constraint (See Fig. 3).
The parameter of constraint set U as in (3) is provided

in Table I while the corresponding constraint Vc is approxi-
mated by V in

c as in (7) with s1 = 10, s2 = 3 which accounts
for 91.9% of Vc as in (6). Finally, the disturbance set W as
in (18) is considered to be bounded as:

W = {w : |lw| ≤ 0.02, l = 1, ..., 6}, (29)
which is estimated from our data of the difference between
the system predicted and actual behavior after the same
control action [6]. The set was intentionally chosen to be
symmetric so that the heavy computation of the mRPI set Z
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in 6 dimensional space is reduced to that of the three double
integrators as in (19) and their Cartesian product.

Fig. 3. Two input vref of the two references and their bounding boxes.

B. Controller tuning

First, Q,R in (22) are chosen in the following form:®
Q = diag(Q∗,Q∗,Q∗);Q∗ ≜ diag(µp, µv);
R = diag(µr, µr, µr),

(30)

where µp, µv, µr can be interpreted as the penalties for the
deviation in position, velocity and input from the reference.
The gain K in (23c) is found by placing the poles pi, i ∈
{1, ..., 6} in continuous time and computing the correspond-
ing poles via the Z-transformation (i.e., zi = epits ) for the
closed-loop Acl = Ad + BdK. We proceed to choose the
poles in continuous time as:
p1 = p2 = p3 = −4µK and p4 = p5 = p6 = −5µK , (31)

with the intention of analyzing the effect of choosing poles
with different rise times or convergence rates. Then we
provide some criteria for choosing the gain and matrices
appropriately. Illustrative examples for the tracking problem
of Ref. 1 are given to analyze the closed-loop characteristics.
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Fig. 4. Effect of changing the gain K towards fast closed-loop convergence,
projected into the first two axes of x̃k (1x̃k-horizontal, 2x̃k-vertical).

On one hand, as mentioned in Remark 3 and Proposition 2,
for the nominal system, the stabilizing gain K also needs to
be chosen so that 06×1 ∈ X̃ ≜ {x̃ : Kx̃ ∈ V⋆}. Meanwhile,
under the presence of W , K needs to stabilize the closed-
loop robustly or fast enough so that the corresponding mRPI
set Z in (23b) becomes satisfactory in terms of size. More
specifically, as Z represents the bound of the tracking error,

TABLE I
CONTROLLER’S PARAMETERS AND SYSTEM’S SPECIFICATION

Parameters Values
Sampling time ts (s) 0.2

Prediction horizon Np 10 steps
Tmax, ϵmax in (3) 1.45g ≈ 14.22m/s2; 0.1745 rad

(µK , µp, µv , µr) in (30)-(31) (0.5, 50, 15, 25)

it reflects the controller’s performance guarantee. With these
observations, firstly, we would like to choose the gain K
as “aggressive” as possible, or in our settings, µK as large
as possible. Secondly, the choice of gain K is also tangled
with the size of Ef which necessarily requires including Z
(i.e., Z ⊂ Ef ) so that the input constraints Kx̃ ∈ V⋆ =
Ṽ ⊖KZ are also satisfied inside Z , and so is the closed-
loop performance. Therefore, as illustrated in Fig. 4, the two
last choices of µK = 1.0 and 1.25 violate the latter, while
the first choice µK = 0.25 results in a poor guarantee for the
closed-loop (with the weighting fixed as µq = 50, µv = 15
and µr = 25) as stated in the former principle.

On the other hand, after the suitable choice of K fixing
the set Z , it is also possible to modify the set Ef with Q and
R. The motivation for this adjustment comes from the fact
that, for the stabilization of system (21), Ef⊕Z plays the role
of the new terminal region for the system’s tube trajectory
[16]. Therefore, for a given initial tracking error point, the
set can be modified to be “closer” or even to include the
point, hence, resulting in a shorter prediction interval Np.
Depending on how the penalty weights are chosen, the set
Ef can be characterized to some extent, while the condition
Z ⊂ Ef also needs to be ensured. For the experiments, the
weighting matrices and gain are given in Table I.

C. Experimental results and discussion

Fig. 5 and Fig. 6 show the position tracking performance
and how the tracking error of the quadcopter is restrained
inside the tube Z , respectively. Numerical details are also
given in Table II where, the matrix P is represented as:

P ≜ diag(P ∗,P ∗,P ∗). (32)

Fig. 5. Position tracking with the two references.

Overall, it can be seen that the controller is successfully
implemented and verified within the flight tests with around
3-5 cm in root-mean-square (RMS) of tracking error1 and
under 40ms for the average computation time at each control
loop (see Fig. 7). These results show that not only is the
performance guaranteed, but also that the method is com-
putationally efficient thanks to the linear model prediction
obtained via the coordinate change.

It is also noticeable that, although later adequately con-
cealed in the tube, there are significant overshoots of errors
at the beginning of both flights. This problem comes from

1RMS= 1
3

∑
q=1,3,5

»
N−1

s
∑Ns

ℓ=1(
qxk − qxref)2, Ns is the num-

ber of simulation steps.
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Fig. 6. Tracking error x̃k for Ref. 1 (top) and Ref. 2 (bottom).

TABLE II
EXPERIMENTAL RESULTS AND CONTROL PARAMETERS

Ref. 1 Ref. 2
RMS of tracking error 3.25 cm 5.46 cm

Average computation time 39.40 ms 38.11 ms

P ∗ as in (32)
ï
513.54, 328.59
328.59, 356.89

ò ï
542.18, 329.80
329.80, 368.92

ò
εf as in (12) 8.7104 6.0724

the fact that the drone starts from a static state with zero
angular velocity of the propellers, which later entails a
sudden acceleration of the vehicle. However, all three inputs
are not saturated and remain constrained in their bounds, as
can be seen from Fig. 8.
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Fig. 7. Computation time for the proposed MPC scheme.

V. CONCLUSION
This paper presented a procedure to implement the robust

trajectory tracking for a quadcopter based on tube MPC.
The main advantage came from the problem reformulation
through differential flatness, which transformed the nonlinear
system into chains of integrators in closed-loop. Further-
more, an approximation of the feasible domain was given
to convert the original tracking problem into a constrained
stabilization problem under disturbances. Then, with a robust
MPC setup for linear systems, the tracking performance was
guaranteed along the trajectory without any approximation.
The controller was successfully applied and validated via
experimental tests. Further work will concentrate on multi-
quadcopters formation stability and robustness guarantees.
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