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Abstract— Distributed observer design is critical for large-
scale systems to collectively estimate the system state via
networked sensors. In this paper, we propose a novel distributed
observer scheme for estimating the states of a class of nonlinear
systems. Unknown and time-varying communication delays are
considered due to ubiquitous network latency when information
is exchanged among observer nodes. Based on the Lyapunov
stability criterion, a set of linear matrix inequalities (LMIs)
are derived for the design of observer gains, which ensure
asymptotic convergence of the state estimates to the true
state trajectories in the presence of communication delays.
Simulation results are given to validate the effectiveness of the
proposed method and its advantage over a recent approach
without considering communication delays.

I. INTRODUCTION

In recent years, there have been many modern systems
that are large-scale cyber-physical systems (LSCPS), which
involve a large number of networked sensors that interact
with each other, such as smart power grids, traffic networks,
water systems, etc. Real-time monitoring of the states of
LSCPSs is taken by a set of spatially distributed sensors that
are unable to individually observe all states of the system.
Classical centralized state estimation requires all nodes to
transmit their measurements to a central computational unit,
which leads to high communication costs and risks for
LSCPSs. In this situation, the distributed state estimation
scheme can circumvent such a limitation, where each local
observer estimates the entire state of the system by exploiting
the local measurements and the information shared from its
neighbors over a communication network.

In the literature, the general idea of distributed state
estimation is to extend the centralized observer design
method for linear systems by considering data exchange
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over the communication network. In [1]–[3], the classical
Kalman filtering approach was modified to the distributed
estimation network, where each node reaches consensus with
their neighboring estimators. Alternatively, [4]–[6] dealt with
a Luenberger-type observer, which was extended from a
traditional Luenberger observer by introducing a consen-
sus term. In particular, [6] achieved a decentralized design
for continuous-time linear time-invariant (LTI) systems. By
transforming the systems to the real Jordan canonical form,
another decentralized design for distributed observers was
proposed in [7]. In [8], by introducing the augmented states,
the necessary and sufficient conditions were developed for
the existence of parameter choice for the distributed ob-
servers. In [9], by exploiting the method of multi-sensor
observable canonical decomposition, a kind of Luenberger-
based distributed observer was designed for discrete-time LTI
systems. By introducing the notion of ρ-hop output matrix,
a distributed state estimation approach was developed based
on an iterative decomposition in [10]. In [11] and [12], the
authors proposed a kind of distributed observers that can
achieve asymptotic convergence of state estimation error at
a pre-assigned convergence rate. More recently, by utilizing
the Volterra operator and non-asymptotic kernels, [13], [14]
proposed the design of kernel-based distributed finite-time
observers, which enable each node to reconstruct the states
of the system within a fixed time interval.

In addition to the aforementioned studies concerning linear
autonomous systems, more complex scenarios have been
addressed recently, including nonlinearities, unknown input,
dynamic network graph, etc. More specifically, in [15]–
[17], the time-varying network topology was investigated.
To address unknown external disturbance and measurement
noise, a robust distributed observer design was proposed in
[18]. In [19], the authors addressed the challenge imposed on
distributed state estimation, where each observer is requested
to recover the full state vector in the presence of locally
unknown input signals. In [20] and [21], the resilient state
estimation problem was studied to improve the reliability
of observer schemes in adversarial environments. In terms
of ubiquitous network and sensing delays imposed on the
distributed estimation problem, [22]–[24] provided solutions
for constant delays, while time-varying delays are addressed
in [25] and [26]. Moreover, distributed state estimation for
nonlinear systems was investigated in [27]–[29].

In contrast to existing work, where communication delays
and nonlinearities are separately studied, this paper aims to
solve the distributed estimation problem with consideration
of both aspects. As illustrated in Fig. 1, a Luenberger-type
distributed state is designed, where each local observer has
access to its local measurement and delayed information
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from neighboring sensors. The design criteria of the observer
gains are reduced to linear matrix inequalities (LMIs) accord-
ing to the Lyapunov stability criterion. It has been shown
that the design can sufficiently guarantee the asymptotic
convergence of each local observer. To show the effectiveness
and advantages of the proposed design over existing methods,
we compare our method with a recently proposed approach
[30] for nonlinear systems, but ignoring communication
delays.

O1 O2 O3 O4

delay delay

ẋ(t) = Ax(t) + f (x(t)) +Bu(t)
yi(t) = Cix(t)

u(t)
y1(t)

u(t)
y2(t)

u(t)
y3(t)

u(t)
y4(t)

Fig. 1. An example of distributed observer consisting of 4 nodes: each
local observer Oi has access to the input and local measurement u(t) and
yi(t). Furthermore, neighboring estimates are exchanged over an undirected
communication network (dashed line), which may suffer from information
transmission delays.

The organization of this paper is as follows. In Section II,
we present the key notation. In Section III, the problem
of distributed estimation for a class of nonlinear systems
with communication delays is formulated. In Section IV, we
present the design of the distributed observer. The simulation
results are given in Section V. Concluding remarks and future
work are presented in Section VI.

II. PRELIMINARIES

A. Notation

Throughout the paper, the following notation is consid-
ered. R is the set of real numbers. R>0 denotes the set of
positive real numbers. In denotes the n× n identity matrix.
0n×m is an n ×m all-zeros matrix, and for simplicity, we
assume that 0 is appropriately sized according to the context.
∥·∥ is the standard Euclidean norm. ⊗ denotes the Kronecker
product.
For a square matrix M , let M ≻ 0 or M ⪰ 0 if it is sym-
metric positive definite or symmetric positive semi-definite.
Given matrices M1,M2, . . . ,Mn, diag(M1,M2, . . . ,Mn)
denotes the block diagonal matrix composed of M ’s,
and col(M1,M2, . . . ,Mn) denotes the stacked matrix
[M⊤

1 ,M⊤
2 , · · · ,M⊤

n ]⊤.

B. Graph Theory

Communication among network observers is described
by an undirected graph denoted by G = (N, E ,A) where
N = {1, 2, . . . , N} is a finite nonempty set of nodes of
the graph (describing the N sets of observers with local
sensors), E ⊆ N × N represents the edges of the graph
(describing communication links among the nodes) and A =
[aij ] ∈ RN×N is the adjacency matrix where aij is positive
if there exists an edge between Node i and Node j, and it
is zero otherwise. Moreover, we define an undirected graph

as connected if there is a path of edges between each two
nodes of the graph.

Define the Laplacian matrix associated with the graph G
as L := D −A where the i-th entry of the diagonal matrix
D is given by di =

∑N
j=1 aij .

III. PROBLEM STATEMENT

Consider a class of nonlinear systems in the form

ẋ(t) = Ax(t) + f (x(t)) +Bu(t),

yi(t) = Cix(t), i ∈ N,
(1)

where x ∈ Rn represents the state vector, u ∈ Rm is the
control input, A ∈ Rn×n is the state matrix, B ∈ Rn×m

denotes the input matrix, f(x) ∈ Rn is a nonlinear function
of the states, and yi ∈ Rpi is the measurement output in
the i-th node. Accordingly, Ci ∈ Rpi×n is the output matrix
associated with the i-th node. In this condition, the collection
of all the outputs can be represented as

y(t) = col (y1(t), y2(t), · · · , yN (t))

with
∑N

i=1 pi = p. Next, we introduce some essential
assumptions about the described system with distributed
measurements.

Assumption 1: The communication graph associated with
the observer network is connected.

Assumption 2: The matrix A is constructed such that
the system is jointly observable, i.e., the pair (C,A) is
observable where C = col(C1, C2, · · · , CN ), but (Ci, A) is
not necessarily observable for all i ∈ N.

Assumption 3: We assume that x belongs to a domain D ,
such that f(x) is Lipschitz on D as follows [31]–[33]:

∥f(x1)− f(x2)∥ ≤ γ∥x1 − x2∥,∀x1, x2 ∈ D ,

where γ ∈ R>0.
Assumption 4: We assume unknown time-varying delays

τij , ∀(i, j) ∈ E , exist between communication links in the
sensor network. The universal bound of τij , ∀(i, j) ∈ E , is
known as a finite number τ̄ .

Considering nonlinear system (1), the objective is to ex-
ploit the joint observability property of the system to design
a network of distributed observers such that, in spite of the
existence of communication delays subject to Assumption 4,
the estimated states of each observer converge to the states
of the system as

lim
t→∞

(x̂i(t)− x(t)) = 0n×1, ∀i ∈ N.

The observer scheme and the analytical results are stated
in the next section.

IV. OBSERVER DESIGN AND ANALYSIS

Suppose that all nodes have synchronized clocks and that
all data transmissions have time stamps [26]. By utilizing the
buffers, the distributed observer at node i, i ∈ N, is designed
as
˙̂xi(t) =Ax̂i(t) + Li

(
Cix̂i(t)− yi(t)

)
+ f(x̂i(t)) +Bu(t)

+ χP−1
i

( N∑
j=1

aij
(
x̂j(t− τ̄)− x̂i(t− τ̄)

))
(2)
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where Li ∈ Rn×pi and Pi ∈ Rn×n are the observer gains
that will be designed in the following section. χ ∈ R>0 is
a positive scalar number, which assigns the weight of the
consensus part

∑N
j=1 aij

(
x̂j(t− τ̄)− x̂i(t− τ̄) in (2).

To illustrate the main result, we introduce the following
lemma [34]:

Lemma 1: For a vector-valued function δ(t) ∈ Rnδ , if
its first order derivative exists and is continuous, then the
following inequality

−
∫ t

t−τ

δ̇(s)⊤Rδ̇(s)ds

≤
[

δ(t)
δ(t− τ)

]⊤ [
M⊤

1 +M1 −M⊤
1 +M2

−M1 +M⊤
2 −M⊤

2 −M2

] [
δ(t)

δ(t− τ)

]
+ τ

[
δ(t)

δ(t− τ)

]⊤ [
M⊤

1

M⊤
2

]
R−1

[
M1 M2

] [ δ(t)
δ(t− τ)

]
(3)

holds for any matrices M1,M2, R ∈ Rnδ×nδ and R = R⊤ ≻
0, and a scalar τ ≥ 0.

In order to introduce the LMI condition for our design, let
us introduce the matrix Yi ∈ Rn×pi , i ∈ N, which is defined
as Yi = PiLi. As a consequence, the observer gains Li can
be obtained by Li = P−1

i Yi.
Theorem 1: Consider the nonlinear system described in

(1) under Assumptions 1-4 and the distributed observers
given in (2). The estimation error ei(t) = x(t) − x̂i(t),
i ∈ N, converges to zero if there exist matrices M1 and
M2, positive definite symmetric matrices Pi and Qi, i ∈ N,
positive numbers αi, i ∈ N, introduced matrices Yi, i ∈ N,
positive tuning variables χ and µ, such that the following
LMIs are satisfied

Φ ≺ 0 (4a)
R− µP ≺ 0 (4b)
P − InN ≻ 0 (4c)

where

Φ =



η11 η12 Ā⊤ M⊤
1

√
γP Ā⊤ γR 0

η⊤12 η22 η23 M⊤
2 0 0 0 η28

Ā η⊤23 η33 0 0 0 0 0
M1 M2 0 − 1

τ̄R 0 0 0 0√
γP 0 0 0 −InN 0 0 0
Ā 0 0 0 0 η66 0 0
γR 0 0 0 0 0 η77 0
0 η⊤28 0 0 0 0 0 η88


(5)

with

η11 = Λ+Q+ γInN + τ̄ γ2R+M⊤
1 +M1

η12 = −χ(L ⊗ In)−M⊤
1 +M2

η22 = −Q− (M⊤
2 +M2)

η23 = −χ(L ⊗ In), η33 = − 1

τ̄µ
P

η28 = (L ⊗ In), η66 = −1

τ̄
P

η77 = − 1

(χ+ 1)τ̄
InN , η88 = − 1

τ̄χ
P

(6)

P = diag(P1, P2, · · · , PN )

Q = diag(Q1, Q2, · · · , QN )

R = diag(α1In, α2In, · · · , αNIn)

Λi = A⊤Pi + PiA+ C⊤
i Y ⊤

i + YiCi

Λ = diag(Λ1,Λ2, · · · ,ΛN )

Ā = diag(P1A+ Y1C1, · · · , PNA+ YNCN )

(7)

Proof: The time derivative of estimation error ei(t),
i ∈ N, follows

ėi(t) =(A+ LiCi)ei(t) + f(x(t))− f(x̂i(t))

− χP−1
i

( N∑
j=1

aij
(
ei(t− τ̄)− ej(t− τ̄)

)) (8)

Consider the following Lyapunov-Krasovskii functional

V (t) =

N∑
i=1

ei(t)
⊤Piei(t) +

N∑
i=1

∫ t

t−τ̄

e⊤i (s)Qiei(s)ds

+

N∑
i=1

∫ 0

−τ̄

∫ t

t+θ

αiėi(s)
⊤ėi(s)dsdθ

(9)

The derivative of V (t) along the error’s trajectory satisfies

V̇ (t) =

N∑
i=1

ei(t)
⊤((A+ LiCi)

⊤Pi + Pi(A+ LiCi)
)
ei(t)

− 2χ

N∑
i=1

N∑
j=1

aijei(t)
⊤(ei(t− τ̄)− ej(t− τ̄)

)
+ 2

N∑
i=1

ei(t)
⊤Pi

(
f(x(t))− f(x̂i(t))

)
+

N∑
i=1

ei(t)
⊤Qiei(t)−

N∑
i=1

ei(t− τ̄)⊤Qiei(t− τ̄)

+ τ̄

N∑
i=1

αiėi(t)
⊤ėi(t)−

N∑
i=1

∫ t

t−τ̄

αiė
⊤
i (s)ėi(s)ds

(10)
According to Assumption 3, one gets

2

N∑
i=1

ei(t)
⊤Pi

(
f(x(t))−f(x̂i(t))

)
≤2γ

N∑
i=1

∥ei(t)∥∥Piei(t)∥

(11)
Let e = col(e1, e2, · · · eN ). Since 2∥ei∥∥Piei∥ ≤ e⊤i ei +
e⊤i P

2
i ei, one can obtain

2

N∑
i=1

ei(t)
⊤Pi

(
f(x(t))−f(x̂i(t))

)
≤ γe(t)⊤(INn+P 2)e(t)

(12)
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In view of (8), it holds that

N∑
i=1

αiėi(t)
⊤ėi(t)

= e(t)⊤A⊤
LRALe(t) + F (t)⊤RF (t) + 2e(t)⊤A⊤

LRF (t)

− 2χe(t)⊤A⊤
LRP−1(L ⊗ In)e(t− τ̄)

+ χ2e(t− τ̄)⊤(L ⊗ In)P
−1RP−1(L ⊗ In)e(t− τ̄)

− 2χe(t− τ̄)⊤(L ⊗ In)P
−1RF (t)

(13)
where

AL = diag(A+ L1C1, A+ L2C2, · · · , A+ LNCN )

F (t) = col
(
f(x(t))− f(x̂1(t)), · · · , f(x(t))− f(x̂N (t))

)
From Assumption 3, we have

F (t)⊤RF (t) ≤ γ2e(t)⊤Re(t)

2e(t)⊤A⊤
LRF (t) ≤ e(t)⊤(A⊤

LAL + γ2R2)e(t)
(14)

and

− 2e(t− τ̄)⊤(L ⊗ In)P
−1RF (t)

≤ e(t− τ̄)⊤(L ⊗ In)P
−2(L ⊗ In)e(t− τ̄)

+ γ2e(t)R2e(t)

(15)

By applying Lemma 1, we can obtain

−
N∑
i=1

∫ t

t−τ̄

ėi(s)
⊤Riėi(s)ds ≤

[
e(t)

e(t− τ̄)

]⊤
×
[
M⊤

1 +M1 −M⊤
1 +M2

−M1 +M⊤
2 −M⊤

2 −M2

] [
e(t)

e(t− τ̄)

]
+ τ̄

[
e(t)

e(t− τ̄)

]⊤ [
M⊤

1

M⊤
2

]
R−1

[
M1 M2

] [ e(t)
e(t− τ̄)

]
=

[
e(t)

e(t− τ̄)

]⊤ [
ω11 ω12

ω21 ω22

] [
e(t)

e(t− τ̄)

]
(16)

where

ω11 = M⊤
1 +M1 + τ̄M⊤

1 R−1M1

ω12 = ω⊤
21 = −M⊤

1 +M2 + τ̄M⊤
1 R−1M2

ω22 = −M⊤
2 −M2 + τ̄M⊤

2 R−1M2

(17)

By applying (12)-(16) to (10), it can be obtained that

V̇ (t) ≤
[

e(t)
e(t− τ̄)

]⊤
Σ

[
e(t)

e(t− τ̄)

]
(18)

where

Σ =

[
σ11 σ12

σ⊤
12 σ22

]
(19)

with

σ11 = Λ+Q+ γ(INn + P 2) + τ̄(A⊤
LRAL + γ2R

+A⊤
LAL + γ2R2 + χγ2R2) + ω11

σ12 = −χ(L ⊗ In)− τ̄χA⊤
LRP−1(L ⊗ In) + ω12

σ22 = −Q+ τ̄χ2(L ⊗ In)P
−1RP−1(L ⊗ In)

+ τ̄χ(L ⊗ In)P
−2(L ⊗ In) + ω22

(20)

Owing to (4b) and (4c), it is immediate to show

−PR−1P ≺ − 1

µ
P

−P 2 ≺ −P

(21)

Next, in view of the equation of Φ in (5), combining the
LMI (4a), we construct a matrix Ψ, such that

Ψ ≺ Φ ≺ 0 (22)

where

Ψ =



η11 η12 Ā⊤ M⊤
1

√
γP Ā⊤ γR 0

η⊤12 η22 η23 M⊤
2 0 0 0 η28

Ā η⊤23 η̃33 0 0 0 0 0
M1 M2 0 − 1

τ̄R 0 0 0 0√
γP 0 0 0 −InN 0 0 0
Ā 0 0 0 0 η̃66 0 0
γR 0 0 0 0 0 η77 0
0 η⊤28 0 0 0 0 0 η̃88


(23)

with

η̃33 = −1

τ̄
PR−1P, η̃66 = −1

τ̄
P 2, η̃88 = − 1

τ̄χ
P 2 (24)

Then, pre- and post-multiplying diagonal matrices

diag(InN , InN , RP−1, InN , InN , P−1, InN , P−1)

and

diag(InN , InN , P−1R, InN , InN , P−1, InN , P−1)

on the matrix inequality Ψ ≺ 0 respectively, one can obtain
a matrix inequality

Θ ≺ 0 (25)

where

Θ =

η11 η12 A⊤
LR M⊤

1
√
γP A⊤

L γR 0
η⊤12 η22 η̂23 M⊤

2 0 0 0 η̂28
RAL η̂⊤23 − 1

τ̄R 0 0 0 0 0
M1 M2 0 − 1

τ̄R 0 0 0 0√
γP 0 0 0 −InN 0 0 0
AL 0 0 0 0 η̂66 0 0
γR 0 0 0 0 0 η77 0
0 η̂⊤28 0 0 0 0 0 η̂88


(26)

with

η̂23 = −χ(L ⊗ In)P
−1R, η̂66 = −1

τ̄
InN

η̂28 = (L ⊗ In)P
−1, η̂88 = − 1

τ̄χ
InN

(27)

According to the Schur Complement [35], combining the
matrix-blocking of Θ in (26), (25) further implies

Σ ≺ 0 (28)

which guarantees V̇ (t) < 0. Therefore, V (t) asymptotically
converges to zero and the proof is completed.
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V. SIMULATION EXAMPLE

In this section, a numerical example is performed to show
the effectiveness of the proposed observer design and the
results are benchmarked against a method [30], where the
communication delay is ignored. Consider a system in the
form of (1) with x =

[
x(1) x(2) x(3)

]⊤ ∈ R3 and x(0) =[
1 −1.5 −1

]⊤
,

A =

−0.7 0 −0.3
0 −0.6 0.0
0.5 0 0.4

 , B =

11
1



C1 =
[
0 0 1

]
, C2 =

[
1 0 0

]
, C3 =

[
0 0 1

]
C4 =

[
0 0 1

]
, C5 =

[
0 1 0

]
and the nonlinear function

f(x) =

 0.5sin(x(1))
0.05x(2)cos(x(2))

0.3sin(x(3))cos(x(3))


with the Lipschitz constant γ = 0.5.

The communication among agents is modelled by an
undirected graph shown in Fig. 2 whose Laplacian is given
by

L =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2


And the time-varying delays existing in the communication
network between sensor nodes are bounded by τ̄ = 0.198.

O1

O2

O3 O4

O5

Fig. 2. Network communication topology in simulation example. The
communication between sensor nodes is subject to time-varying delays
bounded by τ̄ = 0.198.

Following the distributed observer design in (2), the ob-
server gains are obtained by solving the LMIs defined in (4),
shown as follows:

L1 =

 0.2255
−0.0000
−2.9461

 , L2 =

−1.9619
0.0000
−0.5024

 , L3 =

 0.2956
−0.0000
−3.0698


L4 =

 0.1449
0.0000
−3.0702

 , L5 =

−0.0000
−1.7630
0.0000



0 1 2 3 4 5 6 7 8 9 10

Time [s]

-10

0

10

20

30
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-10
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10

20

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-40

-20

0

Fig. 3. The estimated states of observer 5 following (2) and the states of
the system.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

2.5

Fig. 4. Norm of estimation errors of the observers designed in (2).

P1 =

 1.5143 0.0000 −0.0465
0.0000 1.5909 0.0000
−0.0465 0.0000 2.6166


P2 =

 2.3281 −0.0000 0.1836
−0.0000 1.6240 −0.0000
0.1836 −0.0000 1.0261


P3 =

 1.6315 0.0000 −0.1007
0.0000 1.6382 0.0000
−0.1007 0.0000 2.5763


P4 =

 1.6491 −0.0000 −0.0439
−0.0000 1.6267 0.0000
−0.0439 0.0000 2.5635


P5 =

 2.0594 −0.0000 0.0775
−0.0000 2.1713 0.0000
0.0775 0.0000 1.0062


and the weight of consensus term is χ = 1.25.

The simulation results are shown in Fig. 3-Fig. 5. Fig. 3
shows that, in the presence of bounded time-varying com-
munication delays, the entire states of the system are locally
reconstructed at node 5. In Fig. 4, the estimation errors
of each observer designed according to (2) asymptotically
converge to zero. Compared with a recent study [30] without
considering communication delays, Fig. 5 shows that its
estimation errors of the estimated states do not converge,

766



0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

15

20

Fig. 5. Norm of estimation errors of the observers designed in [30].

which verifies the benefits of the proposed design.

VI. CONCLUSIONS

In this study, we introduced a distributed observer design
tailored for a class of nonlinear systems, when information
transmission among local observers is affected by unknown
and time-varying delays. The analysis shows that the design
of the observer gains can be reduced to a set of LMIs,
which can be easily solved and leads to an asymptotic stable
distributed observer scheme. Numerical results demonstrate
the advantages of the proposed method over traditional ap-
proaches. This work sets the foundation for robust distributed
observer designs against communication faults for large-
scale systems. In our future research, we plan to modify
the proposed model to factor in process and measurement
noise and to expand the spectrum of nonlinear systems under
observation.
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