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Abstract— This paper presents an approach for the design of
globally asymptotically stable pose and velocity-bias observers.
Based on the generic framework for pose and velocity-bias
observers, we construct synergistic potential functions on SE(3)
and SO(3) via angular warping and use the gradients of the
formers to construct innovation terms. Under the synergistic-
based hybrid method, different potential functions are selected
along with the innovation terms to avoid the undesired critical
points on the manifold. The proposed observer can be expressed
in terms of measurements and modified measurements in some
cases. Simulations are also conducted to show the advantages
of the synergistic-based hybrid observer over the reset-based
hybrid observer.

I. INTRODUCTION

These years have seen an increasing demand for the devel-
opment of robust pose (i.e., position and attitude) estimation
algorithms for various applications such as unmanned aerial
vehicles, robots and autonomous underwater vehicles [1].
Based on whether the dynamics of the considered system
are utilized, the estimation algorithms can be categorized
as the static determination algorithms and the dynamic
estimation algorithms, with the formers directly constructing
the state information utilizing measurements [2] while the
latters combining the system dynamics with measurements
to recover the attitude or pose information, in the sense that
the noise disturbance is suppressed. The filters and observers
are the two main dynamic estimation methods. The filters,
such as Kalman filters [3], unscented Kalman filters [4] and
particle filters [5], are constructed with stability property that
is difficult to prove rigorously. In contrast, the observers
are derived in the deterministic systems framework whose
stability can be proven via Lyapunov theory.

In recent years, a class of nonlinear attitude and pose
estimation algorithms (observers), mostly derived on SO(3)
and SE(3), respectively, have appeared and attracted the
interest of many researchers. This approach, also called
nonlinear observers, extracts the attitude or pose information
from measurements by introducing an innovation term to
the kinematic prediction term [6], and the innovation term
is mostly determined by incorporating latest estimates and
measurements. Nonlinear observers date back to the work
of Salcudean [7], and are greatly extended by Mahony et al
[6]. Early works about nonlinear observers are constructed
on SO(3) for attitude estimation problems [6], [8]. Motivated
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by these works, nonlinear pose observers are then developed
on SE(3) [9]-[13], among which, different pose observers
are designed to pursue different properties, while almost the
same gradient-based observer frame is considered, where a
right invariant non-degenerate Morse-Bott cost function is
constructed and its gradient is used to form the innovation
term to correct the estimates. Because of the topological
obstruction on SE(3), these classical smooth gradient-based
observers can only achieve almost global stability, i.e., the
pose converges to the actual one from almost any initial
condition except from a set of measure zero. In fact, when
the pose on the manifold is near the unstable critical points,
it shows to converge slowly [2]. To achieve global stability,
the generic gradient-based approach for hybrid estimation on
SE(3) was utilized in [1], [14]. This approach, motivated by
[15], avoids the undesired critical points by directly changing
the point (i.e., the pose) close to the undesired critical
points on the manifold, to another point in the decreasing
direction of cost function. In [2], [16], utilizing the angular
warping method, a central family of synergistic potential
functions on SO(3) was constructed and then used in the
innovation term. The resulting synergistic potential functions
have different undesired critical points but share the same
desired critical point. By switching the synergistic potential
functions utilized to form the innovation term, the undesired
critical points can be avoided successfully. This approach
leads to globally stable observers on SO(3).

In this paper, we are devoted to deriving a hybrid pose
and velocity-bias observers on SE(3) with global asymptotic
stability. Inspired by [2], [15], [16], we utilize the angular
warping method to construct synergistic potential functions
on SE(3) and SO(3) and then use the gradients of the formers
in the innovation term of the observers. We show that un-
der necessary but practically reasonable assumptions, global
asymptotic stability is guaranteed. The proposed hybrid pose
observer is also re-expressed in terms of measurements and
modified measurements in some cases.

The rest of the paper is organized as follows: Section
II introduces preliminaries. The problem is formulated in
Section III. In Section IV, the hybrid observer is designed
and expressed in explicit form in some cases. Simulations
are conducted in Section V. Conclusions are drawn in Section
VI.

II. BACKGROUND
A. Notations

Throughout this paper, we denote the sets of real, nonnega-
tive real and natural numbers by R, R+ and N, respectively.
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Let Rn denote the n-dimensional Euclidean space and let
Sn denote the unit n-sphere embedded in Rn+1. For two
matrices A,B ∈ Rm×n, their Euclidean inner product is
defined as ⟨⟨A,B⟩⟩ = tr(ATB). Let the Euclidean norm
of a vector x ∈ Rn be defined as ||x|| =

√
xTx, and let

the Frobenius norm of a matrix X ∈ Rn×m be defined
as ||X||F =

√
⟨⟨X,X⟩⟩. For a square matrix A ∈ Rn×n,

we use λAi , λ
A
min, λ

A
max to denote, respectively, the i-th, the

minimum and maximum eigenvalue of A. We define E(A)
as the set of all eigenvectors of A.

B. Pose Representation and Preliminaries

We denote the inertial frame by I and body-fixed frame
of a rigid body by B. Let p ∈ R3 denote the rigid body
position expressed in I, and R ∈ SO(3) denote the attitude
of B relative to I, expressed in I. The angular velocity and
translational velocity of B with respect to I expressed in B
are denoted by ω ∈ R3 and v ∈ R3, respectively.

We define the map (·)× : R3 → so(3) such that x×y =
x× y for any x, y ∈ R3. Define vex() : so(3) → R3 as the
inverse operation of (·)× satisfying vex(ω×) = ω for ω ∈ R3

and (vex(Ω))× = Ω for Ω ∈ so(3). We use the elements on
3-dimensional Special Euclidean group SE(3) = SO(3) ×
R3 to represent the pose of a rigid body, which is given by

g =

[
R p
0 1

]
∈ R4×4.

Denoting by se(3) the Lie algebra of SE(3), we have

se(3) = {X ∈ R4×4|X =

[
ω× v
0 0

]
, ω, v ∈ R3}.

Define a wedge map (·)∧ : R6 → se(3) as

ξ∧ =

[
ω× v
0 0

]
, ξ =

[
ω
v

]
, ω, v ∈ R3.

The tangent spaces of SO(3) and SE(3) are identified
respectively by

TRSO(3) ={RΩ|R ∈ SO(3),Ω ∈ so(3)},
TgSE(3) ={gX|g ∈ SE(3), X ∈ se(3)}.

Defining Pa : R3×3 → so(3) as the projection map on so(3)
such that Pa(A) = (A−AT )/2 for any A ∈ R3×3. Defining
P : R4×4 → se(3) as the projection map on se(3) such that
for all A ∈ R3×3, b, cT ∈ R3 and d ∈ R, we have

P
([
A b
c d

])
=

[
Pa(A) b

0 0

]
.

For any matrix A = {aij} ∈ R3×3, we define the composi-
tion map ψa as

ψa(A) = vex(Pa(A)) = [a32−a23, a13−a31, a21−a12]T /2.

Besides, for any matrix A = {aij} ∈ R4×4, y ∈ R6, we
define ψ as

ψ(A) = [a32 − a23, a13 − a31, a21 − a12, a14, a24, a34]
T /2,

which satisfies ⟨⟨A, y∧⟩⟩ = 2ψ(A)T y.

Let ⟨·, ·⟩g : TgSE(3)× TgSE(3) → R be a left invariant
Riemannian metric on SE(3), such that

⟨gU1, gU2⟩g = ⟨⟨U1, U2⟩⟩, g ∈ SE(3), U1, U2 ∈ se(3).

For a smooth function f : SE(3) → R+, we denote
its gradient by ∇gf for any g ∈ SE(3), which is often
determined by Riemannian metric. Let Ra : R × S2 →
SO(3) be the angle-axis parametrization of SO(3), which is
defined as Ra(θ, u) = I3+sin θu×+(1−cos θ)(u×)2, with
θ ∈ R, u ∈ S2. For any R ∈ SO(3), we define |R|I ∈ [0, 1]
satisfying |R|2I = ||I3 − R||2F /8 = tr(I3 − R)/4 as the
normalized Euclidean distance on SO(3).

For any g ∈ SE(3), X ∈ se(3), we define a map Adg(·) :
SE(3)×se(3) → se(3) as Adg(X) = gXg−1 with its matrix
representation on se(3) given by

Adg =

[
R 0
p×R R

]
∈ R6×6.

We also denote its transpose map by AdTg (·). For any r =
(rv, rs)

T , b = (bv, bs)
T ∈ R4 with rv, bv the first three

elements of r, b, respectively, we define the wedge product
∧ as

b ∧ r =
[

bv × rv
bsrv − rsbv

]
∈ R6.

C. Hybrid Systems Framework
The hybrid framework considered here can be described

as follows

ẋ =F (x, q), (x, q) ∈ F ,
q+ ∈J(x, q), (x, q) ∈ J .

The flow map F : M×Q → T M drives the continuous flow
of x on M, which means that the state of the system evolves
continuously according to the given kinematic relations.
The flow set F ⊂ M × Q sets the occurring domain for
continuous flow. Q ⊂ N is a finite index set, in which
different q means different evolution paths. The jump map
J : M×Q → Q governs discrete jumps of q, and the jump
set J ⊂ M×Q dictates where the jumps could happen. In
the flow set F , q remains unchanged and during the jump
set J , the state x of the system remains unchanged.

III. PROBLEM FORMULATION
Let g ∈ SE(3) denote the pose of a rigid body, ξ =

[ωT , vT ]T ∈ R6 denote the generalized velocity. Then g
evolves according to the following kinematics equation

ġ = gξ∧. (1)

We suppose that ξ is bounded and continuous. The measured
velocity, denoted by ξy = [ωT

y , v
T
y ]

T ∈ R6 is contaminated
by a constant and slowly varying bias ba = [bTω , b

T
v ]

T ∈ R6

such that
ξy = ξ + ba. (2)

Suppose that a set of n constant reference vectors ri ∈
R4, i = 1, . . . , n in I are known and their measurements
in B are expressed as

bi = g−1ri, i = 1, . . . , n. (3)
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The n reference vectors include n1 landmarks and n − n1
inertial vectors, with the form of

ri =[(pIi )
T , 1]T , pIi ∈ R3, i = 1, . . . , n1,

ri =[(vIi )
T , 0]T , vIi ∈ R3, i = n1 + 1, . . . , n,

respectively. Then we can denote the measurements of the
landmarks and inertial vectors respectively by

bi =[(pBi )
T , 1]T , pBi = RT (pIi − p) ∈ R3, i = 1, . . . , n1,

bi =[(vBi )
T , 0]T , vBi = RT vIi ∈ R3, i = n1 + 1, . . . , n.

We define the weighted geometric center of all the landmarks
and their measurements as follows

pIc =

n1∑
i=1

αip
I
i /l, pBc =

n1∑
i=1

αip
B
i /l = RT (pIc − p), (4)

where αi > 0, i = 1, . . . , n1 and l =
∑n1

i=1 αi. Here we give
the following modified inertial vectors

vIi = pIi − pIc , vBi = pBi − pBc = RT vIi , (5)

for all i = 1, . . . , n1. We define the set of all the iner-
tial vectors (including the directly measured ones and the
modified ones) as V I = {vIi , i = 1, . . . , n}. To guarantee
the observability of the system, at least one landmark point
should be measured, and at least two vectors from V I are
non-collinear, among the n measurements. This is a standard
measurement case in estimation problems on SE(3), but not
the only one.

Now we introduce the following matrix

A =

n∑
i=1

kirir
T
i =

[
A b
bT d

]
∈ R4×4, (6)

where ki > 0, i = 1, . . . , n, d =
∑n1

i=1 ki ∈ R,
b =

∑n1

i=1 kip
I
i ∈ R3 and A =

∑n1

i=1 kip
I
i (p

I
i )

T +∑n
i=n1+1 kiv

I
i (v

I
i )

T ∈ R3×3. We set αi = ki, i = 1, . . . , n1.
It can be verified that

A− bbT d−1 =

n∑
i=1

kiv
I
i (v

I
i )

T .

Lemma 1: Consider the matrix A defined in (6). Define the
matrix Q = A−bbT d−1, which is positive definite. Then the
matrix WQ = tr(Q)I3 −Q is also positive definite.
Lemma 2: Consider the matrix A defined in (6) and the
matrix Q defined above. Then for any g ∈ SE(3), the
following relations can be obtained

tr((I4 − g)A(I4 − g)T ) =

n∑
i=1

ki||ri − g−1ri||2,

ψ(P((I4 − g−1)A)) =
1

2

n∑
i=1

ki(g
−1ri) ∧ ri,

tr(Q(I3 −R)) =
1

2

n∑
i=1

ki||vIi −RT vIi ||2,

tr((I4 − g)A(I4 − g)T ) =2tr(Q(I3 −R))

+ d||p− (I3 −R)bd−1||2.

We aim at designing a globally stable pose and velocity-
bias estimation algorithm with the synergistic-based hybrid
method, using available inertial vectors and landmarks mea-
surements in some cases.

IV. HYBRID OBSERVER DESIGN

Consider a positive-valued smooth function U : SE(3) →
R+. It can be used as a potential function on SE(3) if
U(g) ≥ 0 for any g ∈ SE(3) and U(g) = 0 if and only if
g = I4. We use ∇gU(g) to denote its gradient with respect
to g. Because of the special manifold structure, there are at
least four critical points of U on SE(3), among which only
one is stable. Let ΨU denote the set of all the critical points.

A. Hybrid Pose and Velocity-Bias Observer Design

Let ĝ and b̂a denote the estimates of g and ba, respec-
tively. We define their estimation errors respectively, as g̃ =
gĝ−1, b̃a = b̂a − ba. Let Q ⊂ N be a finite index set. We
adopt the generic gradient-based pose observer framework
proposed in [1] and get the potential function U indexed by
q ∈ Q, such that

˙̂g =ĝ(ξy − b̂a + kββ)
∧, (7)

˙̂
ba =− Γσb, (8)

β =Adĝ−1ψ(g̃−1∇g̃U(g̃, q)),
σb =AdTĝ ψ(g̃

−1∇g̃U(g̃, q)),

where ĝ(0) ∈ SE(3), b̂a(0) ∈ R6,Γ = diag(kωI3, kvI3) ∈
R6×6, and kω, kv, kβ > 0. The discrete jump variable q is
govern by the following hybrid mechanism{

q̇ = 0, (g̃, q) ∈ F ,
q+ ∈ argmin

p∈Q
U(g̃, p), (g̃, q) ∈ J , (9)

in which the flow set F and jump set J are defined such
that

F = {(g̃, q) : U(g̃, q)−min
p∈Q

U(g̃, p) ≤ δ}, (10)

J = {(g̃, q) : U(g̃, q)−min
p∈Q

U(g̃, p) ≥ δ}, (11)

for some δ > 0 to be determined later.
Theorem 1: Consider the pose kinematics (1) coupled with
the observer (7)-(11). Suppose that the potential function
U(g̃, q) are smooth on SE(3) and the index set Q along
with δ is chosen such that all the undesired critical points of
U lie in J . Then the number of discrete jumps is finite and
the observer is uniformly globally asymptotically stable.
Proof: Let us consider the following Lyapunov function
candidate on SE(3)

V (g̃, b̃a, q) = U(g̃, q) + b̃Ta Γ
−1b̃a. (12)

For any (g̃, q) ∈ F , the closed loop dynamics are given by

˙̃g =g̃(Adĝ b̃a − kβψ(g̃
−1∇g̃U(g̃, q)))∧,

˙̃
ba =− ΓAdTĝ ψ(g̃

−1∇g̃U(g̃, q)).
(13)
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Taking the time derivative of V along the trajectories of (13),
we have

V̇ (g̃, b̃a, q)

=⟨∇g̃U(g̃, q), g̃(Adĝ b̃a − kβψ(g̃
−1∇g̃U(g̃, q)))∧⟩g̃

− 2b̃TaAd
T
ĝ ψ(g̃

−1∇g̃U(g̃, q))
=2ψ(g̃−1∇g̃U(g̃, q))T (Adĝ b̃a − kβψ(g̃

−1∇g̃U(g̃, q)))
− 2b̃TaAd

T
ĝ ψ(g̃

−1∇g̃U(g̃, q))
=− 2kβ ||ψ(g̃−1∇g̃U(g̃, q))||2 < 0,

for any (g̃, q) ∈ F . As for (g̃, q) ∈ J , we have

V (g̃, b̃a, q
+)− V (g̃, b̃a, q) ≤ −δ.

Therefore, it is guaranteed that V (g̃, b̃a, q) strictly decreases
in the whole process. According to Barbalat’s lemma,
lim
t→∞

g̃ = I4. In view of (13), lim
t→∞

b̃a = 0. The observer
is uniformly globally asymptotically stable.

For all (t, j) ∈ dom(g̃, b̃a, q), we have 0 < V (t, j) ≤
V (0, 0) − δj, which leads to j ≤ (V (0, 0) − V (t, j))/δ.
Hence, we can conclude that the number of discrete jumps
is finite. The proof is complete. ■

B. Construction of the Potential Function and Explicit Hy-
brid Observer Expression Using Measurements

In this part, we extend the synergistic-based hybrid method
in [16] from 3-dimentional to 6-dimension and apply it to
the observer. Let us consider the following potential function

UA(R̃) = tr(Q(I3 − R̃))/2λWQ
max, (14)

with Q and WQ defined in lemma 1. It has been widely used
in the attitude estimation problems. Besides, we have

∇R̃UA(R̃) = R̃Pa(QR̃)/2λ
WQ
max, (15)

ΨUA
= {I3} ∪ {R̃ ∈ SO(3)|R̃ = Ra(π, v), v ∈ E(Q)}.

(16)

We then introduce the following angular warping transfor-
mation

ΓA(R̃, q) = R̃RA(R̃, q), (17)

RA(R̃, q) = Ra(2sin
−1(kUA(R̃)), ν(q)), (18)

where UA(R̃) is defined in (14), q ∈ Q ⊂ N, the map ν(q) :
Q → S2 is to be determined and the scalar k satisfies

0 < k < k̄ = (2λWQ
max

√
1 + 4ξ)−1, (19)

with ξ = λ
WQ
max/λ

WQ

min. Let

Φ(R̃, q) = UA ◦ ΓA(R̃, q). (20)

By introducing the transformation, we stretch and compress
the manifold SO(3) by moving all the undesired critical
points to different locations.

Consider the following parameters design: Φ(R̃, q) are
defined in (20), Q is defined in lemma 1 with distinct eigen-
values 0 < λQ1 < λQ2 < λQ3 ,Q ∈ {1, 2}, ν(1) = −ν(2) =

u, u ∈ S2 and satisfies that if λQ2 λ
Q
3 − λQ1 λ

Q
2 − λQ1 λ

Q
3 ≥ 0,

then

uT v1 = 0, (uT vi)
2 = λQi /(λ

Q
2 + λQ3 ), i = 2, 3,

otherwise,

(uT vi)
2 = 1− 4Πj ̸=iλ

Q
j /(ΣlΣk ̸=lλ

Q
l λ

Q
k ),

for i ∈ {1, 2, 3}. vi is the corresponding eigenvector of Q to
the eigenvalue λQi . Define δR ∈ R such that 0 < δR < ∆ =

(8k2V̄ 2 − 8λ
WQ

mink
2V̄ + ϖ − 1)(−1 +ϖ)2/16k4V̄ 3 with k

selected as in (19), ϖ =

√
1 + 16λ

WQ

mink
2V̄ , and

V̄ =

λ
Q
1 ifλQ2 λ

Q
3 − λQ1 λ

Q
2 − λQ1 λ

Q
3 ≥ 0,

4Πjλ
Q
j

ΣlΣk ̸=lλ
Q
l λQ

k

otherwise.

Define the hybrid mechanism{
q̇ = 0, (R̃, q) ∈ FR,

q+ ∈ argmin
p∈Q

Φ(R̃, p), (R̃, q) ∈ JR,

with

FR = {(R̃, q) : Φ(R̃, q)−min
p∈Q

Φ(R̃, p) ≤ δR},

JR = {(R̃, q) : Φ(R̃, q)−min
p∈Q

Φ(R̃, p) ≥ δR}.

In view of [16], for all (R̃, q) ∈ FR, we have

ΓA(R̃, q) /∈ {R̃ ∈ SO(3)|R̃ = Ra(π, v), v ∈ E(Q)},

and for any

ΓA(R̃, q) ∈ {R̃ ∈ SO(3)|R̃ = Ra(π, v), v ∈ E(Q)},

we have (R̃, q) ∈ JR. With the parameters defined above, the
3-dimensional synergistic-based hybrid method is presented.
Now we go ahead to extend it from 3-dimention to 6-
dimension.

Consider the potential function on SE(3) as

Us(g̃) = tr((I4 − g̃)A(I4 − g̃)T )/2, (21)

with A defined in (6). Us(g̃) can be used as a potential
function for pose estimation problems. Besides,

∇g̃Us(g̃) =g̃P((I4 − g̃−1)A), (22)

ΨUs = {I4} ∪ {g̃ ∈SE(3)|R̃ = Ra(π, v),

p̃ = (I3−Ra(π, v))bd
−1, v ∈ E(Q)}, (23)

In view of (16) and (23), both UA(R̃) and Us(g̃) have three
undesired critical points and a desired critical point which
have the one-to-one correspondence. Any pair of the points
share the same expression for R̃. Therefore, we can use the
angular wrapping method to design the synergistic potential
functions U(g̃, q) on SE(3). Assume that all the undesired
critical points of U(g̃, q) and Φ(R̃, q) have the one-to-one
correspondence for any q ∈ Q. Then all the undesired critical
points of U(g̃, q) on the manifold SE(3) are removed to the
jump set J , so long as F = FR × R3,J = JR × R3.
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Lemma 3: Consider the transformation ΓA in (17) and (18).
For any X ∈ SO(3) and ω ∈ R3 such that Ẋ = Xω×, we
have

d

dt
ΓA(X, q) = ΓA(X, q)(ΘA(X, q)ω)

×, (24)

where ΘA(X, q) is given by

ΘA(X, q) = RA(X, q)
T +

2kν(q)ψa(QX)T

λ
WQ
max

√
1− k2U2

A(X)
. (25)

To ensure the one-to-one correspondence of the three
undesired critical points and a desired critical point between
Φ(R̃, q) and U(g̃, q), and that any pair of the points share
the same expression for R̃, we define

U(g̃, q) = Us ◦ ΓA(g̃, q), (26)

with

ΓA(g̃, q) =

[
R̃RA(R̃, q) p̃+ (I3 − R̃RA(R̃, q))bd

−1

0 1

]
,

(27)
where RA(R̃, q) is defined in (18). With this design, F =

FR×R3,J = JR×R3 are guaranteed when δ = 2λ
WQ
maxδR,

in view of lemma 2. Taking the time derivative of ΓA(g̃, q),
we have

d

dt
ΓA(g̃, q) =

[
ΓA(R̃, q)(ΘA(R̃, q)ω̃)

× Υ1

0 0

]
= ΓA(g̃, q)(ΘA(g̃, q)ξ)

∧,

(28)

with

Υ1 = R̃ṽ − ΓA(R̃, q)(ΘA(R̃, q)ω̃)
×bd−1,

ΘA(g̃, q) =

[
ΘA(R̃, q) 0

(bd−1)×ΘA(R̃, q) (RA(R̃, q))
−1

]
, (29)

where ΘA(R̃, q) is defined in (25), ξ = [ω̃T , ṽT ]T ∈ R6

such that ˙̃g = g̃ξ∧. Calculating the gradient of U(g̃, q) with
respect to g̃ and using the chain rule, we have

∇g̃U(g̃, q) =g̃[ΘA(g̃, q)
Tψ(P((I4 − ΓA(g̃, q)

−1)A))]∧

× diag(I3, 2).
(30)

In view of lemma 2, it is easy to get

β =
1

2
Adĝ−1

(
ΘA(g̃, q)

T
n∑

i=1

ki((g
−1ΓA(g̃, q))

−1bi) ∧ ri

)
,

σb =
1

2
AdTĝ

(
ΘA(g̃, q)

T
n∑

i=1

ki((g
−1ΓA(g̃, q))

−1bi) ∧ ri

)
,

(31)
with

(g−1ΓA(g̃, q))
−1 =

[
RA(R̃, q)

T R̂ Υ2

0 1

]
, (32)

Υ2 = RA(R̃, q)
T p̂+ (I3 − R̃RA(R̃, q))

T bd−1,

and ΘA(g̃, q) defined in (29).
The term R̃ in (32) may be unavailable in some practical

applications because no onboard sensors can directly obtain
the measurement of R. We can deal with this problem by ap-
propriately choosing the landmarks and their corresponding

gain parameters such that bd−1 = 0, or directly reconstruct-
ing R from the measurements through static determination
algorithms, which is a common practice and not detailed
here.

By combining (14) (18) and (25), the following quantities
are expressed in an explicit form

RA(R̃, q) = Ra(2 sin
−1(kϑ), ν(q)), (33)

ϑ =
1

4λ
WQ
max

n∑
i=1

ki||vBi − R̂T vIi ||2, (34)

ΘA(R̃, q)
T = RA(R̃, q) +

kR̂
n∑

i=1

ki(v
B
i × R̂T vIi )ν(q)

T

λ
WQ
max

√
1− k2ϑ2

.

(35)

V. SIMULATIONS
Suppose that the angular velocity and linear

velocity of the system are given by ω(t) =
0.01[− sin(t), cos(t), sin(t)]T rad/s and v(t) =
0.2[cos(t), sin(t), 0]Tm/s, respectively. The measured
group velocity is corrupted by the slowly varying
bias bω = 0.001 cos(t)[−2, 2, 1]T rad/s and
bv = 0.01 cos(t)[2,−1, 1]Tm/s. Assume that one
landmark and three inertial vectors are measured
with known vector elements in the inertial frame
p1 = [

√
2/2,

√
2/2, 2]T , v1 = [1,−1, 1]T /

√
3, v2 =

[0, 0, 1]T , v3 = [1, 0, 0]T and the corresponding gain
parameters k1 = 1, k2 = 1, k3 = 3, k4 = 1. The other
parameters are selected as δR = 0.8∆, k = 0.95k̄, kβ =
0.8, kω = 0.4, kv = 0.4, q(0) = 2. The pose of the system
is initialized at R(0) = I3, p(0) = [0, 1, 4]Tm. The initial
estimates are given by R̂(0) = Ra(π, v1)

TR(0), p̂(0) =
(I3 − R̂(0))bd−1, b̂ω(0) = 0, b̂v(0) = 0. For comparison
purpose, we also implement the reset-based non-
decoupled hybrid pose observer proposed in [1] with
θ = 2π/3, δ = 0.2, q(0) = 0 and the smooth pose observer.

The simulation results are given in Fig.1. It can be seen
that the proposed observer ensures faster convergence of
the estimation errors compared to the reset-based hybrid
observer and the smooth observer in both rotational and
translational channel. In the steady-state phase, our observer
achieves higher estimation accuracy than the others espe-
cially in the rotational channel. Also note that both the pro-
posed observer and the reset-based observer trigger the jump
maps. When the jump occurs, the proposed observer selects
the other synergistic potential function and thus a different
innovation term is utilized, leading to new estimation errors
convergence rates, while the reset-based observer changes
the state estimates directly along the decreasing direction of
the potential function, with the innovation term remaining
unchanged. This partly explains the faster convergence rates
of the estimation errors acquired by the proposed observer.

VI. CONCLUSION
A globally asymptotically stable hybrid pose and velocity-

bias observer has been proposed. We construct synergistic
potential functions on SE(3) and SO(3) via angular warping
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(a) Attitude estimation error

(b) Position estimation error

(c) Angular velocity-bias estimation error

(d) Linear velocity-bias estimation error

(e) Results for q

Fig. 1. Behavior of the proposed observer

and use the gradients of the formers in the innovation term.
We show that under the developed switching mechanism,
the undesired critical points can be avoided successfully.
The proposed hybrid observer can be explicitly expressed
in terms of inertial vector measurements, modified inertial
vectors measurements and landmark measurements in some
cases. Simulations are conducted to show the performance
of the hybrid observer.
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