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Abstract— We study the Traffic Light Control (TLC) problem
for a single intersection, considering both straight driving
vehicle flows and corresponding crossing pedestrian flows with
the goal of achieving a fair jointly optimal sharing policy in
terms of average waiting times. Using a stochastic hybrid system
model, we design a quasi-dynamic policy controlling the traffic
light cycles with several threshold parameters applied to the
light cycles and the partially observed contents of vehicle and
pedestrian queues. Infinitesimal Perturbation Analysis (IPA)
is then used to derive a data-driven gradient estimator of
a cost metric with respect to the policy parameters and to
iteratively adjust these parameters through an online gradient-
based algorithm in order to improve overall performance
on this intersection and adapt the policy to changing traffic
conditions. The controller is applied to a simulated intersection
in the town of Veberöd, Sweden, to illustrate the performance
of this approach using real traffic data from this intersection.

I. INTRODUCTION

The Traffic Light Control (TLC) problem entails dynam-
ically adjusting the traffic light cycles in an intersection
or a set of intersections in order to improve the overall
traffic performance (normally measured through a congestion
metric). Research have been conducted with different traffic
models [1] [2] and different optimization methods such as
model-based methods [3]–[5] and computational intelligence
methods [6]–[8].

Research to date has focused on vehicle flows, while
the presence of pedestrians has been largely ignored, even
though it is clear that it plays an important role in TLC.
There is limited work in the literature on how pedestrians
influence traffic [9]–[12]. Although considering pedestrian
flows, most of these methods need to train the controller
with a large amount of historical data or need a prohibitive
amount of computation for a single static traffic scenario
(with computational complexity rapidly increasing in more
crowded situations). Moreover, with recent technological de-
velopments that allow the real-time detection of vehicles and
pedestrians at intersections (e.g., [13]), it has become possi-
ble to develop real-time traffic-responsive strategies instead
of solely relying on historical traffic data. In this context, the
key contribution of this paper is a computationally efficient
data-driven framework to model the competing interactions
between vehicles and pedestrians at an intersection using
online data. We model a single intersection as a stochastic
hybrid system, specifically a Stochastic Flow Model (SFM)
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Fig. 1: Single intersection with pedestrian crossings

[14], where the traffic light switching process is event-
driven, while the dynamics of the vehicle and pedestrian
flows through an intersection are time-driven. Infinitesimal
Perturbation Analysis (IPA) [15] is used to estimate online
gradients of a performance metric with respect to several
parameters of a quasi-dynamic TLC policy considering both
vehicle flows and pedestrian flows. These gradient estimates
are then used to iteratively seek optimal values for these
system parameters. Note that IPA-based gradient estimators
are entirely event-driven, therefore our framework scales
with the (relatively small) number of events in each system
intersection, not the (much larger) state space dimensionality,
as recently shown in [16]. Moreover, IPA is independent of
any modeling assumptions regarding the stochastic processes
characterizing traffic demand and vehicle behavior, driven
only by actual observed traffic data similar to learning-based
approaches. Compared to [14], the presence of pedestrian
flows requires the SFM to include additional queues and the
TLC policy to incorporate conditions for enabling pedestrian
flows to cross, thus creating a new trade-off to be explored
between vehicle and pedestrian performance metrics.

II. PROBLEM FORMULATION

Consider a single signalized intersection as shown in Fig.
1. For simplicity, left-turn and right-turn traffic flows are not
considered, and the traffic light combines yellow with red.
Note that scenarios considering multiple intersections and
turning flows have been explored in follow-up work such as
[16], while this paper focuses specifically on the competing
actions of vehicles and pedestrians. We consider only two
vehicle flows (perpendicular to each other) indexed by n =
1, 2 and two corresponding pedestrian flows indexed by n =
3, 4 (see Fig. 1). A basic requirement for TLC is that the
signals for vehicles and pedestrians are consistent, i.e., when
vehicles of flow 1(2) face a GREEN light, pedestrians of flow
4(3) must also face a GREEN light, as indicated in Fig. 1.

Each of the two roads is modeled as a queue where
vehicles stop when facing a RED light. Similarly, each
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sidewalk where pedestrians wait to cross a road is mod-
eled as a queue. Thus, we define a state vector x(t) =
[x1(t), x2(t), x3(t), x4(t)], xn(t) ∈ R+

0 of queue contents
corresponding to the four flows. We assume that queue con-
tents partially observable, meaning we only detect whether
the number of queued vehicles or pedestrians is below or
above a controllable threshold. This partial occupancy can
be observed using sensors such as inductive loop detectors
installed on each road near the intersection. Similar to
[14], we model the input to each queue as an exogenous
random flow process {αn(t)} where αn(t) is a stochastic
instantaneous arrival rate independent of all queue states.
The departure flow process is denoted by {βn(t)}. Note that
when n = 1, 2, xn(t) denotes the vehicle queue content of
road n, while when n = 3, 4, xn(t) represents the associated
pedestrian queue content intending to cross road n− 2.

In addition, we define a clock state variable zn(t) for n =
1, 2 to measure the time since the last switch from RED to
GREEN for vehicle flow 1,2 respectively. Henceforth, let n̄
denote the index of the vehicle flow perpendicular to flow
n with the requirement that zn̄(t) > 0 when zn(t) = 0.
Similarly, for the pedestrian flows, we define wn(t), n = 3, 4
to be the time elapsed since the first pedestrian presence of
queue n in the current RED phase; in other words, wn(t)
captures the longest pedestrian waiting time in this phase.

Letting z(t) = [z1(t), z2(t)] and w(t) = [w3(t), w4(t)]
with zn(t), wn(t) ∈ R+

0 , we have the 8-dimensional system
state vector [x(t), z(t), w(t)]. Before presenting the detailed
state dynamics, we define the traffic light controller:

u(x(t), z(t), w(t)) = [u1(t), u2(t), u3(t), u4(t)] (1)

where un(t) = 1 denotes a GREEN light faced by flow
n, and un(t) = 0 denotes a RED light accordingly. We
define un(t) to be right-continuous in order to accurately
represent the control policy defined in the sequel. Due to
the basic safety constraint already mentioned, i.e., when
vehicles of flow 1(2) face a GREEN light, pedestrians of
flow 4(3) must also face a GREEN light, we can eliminate
the control values that would lead to a flow conflict. As a
result, the feasible control set contains only two elements:
U = {[1, 0, 0, 1], [0, 1, 1, 0]} and anytime un(t) switches
its value, the control for the other three flows switches
automatically.

Since αn(t) is an exogenous input process independent of
the queue states, we can write the departure process as:

βn(t) =


hn(t), if xn(t) > 0 and un(t) = 1

αn(t), if xn(t) = 0 and un(t) = 1

0, otherwise
(2)

for n = 1, 2, 3, 4, where hn(t) is the maximum departure
rate which generally depends on the road structure, vehicle
specifications and pedestrian move pattern. For the pedestrian
flows n = 3, 4, we assume hn(t) > αn(t) for all t, i.e., once
pedestrians start crossing, the queue definitely gets shorter.

We can now write the state dynamics as follows:

ẋn(t) = αn(t)− βn(t), n = 1, 2, 3, 4 (3)

żn(t) =

{
1, if un(t) = 1

0, otherwise n = 1, 2
(4)

ẇn(t) =

{
1, if un(t) = 0 and xn(t) > 0

0, otherwise n = 3, 4
(5)

In (4), note that ż1(t)+ ż2(t) = 1 always holds. In addition,
we define zn(t) to be left-continuous, so that at the moment
the light switches from GREEN to RED, zn(t) > 0, zn̄(t) =
0, zn(t

+) = 0, and un(t) = 0 (since un(t) is right-
continuous). In (5), note that wn(t

+) = 0 whenever un(t)
switches from 0 to 1, and w3(t)w4(t) = 0 always holds.

Thus, the traffic light intersection in Fig. 1 can be viewed
as a hybrid system in which the time-driven dynamics are
given by (3), (4), (5) and (2), while event-driven dynamics
are associated with light switches with events that cause the
value of xn(t) to change from strictly positive to zero or vice
versa. Although the dynamics involve the instantaneous flow
processes {αn(t)} and {βn(t)}, we will show that the IPA-
based adaptive controller we design does not require such
knowledge and depends only on estimating such rates in the
vicinity of certain critical observable events.

Controller Specification. Our TLC design is based on
the ability to detect events of interest in the state dynamics
above, such as a queue content becoming empty. While it
may not be possible to detect the exact number of vehicles
in a queue (e.g., using cameras), we assume that this number
can be estimated so as to classify a queue content xn(t) as
being empty and either below or above some threshold sn,
n = 1, 2, 3, 4, as well as the time such transitions occur.
For the vehicle queue contents, the joint state space can be
partitioned into the following nine regions (see Fig. 2a):
X0 = {(x1, x2) : x1(t) = 0, x2(t) = 0}; X1 = {(x1, x2) :
0 < x1(t) < s1, x2(t) = 0} ; X ′

1 = {(x1, x2) : x1(t) ≥
s1, x2(t) = 0} ; X2 = {(x1, x2) : x1(t) = 0, 0 <
x2(t) < s2}; X ′

2 = {(x1, x2) : x1(t) = 0, x2(t) ≥ s2};
X3 = {(x1, x2) : 0 < x1(t) < s1, 0 < x2(t) < s2};
X4 = {(x1, x2) : 0 < x1(t) < s1, x2(t) ≥ s2}; X5 =
{(x1, x2) : x1(t) ≥ s1, 0 < x2(t) < s2}; X6 = {(x1, x2) :
x1(t) ≥ s1, x2(t) ≥ s2}

Regarding the length of a light cycle (i.e., the values
that zn(t), n = 1, 2, can take), we assign a guaranteed
minimum GREEN light cycle time θmin

n and a maximum
cycle time θmax

n . This is to ensure that traffic light switches
are not overly frequent nor can they be excessively long.
Complementing θmax

n , n = 1, 2, for vehicles, we define
an upper bound θn to the pedestrian waiting times wn(t),
n = 3, 4, so that their waiting never becomes excessive.

An efficient controller design also needs to address the
issues of maintaining (i) a proper balance between allocating
a GREEN light to competing queues and (ii) preventing the
undesired phenomenon where vehicles wait at a RED light
at road n while road n̄ is empty during its GREEN phase.
Such “waiting-for-nothing” instances waste the resources
of vehicles that wait unnecessarily and can be eliminated
through a proper controller design as detailed next. Towards
these two goals, the final parameters we define for our
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TLC design are the queue thresholds sn, n = 1, 2, 3, 4 (see
Fig. 2). To summarize, we define the following controllable
parameter vector:

υ = [θmin
1 , θmax

1 , θmin
2 , θmax

2 , θ3, θ4, s1, s2, s3, s4] (6)

where θmin
n ≥ 0, θmax

n ≥ θmin
n , and θn+2 > 0 for n = 1, 2;

sn > 0 for n = 1, 2, 3, 4.
The role of these controllable parameters is to partition

the 8-dimensional state space into appropriate subsets that
form the basis of a quasi-dynamic controller: while in (1)
the controller is defined as a function of the full state
[x(t), z(t), w(t)], a quasi-dynamic controller is a function
of subsets of aggregated states defined by the partition of
the queue states shown in Fig. 2 and an additional partition
shown in Fig. 2b; the latter is based on defining the following
auxiliary state variable for each pedestrian flow n = 3, 4:

pn−2(xn(t), wn(t)) =

{
1, if xn(t) ≥ sn OR wn(t) ≥ θn

0, otherwise
(7)

We use the simplified notation pn−2(t) that captures when
pedestrian queue n is enabled to cross: when the queue is
either long enough or the waiting time is large enough during
the current RED phase (see Fig. 2b). The subscript n − 2
indicates the target road for pedestrian queue n to cross.
Thus, the aggregated pedestrian state is p(t) = [p1(t), p2(t)].

We are now ready to specify a quasi-dynamic controller
expressed as u(X(t), p(t), z(t), w(t)) where X(t) is one of
the nine subsets defined by the partition of the vehicle queue
content space in Fig. 2a and p(t) is the aggregated pedestrian
state. Due to the coupling between vehicle and pedestrian
demands, a control policy can no longer be as simple as
the one in [14]. With the goal of balancing access to a
GREEN light to ensure fairness and preventing the wasteful
“waiting-for-nothing” phenomenon mentioned earlier, we
express the TLC specification in terms of conditions for
either maintaining a GREEN light or switching back to it
for road 1. Recall that U = {[1, 0, 0, 1], [0, 1, 1, 0]}, hence
the policy for u1(t) fully defines u2(t), u3(t), u4(t).

1. (x1(t), x2(t)) ∈ {X0}: In this case there are no vehicle
queues and control is only applied to serve pedestrian queues.
First, if the light in road 1 is GREEN (z1 > 0), it switches
to RED when pedestrian demand is high for road 1 (p1 = 1)
and low for road 2 (p2 = 0), or when demand for both roads
is high (p1 = p2 = 1) when the elapsed GREEN time reaches
upper bound (θmax

1 ). Second, if the light in road 1 is RED
(z2 > 0), the logic for switching to GREEN is symmetric.
Formally, we define

u1(t) =



1, if [z1(t) ∈ (0, θmax
1 ), p1(t) = p2(t) = 1] OR

[z1(t) > 0, p1(t) = 0] OR
[z2(t) ≥ θmax

2 , p1(t) = p2(t) = 1] OR
[z2(t) > 0, p1(t) = 0, p2(t) = 1]

0, otherwise
(8)

Due to the space limitation, we omit the explanations for the
rest cases which can be found in [17].

(a) State-space partition for vehicle
queue content

(b) State-space partition for
pedestrian state (n = 3, 4)

Fig. 2: State space partitions

2. (x1(t), x2(t)) ∈ {X1, X
′
1}:

u1(t) =



1, if [z1(t) ∈ (0, θmin
1 )] OR

[z1(t) ≥ θmin
1 , p1(t) ≤ p2(t)] OR

[z2(t) ∈ (0, θmax
2 ), p1(t) = 0] OR

[z2(t) ≥ θmax
2 ]

0, otherwise

(9)

3. (x1(t), x2(t)) ∈ {X2, X
′
2}:

u1(t) =


1, if [z1(t) ∈ (0, θmax

1 ), p2(t) = 1] OR
[z2(t) ≥ θmin

2 , p1(t) = 0, p2(t) = 1]
0, otherwise

(10)

4. (x1(t), x2(t)) ∈ {X3, X6}:

u1(t) =



1, if [z1(t) ∈ (0, θmin
1 )] OR

[z1(t) ∈ [θmin
1 , θmax

1 ), p1(t) ≤ p2(t)] OR
[z2(t) ∈ [θmin

2 , θmax
2 ), p1(t) = 0, p2(t) = 1]

OR [z2(t) ≥ θmax
2 ]

0, otherwise
(11)

5. (x1(t), x2(t)) ∈ {X4}:

u1(t) =


1, if [z1(t) ∈ (0, θmin

1 )] OR
[z2(t) ≥ θmax

2 ]

0, otherwise
(12)

6. (x1(t), x2(t)) ∈ {X5}:

u1(t) =


1, if [z1(t) ∈ (0, θmax

1 )] OR
[z2(t) ≥ θmin

2 ]
0, otherwise

(13)

The six cases above fully specify our TLC. Note that as
the values of xn(t) change, there are associated transitions
from one subset in Fig. 2a to another, in which case the
controller u1(t) follows the new region specifications.

Event definitions. We define observable events associated
with mode switches in the hybrid system defined through (3),
(4), (5) and (2) under the controller specified above.

For n = 1, 2, 3, 4: (a) xn reaches 0 from above (xn ↓ 0),
(b) xn becomes positive from 0 (xn ↑ 0), (c) xn reaches
sn from below (xn ↑ sn), (d) xn reaches sn from above
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(xn ↓ sn), (e) αn reaches 0 from above (αn ↓ 0), (f) αn

becomes positive from 0 (αn ↑ 0).
For n = 1, 2: (a) zn reaches lower bound (zn ↑ θmin

n ), (b)
zn reaches upper bound (zn ↑ θmax

n ).
For n = 3, 4: wn reaches threshold (wn ↑ θn).
Since we have defined the auxiliary state variables pn(t),

it is convenient to also define the following compound events
for n = 1, 2: (1) pn changes from 0 to 1 (pn ↑ 1), which
happens when either xn+2 ↑ sn+2 or wn+2 ↑ θn+2 occurs,
(2) pn changes from 1 to 0 (pn ↓ 0), which happens only at
a GREEN phase when xn+2 ↓ sn+2 occurs.

We can now define the controllable event G2Rn n =
1, 2, 3, 4, which switches the light faced by queue n from
GREEN to RED and triggers a state mode in the hybrid
system to switch. This is the event that causes a control
switch from un(t) = 1 to un(t) = 0. Similarly, R2Gn indi-
cates light switches from RED to GREEN. Note that these
controllable events are coupled, i.e., when G2R1 occurs, then
R2G2, R2G3, G2R4 also occur at the same time (see Fig. 1).
It is important to observe that all G2Rn controllable events
are fully defined through the observable events above and
the control logic already presented. A complete graphical
representation of the hybrid system under TLC in the form
of a Stochastic Hybrid Automaton (SHA) is provided in [17].

TLC Optimization Problem. With the parameterized
controller defined above, our aim is to optimize a perfor-
mance metric for the intersection operation with respect to
these controllable parameters that comprise the vector υ
defined in (6). We choose our performance metric to be the
weighted mean queue lengths over a time interval [0, T ]:

L(υ;x(0), z(0), T ) =
1

T

4∑
n=1

∫ T

0

γnxn(υ, t) dt (14)

where γn is a weight associated with queue n, n = 1, 2, 3, 4.
Note that a typical sample path of the flow queue content
{xn(t)} consists of alternating Non-empty Periods (NEPs)
and Empty Periods(EPs), which correspond to time intervals
when xn(t) > 0 and xn(t) = 0 respectively, as shown in
Fig. 3. Thus, our goal is to determine υ in (6) that (at least
locally) minimizes the expected weighted mean queue length
J(υ;x(0), z(0), T ) = E[L(υ;x(0), z(0), T )].

Note that it is not possible to derive a closed-form expres-
sion of J(υ;x(0), z(0), T ) even if we had full knowledge
of the processes {αn(t)} and {βn(t)}. Therefore, a closed-
form expression for ∇J(υ) is also infeasible. The role of
IPA is to obtain an unbiased estimate of ∇J(υ) based on
the sample function gradient ∇L(υ) which can be evaluated

Fig. 3: Typical sample path of a traffic light queue

based only on data directly observable along a single sample
path such as Fig. 3, as will be shown in the next section. The
unbiasedness of ∇L(υ) is ensured under mild conditions
on L(υ) (see [15]) and assuming that αn(t) and hn(t)
are piecewise continuously differentiable in t w.p. 1. In
particular, we emphasize that no explicit knowledge of αn(t)
and hn(t) is necessary to estimate ∇J(υ) through ∇L(υ).

We can now invoke a gradient-based algorithm of the form

υi,l+1 = υi,l − ρl
[ dJ

dυi,l

]
IPA

(15)

where υi,l is the ith parameter of υ at the lth iteration, ρl
is the stepsize at the lth iteration, and ( dJ

dυi,l
)IPA is the IPA

estimator of dJ
dυi,l

, which will be derived in the next section.

III. INFINITESIMAL PERTURBATION ANALYSIS

The IPA framework in [15] captures how system states
change with respect to controllable parameters. Our goal
is to estimate ∇J(υ) through ∇L(υ), and the performance
metric expression is a function of event time and system state
variables. Thus, we apply the IPA framework to the TLC
problem and evaluate how a perturbation in υ would affect
performance metrics. Consider a sample path over [0, T ] and
denote the occurrence time of the kth event (of any type) by
τk, the state and event time derivatives are as follows.

State Derivatives. We define the derivatives of the state
variables xn(t), zn(t), wn(t) and event time τk with respect
to parameter υi (i = 1, ...10) as follows:

x′
n,i ≡

∂xn(t)

∂υi
, z′n,i ≡

∂zn(t)

∂υi
, w′

n,i ≡
∂wn(t)

∂υi
, τ ′k,i ≡

∂τk
∂υi

,

(16)
Also, we denote the state dynamics at interval time t ∈
[τk, τk+1) as follows: ẋn(t) = fx

n,k(t), n = 1, 2, 3, 4;
żn(t) = fz

n,k(t), n = 1, 2; ẇn(t) = fw
n,k(t), n = 3, 4.

The state derivative of any queue is unaffected within any
inter-event time interval (see [15]), i.e., for t ∈ [τk, τk+1):

x′
n,i(t) = x′

n,i(τ
+
k ), z′n,i(t) = z′n,i(τ

+
k ), w′

n,i(t) = w′
n,i(τ

+
k )

(17)
Next, for any discrete event time τk, we evaluate queue

content derivatives for any possible event occurring to
start/end an EP/NEP or within any EP/NEP. Due to space
limitations the complete derivations can be found in [17]
and the results are summarized below:

x′
n,i(τ

+
k ) =

0, for event inside EP
xd
n,i

′
(τ−k ) + (αd

n(τk)

−hd
n(τk))τ

′
k,i, for event starting EP

−αn(τk)τ
′
k,i, for G2Rn starting NEP

x′
n,i(τ

−
k )− hn(τk)τ

′
k,i, for G2Rn inside NEP

x′
n,i(τ

−
k ) + hn(τk)τ

′
k,i, for R2Gn inside NEP

x′
n,i(τ

−
k ), for other exogenous event

(18)
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Note that most of the queue content derivative expressions
involve the event time derivatives τ ′k,i which we derive next.

Event Time Derivatives. The determination of τ ′k,i de-
pends on each event defined by its associated guard condi-
tion. Due to space limitations the complete derivations can
be found in [17] and the results are summarized below in
two groups by their range of application. The notation 1i=m

denotes the indicator function whose value is 1 when i = m.

τ ′k,i =


1i=2n + τ ′k−1,i, if [zn ↑ θmax

n ] occurs at τk
1i=2n−1 + τ ′k−1,i, if [zn ↑ θmin

n ] occurs at τk
1i=n+4, if [wn+2 ↑ θn+2] occurs at τk

(19)

τ ′k,i =



1i=n+6−x′
n,i(τ

−
k )

αn(τk)−hn(τk)
, if [xn ↓ sn] occurs at τk

1i=n+6−x′
n,i(τ

−
k )

αn(τk)
, if [xn ↑ sn] occurs at τk

−x′
n,i(τ

−
k )

αn(τk)−hn(τk)
if [xn ↓ 0] occurs at τk

0, if [αn ↓ 0] occurs at τk

(20)

where all events were defined in Section II, n = 1, 2 in (19),
n = 1, . . . , 4 in (20) and i = 1, . . . , 10 for both equations.

Cost Derivatives. Similar to the proof in [14], the IPA
estimator, i.e., the derivative of L(υ) defined in (14) with
respect to υi, i = 1 . . . 10, is given by

dL(υ)

dυi
=

1

T

4∑
n=1

Mn∑
m=1

γn
dLn,m(υ)

dυi
(21)

where

dLn,m(υ)

dυi
= x′

n,i(ξn,m
+)(t1n,m − ξn,m) + x′

n,i(t
Jn,m
n,m

+
)

(ηn,m − tJn,m
n,m ) +

Jn,m∑
j=2

x′
n,i(t

j−1
n,m

+
)(tjn,m − tj−1

n,m) (22)

where Mn is the total number of NEPs during the sample
path of queue n over [0, T ], Jn,m is the (observed) total
number of events related to queue n in the mth NEP, tjn,m
is the time of the jth event in that NEP, and ξn,m, ηn,m are
the start and end time respectively of of mth NEP.

It is clear from (22) that the IPA derivative is the sum of
selected inter-event times multiplied by their corresponding
state derivatives. Therefore, the information required to eval-
uate it consists of: event times, which are easy to observe;
state derivatives at these times, which can be obtained from
(18); and arrival and departure rates αn(τk), hn(τk), needed
only at certain event times (e.g., when event Sn is induced
by light switching in (18)). The latter are easy to estimate,
as detailed in the next section. Moreover, we can assume
the maximum departure rate hn(τk) to be a constant which
can also be easily estimated offline. In summary, by simply
monitoring and recording events as they are observed and
very limited calculations, we can obtain the IPA gradient
estimator for the expected weighted mean queue length.
This is then used with any standard online gradient-based
algorithm (15) so as to adjust the controllable parameters
and improve the overall performance to a (generally local)
optimum. Importantly, the event-driven nature enables our

framework to easily generalize to multiple intersections and
expanded flow settings (left and right turns). The compu-
tational complexity of the TLC is linear in the number
of events, so this method inherently scales well as more
intersections are added (see [16]).

IV. SIMULATION RESULTS

The results in this section are based on a simulation
environment for traffic through a single traffic light inter-
section built through Eclipse SUMO. Although the arrival
processes can be arbitrary for our IPA-based method, we
assume them to be Poisson processes for both vehicles
and pedestrians with rates ᾱn, and estimate the maximum
departure rate as a constant value hn = H through an offline
analysis. Since we only need the arrival flow rate at certain
event times, we can estimate an instantaneous arrival rate
through αn(τk) = Na/tw, where Na denotes the number of
vehicles/pedestrians joining queue n during a time window
of size tw before event time τk. We set H = 1.2 and equal
weight for all flows throughout this section. With this setting,
we have performed four sets of simulations.

Optimizing cost. We use the same initial parameter values
υ0 = [10, 20, 30, 50, 10, 10, 8, 8, 5, 5] over different traffic
conditions to test how the controller performs. The direction
of each update is based on the average gradient, calculated by
IPA using 20 sample paths with a length of 1000s each. The
results are shown in Table I where the last column shows
33.8% - 62.9% waiting time reductions. Figure 4a shows
the cost trajectory for 1/ᾱ = [6, 6, 10, 20] as the number
of parameter iterations increases. Note that since the vehicle
flow is higher than the pedestrian flow, the overall weighted
mean waiting time is dominated by the former. The detailed
parameter trajectories can be found in [17].

(a) (b)

Fig. 4: Sample cost trajectories

TLC of an actual intersection. We have cooperated with
the town of Veberöd, Sweden to study a major intersection
at the town center. This is a typical 4-way intersection with
a single lane for each direction. Currently, no traffic light is

TABLE I: Simulation results for different traffic intensities

1/ᾱ Jinit Jopt Cost Reduction
[5,5,20,20] 19.08 12.63 33.8%
[5,8,20,20] 12.58 4.67 62.9%
[6,6,20,20] 11.11 5.68 48.9%
[6,8,20,20] 9.45 3.58 62.1%
[6,6,10,20] 11.72 6.19 47.2%
[6,6,25,20] 11.50 5.00 56.5%
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Fig. 5: Comparison of performance measure

present and vehicles and pedestrians follow the first-come-
first-leave rule for crossing. During busy hours, this rule
can cause long queues and congestion, while also becoming
unsafe. Furthermore, traffic is expected to increase in the
near future as the town expands and develops. With Veberöd
traffic data available, we have modeled the arrival processes
to be Poisson with rates ᾱ = [0.11, 0.125, 0.01, 0.01]. We
first simulated the intersection operation under current con-
ditions to establish a baseline, and then compared the result
to its operation using our controller. Then, we proportionally
expand the traffic applying increasing scaling factors, to
capture anticipated future town development. The results are
shown in Fig. 5, comparing the baseline (no control) to
our adaptive quasi-dynamic controller operating with random
unoptimized initial parameters, as well as with with those
optimized by the IPA gradient-based method. We can see the
benefits of the TLC which results in cost decreases varying
from 11.13% to 64.22%.

Online TLC implementation. We consider a single long
sample path with length T = 43200s. IPA parameters are
updated every 1200s using the data collected during the most
recent time window. We set the traffic demand at rates ᾱ =
[0.154, 0.175, 0.014, 0.014] (1.4 times the Veberöd traffic
demand), and the same initial parameter as before. Typical
sample cost trajectory is shown in Fig. 4b. Observe that
cost trajectory fluctuations occur even after parameters have
largely converged, indicating, as expected, that the cost is
subject to noise due to the random traffic. In order to decrease
such fluctuations caused by both traffic demand changes
and parameter updates, several smoothing techniques can be
applied. Additional results may be found in [17].

TLC adaptivity. We illustrate this property by observing
how the TLC performance changes when traffic demand is
perturbed. Using the same simulation setting as before, we
add traffic perturbations by increasing the Poisson rate of
vehicle flow 1 to 1.3 times at 21600s, and then return to the
original rate at 36000s. The cost trajectory is shown in Fig.6
where the shaded area corresponds to the time interval over
which traffic demand was increased and the ability of the
TLC to adapt accordingly is seen.

V. CONCLUSION AND FUTURE WORK

We have studied a TLC problem for a single intersec-
tion with both vehicle and pedestrian flows. We designed
a parametric adaptive quasi-dynamic controller aiming at
optimizing weighted mean waiting times and used IPA to
estimate gradients with respect to these parameters and adjust

them iteratively so that it can automatically adapt to changing
traffic conditions. Next steps are to add more flows (including
bicycle and pedestrian traffic flows) to a traffic network.
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